过驱动系统控制分配理论及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有冗余执行机构的过驱动系统广泛存在于航空航天、航海、汽车、机器人以及工业过程等应用领域。控制分配是过驱动控制系统设计和分析的关键问题,也是当前控制领域的研究热点之一。引入控制分配的过驱动控制系统设计可分解为基本控制律设计和控制分配算法设计两部分。其中,基本控制律根据对象动力学特性和控制目标得到总的控制指令(称为伪指令);控制分配算法则是在综合考虑执行机构物理约束(偏转位置、速率等)的基础上,将伪指令合理分配至冗余的执行机构中,以获得期望的系统响应。随着控制对象本身以及其工作环境的日益复杂化,传统控制分配算法已逐渐不能适应目前系统的要求,先进的控制分配算法及其相关问题研究的重要性日益突显。
     论文研究了过驱动系统的控制分配问题,分析了目前控制分配算法中存在的局限性,并针对不确定性建模下的鲁棒控制分配、典型非线性条件下的非线性控制分配以及考虑执行器动态响应过程的动态控制分配等问题开展研究,得到了一些新的结果;将部分研究结果应用于具有多操纵面的飞行器控制系统设计中,验证了其有效性。论文的主要研究工作包括:
     (1)针对不确定性建模问题,以具有多操纵面的飞机为受控对象,在分析现有控制分配算法局限性的基础上,应用鲁棒优化理论研究不确定性建模下的控制分配问题。研究了原始不确定鲁棒优化模型的建立和基于椭球不确定集的鲁棒对等式的转化问题,并推广到锥不确定集的情况;讨论了鲁棒控制分配算法的数值求解方法及其计算复杂度;针对多操纵面布局飞机的控制分配问题与传统算法进行了仿真比较,结果表明鲁棒优化算法能有效降低控制效率矩阵存在不确定性的影响,使分配结果更为合理,从而具有更好的鲁棒性。
     (2)针对多操纵面布局飞行器中操纵面存在耦合效应导致舵效呈非线性的情况,研究了基于耦合补偿的非线性控制分配方法。针对该问题中以误差最小化作为线性目标函数,约束函数为二阶非线性、连续可微凸函数的特点,提出一种基于序列线性规划的控制分配算法,将原非线性规划问题转化为一系列线性规划子问题进行求解,从而实现了飞行器控制分配的耦合非线性补偿,使得分配性能得到了有效提高。
     (3)研究了直接非单调非线性情况下的控制分配问题。传统的线性控制分配算法是基于控制力矩与执行器偏转位置存在精确的线性函数关系的假设之上得到的。然而,控制力矩与执行器偏转位置的关系本质上是非线性的,特别是执行器出现故障时。针对非单调非线性控制分配问题,提出一种基于微分进化的非线性控制分配策略,研究了问题的转化描述,给出了算法步骤,并以具有多操纵面的飞机模型为对象,与传统算法进行了性能比较,验证了提出方法的有效性。
     (4)研究了执行器动态响应过程不可忽略情形下的控制分配问题。基于数据驱动的子空间辨识方法和预测控制理论,提出了一种考虑执行器动态响应过程的动态控制分配方法。在考虑范数有界不确定性的在线子空间辨识的基础上,对执行器动力学特性进行不确定性建模,再结合预测控制理论进行动态控制分配。从而将执行机构的动力学建模、控制量分配和执行机构控制律的设计包含在一个子系统框架内,对执行机构的模型不确定性具有更好的鲁棒性,并给出仿真实例验证了算法的有效性。
     (5)将Backstepping方法与在线控制分配方法相结合应用于多操纵面布局飞机的飞行控制器设计中。建立了多操纵面布局飞行器的严格反馈模型,采用Backstepping方法设计了基本控制律,并进行了稳定性证明,利用最小二乘法在线估计执行器效率,实现在线控制分配,仿真结果验证了方法的有效性、鲁棒性以及操纵面故障情况下的控制重构性能。
Overactuated systems with redundant control effectors can be found in many places, such as aerospace, marine vessels, automatic vehicles, robotics and industrial process applications. In this kind of system, control allocation is one of key problems for design and analysis, and has been one of the important and hot research topics in control theory and engineering. Using control allocation, it is possible to split control design into two steps: firstly, a control law is designed to specify the total control effort (virtual commands); secondly, a control allocation algorithm is designed to distribute the required control moment over the actuators in order to obtain the desired response. With the increasing complexity of plants and environment, the traditional control allocation algorithms are not suitable for modern system. It is necessary to study advanced control allocation algorithms and overactuated systems related problems.
     The control allocation problem of overactuated systems is investigated, and the limitation of current methods is analyzed. Several topics, such as robust control allocation under uncertainty modeling, nonlinear control allocation under representative nonlinear condition and dynamic control allocation including actuator dynamics are discussed in this paper. Some new methods are obtained. Some of the results are applied to the flight control system of modern aircraft with multiple effectors. The main research contents are listed as follows:
     (1) Aiming at the uncertainty modeling for control effectiveness of aircraft with multiple effectors, a new control allocation algorithm based on robust optimization is proposed when control effectiveness uncertainties are considered. The original robust optimal model is established. Following with the transformation of its robust counterpart with ellipsoidal and the conic quadratic representable uncertainty set are researched. The numerical solution of robust control allocation algorithm is discussed. Simulations on optimal control allocation of aircraft with multiple effectors show that the proposed algorithm can reduce the impact of the control effectiveness uncertainties, so the results are more reasonable.
     (2) As the number of control effectors placed on a vehicle increases, the likelihood of the occurrence of control effector interactions increases. In this case, the nonlinearity of control effectiveness can not be ignored. We studied the control allocation problem including control effector interactions. And a compensate algorithm based on sequential linear programming methods is devised to improve the allocation results.
     (3) Traditional methods assume that a perfect linear relationship exists between control moments and effector deflections. However, this relationship is intrinsically nonlinear, especially in the event of failure of one or more actuators. In this paper we consider the control allocation problem with nonmonotonic nonlinearities for overactuated systems. To solve this problem, we propose a differential evolution (DE) strategy. The problem formulation and the algorithm’s procedure are studied. Simulation results show that the proposed method outperforms the traditional approaches.
     (4) A data driven subspace predictive control allocation approach is proposed for overactuated system with actuator dynamics.Through online subspace identification,uncertainty model is used for description of actuator dynamic characteristic.A novel control allocation with actuator dynamics is designed by using subspace predictive control theory. The actuator modeling, designing of control allocator and the actuator controller are then included in a framework, which increases robustness of the control system.Simulation examples are given to demonstrate the efficiency of the proposed strategy.
     (5) The Backstepping method combined with online control allocation is applied to flight control system design of a class of aircrafts with multiple effectors. The strict feedback form of nonlinear dynamic model is introduced. A high level backstepping controller is developed, and the stability is proved. The least squares method is used to estimate the actuator effectiveness and the online control allocation is implemented by using robust algorithm proposed in chapter 3. The simulations show the effectiveness, robustness and the control reconfiguration capability in presence of actuator failure.
引文
[1] Mouhacine Benosman, Fang Liao, Kai-Yew Lum, and Jian Liang Wang. Nonlinear Control Allocation for Non-Minimum Phase Systems[J]. IEEE Transactions on Control Systems Technology, 2009, 17(2): 394~404.
    [2] Alwi H, Edwards CH. Fault Tolerant Control Using Sliding Modes with On-line Control Allocation[J]. Automatica, 2008, 44(7): 1859~1866.
    [3] Liao Fang, Lum Kaiyew, Wang Jianliang. Constrained Control Allocation for Linear Systems with Internal Dynamics[C]//Proceedings of the 17th World Congress of the International Federation of Automatic Control Seoul, Korea, 2008: 3092~3097.
    [4] Zhang Youmin, Rabbath C A, Su Chunyi. Reconfigurable Control Allocation Applied to an Aircraft Benchmark Model[C]//Proceedings of the American Control Conference. Seattle, USA, 2008:1052~1057.
    [5] Johansen T A, Fuglset T P, Tondel P, Fossen T I. Optimal Constrained Control Allocation in Marine Surface Vessels with Rudders[J]. Control Engineering Practice, 2008, 16(4): 457~464
    [6] Johannes T, Johansen T A. Adaptive Control Allocation[J]. Automatica, 2008, 44(11): 2754~2765
    [7] Brad Schofield and Tore Hagglund. Optimal Control Allocation in Vehicle Dynamics Control for Rollover Mitigation[C]//Proceedings of the American Control Conference. Washington, USA, 2008: 3231~3236.
    [8] Junmin Wang and Raul G. Longoria. Coordinated and Reconfigurable Vehicle Dynamics Control[J]. IEEE Transactions on Control Systems Technology, 2009, 17(3): 723~732.
    [9] Reza Pedrami, Wijenddra Sivaram, Jamie Baxter and Brandon W. Gordon. A Control Allocation Approach for Energetic Swarm Control of Wheeled Mobile Robots[C]//Proceedings of the IEEE International Conference on Robotics and Biomimetics, Thiland, 2009: 1924~1931.
    [10]陈廷楠.飞机飞行性能品质与控制[M].北京:国防工业出版社, 2007: 1~20.
    [11]黄琳,段志生,杨莹.现代飞行器控制的几个科学问题[J].科技导报, 2008, 26(20): 92~98.
    [12] Roger E. Beck. Application of Control Allocation Methods to Linear Systems with Four or More Objectives[D]. Virginia Polytechnic Institute and State University, Blacksburg, VA, 2002.
    [13] Michael W. Oppenheimer and David B. Doman. Control Allocation for Overactuated Systems[C]//14th Mediterranean Conference on Control and Automation, Ancona, 2006: 1~6.
    [14] Buffington J M, Enns D F. Lyapunov Stability Analysis of Daisy Chain Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 1996, 19(6): 1226~1230.
    [15] Bordignon K. Constrained Control Allocation for Systems with Redundant Control Effectors[D]. Virginia Polytechnic Institute and State University, Blacksburg, VA, 1996.
    [16] Teel A R, Buffington J M. Anti-Windup for an F-16’s Daisy Chain Control Allocate[C]//Proceedings of the AIAA Guidance, Navigation and Control Conference, New Orleans, LA, 1997: 748~754.
    [17] Durham W C. Constrained Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 1993, 16 (4): 717~725.
    [18] M. Bodson. Evaluation of Optimization Mmethods for Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 2002, 25(4): 703~711.
    [19] W. C. Durham and J. G. Bolling. Minimum Drag Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 1997, 20(1): 190~193.
    [20] W. C. Durham. Constrained Control Allocation: Three Moment Problem[J]. AIAA Journal of Guidance, Control, and Dynamics, 1994, 17(2): 330~336.
    [21] W. C. Durham. Attainable Moments for the Constrained Control Allocation Problem[J]. AIAA Journal of Guidance, Control, and Dynamics, 1994, 17(6): 1371~1372.
    [22]李卫琪,魏晨,陈宗基.受限控制直接分配新算法[J].北京航空航天大学学报, 2005, 31(11): 1177~1180.
    [23]杨凌宇,高金源,申功璋.飞行控制中的一种新型最优控制分配方法[J].北京航空航天大学学报, 2007, 33(5): 572~576.
    [24] D. Enns. Control Allocation Approaches[C]// Proceedings of AIAA Guidance Navigation and Control, Boston, MA, 1998: 98~108.
    [25] J. Buffmgton. Tailess Aircraft Control Allocation[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference, New Orleans, LA, 1997: 737~747.
    [26] J. Buffington, P. Chandler, and M. Pachter. On-line System Identification for Aircraft with Distributed Control Effectors[J]. International Journal of Robust and Nonlinear Control, 1999, 9(14): 1033~1049.
    [27] I. Lindfors. Thrust Allocation Method for the Dynamic Positioning System[C]// 10th International Ship Control Systems Symposium (SCSS'93), Ottawa, Canada, 1993: 93~106.
    [28] R. H. Shertzer, D. J. Zimpfer, and P. D. Brown. Control Allocation for the Next Generation of Entry Vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Monterey, CA, AIAA-2002-4849.
    [29] D. G. Luenberger. Linear and Nonlinear Programming[M]. Addison-Wesley, second edition, 1984: 59~65.
    [30] Y. Ikeda and M. Hood. An Application of L1 Optimization to Control Allocation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, AIAA-2000-4566.
    [31] S. J. Raza and J. T. Silverthorn. Use of Pseudo-Inverse for Design of a Reconfigurable Flight Control System[C]//Proceedings of AIAA Guidance, Navigation, and Control Conference, Snowmass, CO, 1985: 349~356.
    [32] S. A. Snell, D. F. Enns, and W. L. Garrard Jr. Nonlinear Inversion Flight Control for a Supermaneuverable Aircraft[J]. AIAA Journal of Guidance, Control, and Dynamics, 1992, 15(4): 976~984.
    [33] Eberhardt R, Ward D. Indirect Adaptive Flight Control of a Tailless Fighter Aircraft[C]//Proceedings of the AIAA Guidance, Control, and Dynamics Conference, Portland, 1999: 466~476.
    [34] R. L. Eberhardt and D. G. Ward. Indirect Adaptive Flight Control System Interactions[J]. International Journal of Robust and Nonlinear Control, 1999, 9(14): 1013~1031.
    [35] Virnig J, Bodden D. Multivariable Control Allocation and Control Law Conditioning when Control Effectors Limit[C]//Proceedings of the AIAA Guidance, Navigation, and Control Conference, Scottsdale, AZ, 1994: 572~582.
    [36] R. D. Barnard. Continuous-time Implementation of Optimal-aim Controls[J]. IEEE Transactions on Automatic Control, 1976, 21(3): 432~434.
    [37] P. Lu. Constrained Tracking Control of Nonlinear Systems[J]. Systems & Control Letters, 1996, 27(5): 305~314.
    [38] J. J. Burken, P. Lu, Z.Wu, and C. Bahm. Two Reconfigurable Flight Control Design Methods: Robust Servomechanism and Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 2001, 24(3): 482~493.
    [39] John A. M. Petersen and Marc Bodson. Interior-Point Algorithms for Control Allocation[J]. AIAA Journal of Guidance, Control, and Dynamics, 2005, 28(3): 471~480.
    [40] John A. M. Petersen and Marc Bodson. Constrained Quadratic Programming Techniques for Control Allocation[J]. IEEE Transactions on Control Systems Technology, 2006, 14(1): 91~98.
    [41] A. Bjorck. Numerical Methods for Least Squares Problems[M]. USA: SIAM, 1996.
    [42] J. Nocedal and S. J. Wright. Numerical Optimization[M]. Berlin: Springer, 1999.
    [43] Ola Harkegard. Backstepping and Control Allocation with Applications to Flight Control[D]. Linkoping, Sweden: Department of Electrical Engineering, University of Linkoping, 2003.
    [44] P. Lotstedt. Solving the Minimum Least Squares Problem Subject to Bounds on the Variables[J]. BIT Numerical Mathematics, 1984, 24(2): 206~224.
    [45] Svein P. Berge, Thor I. Fossen. Robust Control Allocation of Overactuated Ships: Experiments with a Model Ship[C]//International IFAC Conference on Manoeuvring and Control of Marine Craft, Brijuni, Croatia, 1997.
    [46]张艳,陈宗基,魏晨.一种基于广义逆的无人机鲁棒控制分配方法[J].航空学报, 2008, 29(B05): 198~203.
    [47] Bolender, M. and Doman, D. A Method for the Determination of the Attainable Moment Set for Non-Linear Control Effectors[C]//Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2003: 2773~2781.
    [48] M.A. Bolender and D.B. Doman. Non-linear Control Allocation Using Piecewise Linear Function[J]. AIAA Journal of Guidance, Control, and Dynamics, 2004, 27(6): 1017~1027.
    [49] Tor A. Johansen, Thor I. Fossen, and Svein P. Berge. Constrained Nonlinear Control Allocation With Singularity Avoidance Using Sequential Quadratic Programming[J]. IEEE Transactions on Control Systems Techlonogy, 2004, 12(1): 211~216.
    [50] Vishnu L. Poonamallee, Stephen Yurkovich, Andrea Serrani. A Nonlinear Programming Approach for Control Allocation[C]//Proceeding of American Control Conference, Boston, Massachusetts, 2004: 1689~1694.
    [51] Yu Luo, A. Serrani, S. Yurkovich, D. Doman, M. Oppenheimer. Dynamic Control Allocation with Asymptotic Tracking of Time Varying Control Input Commands[C]//Proceedings of the American Control Conference, Portland, OR, 2005: 2098~2103.
    [52]杨恩泉,高金源,李卫琪.多目标非线性控制分配方法研究[J].航空学报, 2008, 29(4): 995~1001.
    [53] Johansen, Tjonnas. Nonlinear and Adaptive Dynamic Control Allocation[D]. Norwegian University of Science and Technology, Norwegian, 2008.
    [54] Robort L. Grogan, Wayne C. Durham, R. Krishnan. On the Application of Neural Network Computing to the Constrained Flight Control Allocation Problem[R]. AIAA-94-3644-CP, 1994.
    [55] Reza Langari, Kalmanje Krishnakumar and Karen Gundy-Burlet. Neural Network Based Modeling And Analysis of LP Control Surface Allocation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, Texas, AIAA 2003-5790.
    [56] Yong Fan, Ji-hong Zhu Zeng-qi Sun. Fuzzy Logic Based Constrained Control Allocation for an Advanced Fighter[C]//International Conference on Computational Intelligence for Modeling Control and Automation, Sydney,NEW, 2006: 200.
    [57] Yong Fan, Jihong Zhu, Jiaqiang Zhu and Zengqi Sun. Genetic Algorithm Based Constrained Control Allocation for Tailless Fighter[C]//Proceedings of the Sixth International Conference on Intelligent Systems Design and Applications, Jinan, China, 2006: 467~472.
    [58] R. Venkataraman, M. Oppenheimer, D. Doman. A New Control Allocation Method that Accounts for Effector Dynamics[C]// Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2004: 2710-2715.
    [59] M. Oppenheimer, D. Doman. A Method for Compensation of Interactions Between Second-Order Actuators and Control Allocators[C]// Proceedings of the IEEE Aerospace Conference, Big Sky, MT, 2005: 1~8.
    [60] Yu Luo Serrani, A. Yurkovich, S. Doman, D. B. Oppenheimer, M. W. Model predictive dynamic control allocation with actuator dynamics[C]// Proceedings of the American Control Conference, Boston, 2004: 1695~ 1700.
    [61] Yu Luo, Andrea Serrani, and Stephen Yurkovich. Model-Predictive Dynamic Control Allocation Scheme for Reentry Vehicles[J]. AIAA Journal of Guidance, Control, and Dynamics, 2007, 30(1): 100~113.
    [62] Davidson J B, Urphy P C, Lallman F J. High-Alpha Research Vehicle Lateral-Directional Control Law Description, Analyses, and Simulation Results [R]. USA: NASA/TP-1998-208465, 1998.
    [63] Reigelsperger W C, Banda S S. Nonlinear Simulation of a Modified F-16 with Full-Envelope Control Laws[J]. Control Engineer Practice, 1998, 17(6):309~320.
    [64] Kevin R S, Durham W C. A Comparison of Control Allocation Methods for the F-15 ACTIVE Research Aircraft Utilizing Real-Time Piloted Simulations[C]// AIAA Guidance, Navigation, and Control Conference and Exhibit, Portland, OR, AIAA-99-4281.
    [65] Buffington J M. Tailless Aircraft Control Allocation [R]. AIAA-97-3605, 1997.
    [66] Ken Bordignon, John Bessolo. Control Allocation for the X-35B[C]// Proceedings of the Biennial International Powered Lift Conference and Exhibit, AIAA 2002-6020.
    [67] Cameron D, Princen N. Control Allocation Challenges Requirements for the Blended Wing Body[C]//Proceedings of the AIAA Guidance, Control, and Dynamics Conference, Reston, VA, AIAA- 2000-4539.
    [68] Davidson J B, Lallman F J, Bundick W T. Real-Time Adaptive Control Allocation Applied to a High Performance Aircraft[C]//5th SIAM Conference on Control &Its Application, 2001.
    [69] Pablo A. Servidia and Ricardo Sanchez Pena. Spacecraft Thruster Control Allocation Problems[J]. IEEE Transactions on Automatic Control, 2005, 50(2): 245~249.
    [70] D. Brett Ridgely, Yung Lee, and Todd Fanciullo. Dual Aero/Propulsive Missile Control-Optimal Control and Control Allocation[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone, Colorado, AIAA-2006-6570.
    [71] D. Brett Ridgely, David Drake, Louis Triplett and Cory Geise. Dynamic Control Allocation of a Missile with Tails and Reaction Jets[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, AIAA-2007-6671.
    [72] John J. Burken, Ping Lu, Zhenglu Wu. Reconfigurable Flight Control Designs with Application to the X-33 Vehicle[R]. USA: NASA/TM-1999-206582.
    [73] David B. Doman , Brian J. Gamble and Anhtuan D. Ngo. Control Allocation of Reaction Control Jets and Aerodynamic Surfaces for Entry Vehicles[C]//AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, South Carolina, AIAA-2007-6778.
    [74] M. Battipede, P.A. Gili and M. Lando. Control Allocation System for an Innovative Remotely-Piloted Airship[C]//AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, AIAA 2004-4823.
    [75] Michael A. Bolender David B. Doman Michael W. Oppenheimer. Application of Piecewise Linear Control Allocation to Reusable Launch Vehicle Guidance and Control[C]// Proceedings of the 14th Mediterranean Conference on Control and Automation, Ancona, 2006: 1~10.
    [76] Youmin Zhang, V. Sivasubramaniam Suresh, Bin Jiang and Didier Theilliol. Reconfigurable Control Allocation against Aircraft Control Effector Failures[C]// Proceedings of the 16th IEEE International Conference on Control Applications, Singapore, 2007: 1197~1202.
    [77]张平.自修复飞行控制系统的故障检测与控制重构[D].北京:北京航空航天大学, 2001.
    [78]杨凌宇,郭亮,柳嘉润,申功璋.大迎角综合飞行/推进控制系统设计与仿真[J].北京航空航天大学学报, 2007, 33(6): 709~712.
    [79]呼卫军,周军.可重复使用运载器异构多执行机构混合算法研究[J].弹箭与制导学报, 2007, 27(5): 43~46.
    [80]严晞隽,夏洁.飞机的控制能力分析方法研究[J].飞行力学, 2007, 25(1): 26~29.
    [81]陈怀民,徐奎,马松辉,吴成富.控制分配技术在无尾飞机纵向控制系统中的应用研究[J].西北工业大学学报, 2007, 25(2): 199~203.
    [82]俞建成,张艾群,王晓辉.基于SQP算法的7000m载人潜水器有约束非线性控制分配研究[J].信息与控制, 2006, 35(4): 508~512.
    [83] Yu Jiancheng, Zhang Aiqun, Wang Xiaohui and Wu Baoju. Adaptive Neural Network Control with Control Allocation for a Manned Submersible in Deep Sea[J]. China Ocean Engineering, 2007, 21(1): 147~161.
    [84] Edin O, Geoff R. Thruster Fault Diagnosis and Accommodation for Open-frame Underwater Vehicles[J]. Control Engineering Practice, 2004, 12(12): 1575~159.
    [85] Johansen, T. A. Optimizing Nonlinear Control Allocation[C]//Proceedings of the IEEE Conference on Decision and Control, Bahamas, 2004: 3435~3440.
    [86] W. C. Webster and J. Sousa. Optimum Allocation for Multiple Thrusters[C]// Proceedings of the International Society of Offshore and Polar Engineers Conference, Brest, France, 1999: 83~89.
    [87] T. A. Johansen, T. I. Fossen, and S. P. Berge. Constraint Nonlinear Control Allocation with Singularity Avoidance using Sequential Quadratic Programming[J]. IEEE Transactions on Control Systems Technology, 2004, 12(1): 211~216.
    [88] Fuglseth, T. P. Optimal Thrust Allocation Using Rudders[D]. M.Sc. thesis, Department of Engineering Cybernetics, Norwegian University of Science and Technology, Trondheim, Norway, 2003.
    [89] Sordalen, O. J. Thruster Allocation: Singularities and Filtering[C]//IFAC World Congress, San Francisco, CA, 1996: 369~374.
    [90] T. A. Johansen. Optimizing Nonlinear Control Allocation[C]//IEEE Conference on Decision and Control, Nassau, Bahamas, 2004: 3435~3440.
    [91] P. Tondel, T. A. Johansen, and A. Bemporad. Evaluation of Piecewise Affine Control via Binary Search Tree[J]. Automatica, 2003, 39(5): 743~749.
    [92] Sordalen, O. J. Optimal Thrust Allocation for Marine Vessels[J]. Control Engineering Practice, 1997, 5(9): 1223~1231.
    [93] T. A. Johansen, T. I. Fossen, and P. Tondel. Efficient Optimal Constrained Control Allocation via Multi-Parametric Programming[J]. AIAA Journal of Guidance, Control and Dynamics, 2005, 28(3): 506~515.
    [94] Johannes Tjonnas and Tor Arne Johansen. Optimizing Adaptive Control Allocation With Actuator Dynamics[C]//Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007: 3780~3785.
    [95] Lindegaard, K. P. and T. I. Fossen. Fuel-Efficient Rudder and Propeller Control Allocation for Marine Craft: Experiments with a Model Ship[J]. IEEE Transactions on Control Systems Technology, 2003, 11(6): 850~862.
    [96] Y. Hattori, K. Koibuchi, and T. Yokoyama. Force and Moment Control with Nonlinear Optimum Distribution for Vehicle Dynamics[C]// Proceedings of the 6th International Symposium on Advanced Vehicle Control, Hiroshima, 2002: 595~600.
    [97] P. Tondel and T. A. Johansen. Control Allocation for Yaw Stabilization inAutomotive Vehicles Using Multiparametric Nonlinear Programming[C]// Proceedings of the American Control Conference, 2005: 453~458.
    [98] Brad Schofield, Tore Hagglund and Anders Rantzer. Vehicle Dynamics Control and Controller Allocation for Rollover Prevention[C]//International Conference on Control Applications, Munich, Germany, 2006:149~154.
    [99] Junmin Wang and Raul G. Longoria. Combined Tire Slip and Slip Angle Tracking Control for Advanced Vehicle Dynamics Control Systems[C]//Proceedings of the 45th IEEE Conference on Decision & Control, Manchester Grand Hyatt Hotel, San Diego, CA, USA , 2006: 1733~1738.
    [100] J. Wang, J. Solis, and R. G. Longoria. On the Control Allocation for Coordinated Ground Vehicle Dynamics Control Systems[C]//Proceedings of theAmerican Control Conference, 2007: 5724~5729.
    [101] Leo Laine and Jonas Fredriksson. Coordination of Vehicle Motion and Energy Management Control Systems for Wheel Motor Driven Vehicles[C]//Proceedings of the IEEE Intelligent Vehicles Symposium, Istanbul, Turkey, 2007: 773~780.
    [102] Leo Laine and Jonas Fredriksson. Control Allocation based Electronic Stability Control System for a Conventional Road Vehicle[C]//Proceedings of the IEEE Intelligent Transportation Systems Conference, Seattle, WA, USA, 2007: 514~521.
    [103] C. Vermillion, J. Sun, K. Butts, A. Hall. Modeling and Analysis of a Thermal Management System for Engine Calibration[C]//Proceedings of the IEEE Conference on Control Applications, 2006: 2048~2053.
    [104] Chris Vermillion, Jing Sun, and Ken Butts. Model Predictive Control Allocation for Overactuated Systems -Stability and Performance[C]//Proceedings of the 46th IEEE Conference on Decision and Control, New Orleans, LA, USA, 2007:1251~1256.
    [105] Weirong Liu, Jianqiang Yi and Dongbin Zhao. Decentralized Control with Optimal Control Allocation[C]//Proceedings of the IEEE International Conference on Networking, Sensing and Control, London, UK, 2007:99~104.
    [106] T. Westerlund, H. Toivonen, and K.-E. Nyman. Stochastic modelling and selftuning control of a continuous cement raw material mixing system[J]. Modeling, Identification and Control, 1980, 1(1): 17~37.
    [107]葛彤,朱继懋.控制冗余和控制可重构舰艇[J].上海交通大学学报, 1997, 31(11): 13~17.
    [108]苏浩秦,邓建华,葛彤.控制效能与飞机多操纵面配置[J].西北工业大学学报, 2003, 21(6): 711~713.
    [109] Manoranjan Majji. Robust Control of Redundantly Actuated Dynamical Systems [D]. Texas A&M University, 2006.
    [110] P. Singla. A Multi-Resolution Approach for High Fidelity Modeling and Control Allocation in Large Scale Dynamical Systems[D]. Aerospace Engineering, Texas A&M University, College Station, 2006.
    [111] P. C. Hughes and R. E. Skelton. Controllability and Observability of Linear Matrix-Second-Order Systems[J]. Journal of Applied Mechanics, 1980, 47(2): 415~420.
    [112] K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control[M]. Prentice-Hall, 1996.
    [113] W. C. Durham and K. A. Bordignon. Multiple Control Effector Rate Limiting[J]. AIAA Journal of. Guidance, Control, and Dynamics 1996, 19(1): 30~37.
    [114] O. Harkegard and S. T. Glad. Flight control design using backstepping[C]// Proceedings of the 5th IFAC Symposium on Nonlinear Control Systems, Petersburg, Russia, 2001: 259~264.
    [115] O. Harkegard and S. T. Glad. A backstepping design for flightpath angle control[C]//Proceedings of the 39th Conference on Decision and Control. Sydney, Australia, 2000: 3570~3575.
    [116] S. T. Glad and O. H¨arkegard. Backstepping control of a rigid body[C]// Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, NV, 2002: 3944~3945.
    [117] O. Harkegard, S. Torkel Glad. Resolving Actuator Redundancy-Optimal Control vs. Control Allocation[J]. Automatica. 2005, 41(1):137~144.
    [118]王朝珠,秦化淑.最优控制理论[M].北京:科技出版社, 2003: 153-230.
    [119] R. E. Kalman. Contribution to the Theory of Optimal Control[J]. Boletin de la Sociedad Matematica Mexicana, 1960, 5(2): 102~119.
    [120] O. Harkegard. Efficient active set algorithms for solving constrained least squares problems in aircraft control allocation[C]// Proceedings of the 41st IEEE Conference on Decision and Control, Las Vegas, NV, 2002: 1295~1300.
    [121] Hans Bandemer. Mathematics of Uncertainty: Ideas, Methods, Application Problems[M]. Berlin: Springer, 2005.
    [122] B. L. Stevens and F. L. Lewis, Aircraft Control and Simulation (2nd Edition)[M]. New Jersey: John Wiley and Sons, Inc., 2003.
    [123] Chia-Chi Tsui. Robust Control System Design: Advanced State Space Techniques[M]. CRC press, 2003.
    [124] Aharon Ben-Tal and Arkadi Nemirovski. Robust optimization–methodology and applications[J]. Mathematical Programming, 2002, 92(3): 453~480.
    [125] Andrew J. Kurdila, Panos M. Pardalos, Michael Zabarankin. Robust Optimization-Directed Design[M]. Berlin: Springer, 2005.
    [126] Melvyn Sim. Robust Optimization[D]. USA: Massachusetts Institute ofTechnology, 2004.
    [127] A. Ben-Tal and A. Nemirovski. Robust Convex Optimization[J]. Mathematics of Operations Research, 1998, 23(4):769~805.
    [128]宗群,王维佳,何彦昭.基于鲁棒优化理论的电梯群控调度策略[J].控制理论与应用, 2008, 25(4): 743~748.
    [129]马龙华.不确定系统的鲁棒优化方法及应用研究[D].杭州:浙江大学, 2002.
    [130] A. Ben-Tal and A. Nemirovski. Robust Solutions to Uncertain Linear Programs[J]. Operations Research Letters, 1999, 25(1):1~13.
    [131]何彦召.不确定线性系统稳健最优化模型的研究[D].天津:天津大学, 2006.
    [132] A. Ben-Tal and A. Nemirovski, Robust Solutions of Uncertain Quadratic and Conic-Quadratic Programs[J]. SIAM Journal on Optimization, 2002, 13(2): 535~560.
    [133] A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications[M]. Philadelphia: SIAM, 2001: 89~105.
    [134] F. Alizadeh and D. Goldfarb. Second-Order Cone Programming[J]. Mathematical Programming, 2003, 95(1): 3~51.
    [135] David G. Luenberger and Yinyu Ye. Linear and Nonlinear Programming (Third Edition)[M]. Berlin: Springer Verlag, 2008: 111~140.
    [136] M. S. Lobo, L.Vandenberghe, S.P.Boyd, and H.Lebert. Applications of Second-order Cone Programming[J]. Linear Algebra and Its Applications, 1998, 284(1-3): 193~228.
    [137] A. Ben-Tal, A. Nemirovski. Robust Optimization-Methodology and Applications[J]. Mathematical Programming (Series B), 2002, 92(3): 453~480.
    [138] Stephen Boyd and Lieven Vandenberghe. Convex Optimization[M]. Cambridge University Press, 2004.
    [139]应玖茜,魏权龄.非线性规划及其理论[M].北京:中国人民大学出版社, 1994.
    [140] Luis F. Zuluaga. A conic programming approach to polynomial optimization problem: Theory and Applications[D]. USA: Carnegie Mellon University, 2004.
    [141] S. Mehrotra. On the Implementation of a Primal-Dual Interior Point Method[J]. SIAM Journal on Optimization, 1992, 2(4): 575~601.
    [142] S.J.Wright. Primal-dual interior-point method[M]. Philadelphia, PA: Society for Industrial and Applied Mathematics(SIAM), 1997.
    [143] Zhang Yin, Zhang Detong. On Polynomiality of the Mehrotra-type Prectior-corrector Interior-point Algorithms[J]. Mathematical Programming, 1995, 68(3): 303~318.
    [144] Z. H. Huang, J. Han , Z. Chen. Predictor-Corrector Smoothing Newton Method,Based on a New Smoothing Function, for Solving the Nonlinear Complementarity Problem with a P0 Function[J]. Journal of Optimization Theory and Application, 2003, 117(1): 39~68.
    [145] C. Pola, C. A. Sagastizabal. Infeasible Predictor-Corrector Interior-Point Method Applied to Image Restoration in the Presenceof Noise[J]. Journal of Optimization Theory and Application , 2000,104(3):517~538.
    [146] Yu-Ju Kuo. Interior Point Algorithms for Second-Order Cone Problems with Applications[D]. USA: Arizona state university, 2002.
    [147] John Arthur Mitsuru Petersen. Algorithm for Optimal Real-Time Control Allocation[D]. USA: The University of Uthah, 2003.
    [148] R. Beck. Application of Control Allocation Methods to Linear Systems[D]. USA: Virginia Polytechnic Inst. State Univ., Blacksburg, VA, 2002.
    [149] D. B. Domain, A. G. Sparks. Concepts for Constrained Control Allocation of Mixed Quadratic and Linear Effectors[C]//Proceedings of the American Control Conference, Anchorage, 2002: 3729~3734.
    [150] Adiwinata Gani. Fault-Tolerant Process Control: Handling Actuator and Sensor Malfunctions[D]. Los Angeles: University of California, 2007.
    [151] D. Doman and M. Oppenheimer. Improving Control Allocation Accuracy for Nonlinear Aircraft Dynamics[C]//AIAA Guidance, Navigation and Control Conference Proceedings, Monterey, California, AIAA-2002-4667.
    [152] Johannes Tjonnas. Nonlinear and Adaptive Dynamic Control Allocation[D]. Norwegian: Norwegian University of Science and Technology, 2008.
    [153] Michael W. Oppenheimer, David B. Doman. A Method for Including Control Effector Interactions in the Control Allocation Problem[R]. USA: Air Force Research Laboratory, Wright-Patterson AFB, AFRL-VA-WP-TP-2007-309.
    [154] Chi Pei, Chen Zongji, Zhou Rui, Wei Chen. Autonomous Control Reconfiguration of Aerospace Vehicle Based on Control Effectiveness Estimation[J]. Chinese JournaI of Aeronautics, 2007, 20(5): 443~451.
    [155] ADMIRE ver. 3.4h. Aerodata Model in Research Environment (ADMIRE), version 3.4h. Swedish Defence Research Agency (FOI), 2003.
    [156] Zhang J, N. Kim and L. Lasdon. An Improved Succesive Linear Programming Algorithm[J]. Management Science, 1985, 31(10):1312~1331.
    [157] Chalermkraivuth. Sequential-Linear-Programming Algorithm to Optimize Portfolios[J]. Interfaces, 2005, 35(5): 370~380.
    [158] Singiresu S. Rao. Engineering Optimization: Theory and Practice[M]. John Wiley & Sons, Inc., 1996: 436~443.
    [159] Fogel D. B. Evolutionary Computation: Toword a New Philosophy of Machine Intelligence(2nd edition)[M]. John Wiley & Sons Canada, Ltd., 2000.
    [160] Price K. Differential Evolution: a Fast and Simple Numerical Optimizer[C]// Biennial Conference of the North American Fuzzy Information Processing Society, 1996: 524~527.
    [161] Stron R and Price K. Minimizing the Real Functions of the ICEC96 Contest by Differential Evolution[C]//IEEE Conference on Evolutionary Computation, Nagoya, 1996: 842~844.
    [162] Stron R and Price K. Differential Evolution-a Simple and Efficient Heuristic for Global Optimization over Continuous Spaces[J]. Journal of Global Optimization, 1997, 11(4): 341~359.
    [163] Luis Moreno, Santiago Garrido, Dolores Blanco, M. Luisa Munoz. Differential Evolution Solotion to the SLAM Problem[J]. Robotics and Autonomous Systems, 2009, 57(4): 441~450.
    [164] Xiaohui Yuan, Liang Wang, Yongchuan Zhang, Yanbin Yuan. A Hybrid Differential Evolution Method for Dynamic Economic Dispatch with Valve-Point Effects[J]. Expert Systems with Applications, 2009, 36(2): 4042~4048.
    [165] Hesheng Tang, Songtao Xue, Cunxin Fan. Differential Evolution Strategy for Structural System Identification[J]. Computers and Structures, 2008, 86(21-22): 2004~2012.
    [166] Zaakirah Kajee-Bagdadi. Differential Evolution Algorithms for Constrained Global Optimization[D]. Johannesburg, Republic of South Africa: University of the Witwatersrand, 2007.
    [167] W. C. Arun Kishore, S. Sen, G. Ray. Dynamic Control Allocation for Tracking Tme-Varying Control Demand[J]. AIAA Journal of Guidance, Control, and Dynamics, 2008, 31(4): 1150~1157.
    [168] Jan-Willem van Wingerden, Michel Verhaegen. Subspace Identification of Bilinear and LPV Systems for Open and Closed-loop Data[J]. Automatica, 2009, 45 (2): 372~381.
    [169] Joe Q S, Lin Weilu, Lennart Ljung.A Novel Subspace Identification Approach with Enforced Cansal Models[J]. Automatica, 2005, 41 (12): 2043~2053.
    [170]杨华,李少远.一种新的基于遗忘因子的递推子空间辨识算法[J].控制理论与应用, 2009, 26 (1): 69~72.
    [171] Chiuso A. The Role of Vector Autoregressive Modeling in Predictor-Based Subspace Identification[J]. Automatica, 2007, 43(6): 1034~1048.
    [172] Chiuso A. On the Relation between CCA and Predictor-Based Subspace Identification[J]. IEEE Transactions on Automatic Control, 2007, 52(10): 1795~1812.
    [173] R. Hallouzi, M.Verhaegen. Reconfigurable Fault Tolerant Control UsingSubspace Predictive Control Applied to a Boeing 747 Model[J]. AIAA Journal of Guidance, Control, and Dynamics, 2008, 28(5): 854~871.
    [174] Dong Jianfei, Michel Verhaegen, Edward Holweg. Closed-loop Subspace Predictive Control for Fault Tolerant MPC Design[C]//Proceedings of the 17th International Federation of Automatic Control World Congress. Seoul, Korea: IFAC, 2008: 3216~3221.
    [175] Ra W S, Whang I H, Ahn J Y, Park J B. Recursive Robust Least Squares Estimator for Time-Varying Linear Systems with a Noise Corrupted Measurement Matrix[J]. IET Control Theory Appllication, 2007, 1 (1): 104~112.
    [176] Laurent EL Ghaoui, Herve Lebret. Robust Solutions to Least Squares Problems with Uncertain Data[J]. SIAM Journal of Matrix Analysis and Appllications, 1997, 18(4): 1035~1064.
    [177] H. Backstrom. Report on the Usage of the Generic Aerodata Model[R]. Stockholm, Sweden: Saab Aircraft AB, 1997.
    [178] K. Dorsett, D. Mehl. Innovative Control Effectors (ICE)[R]. USA: Lockheed Martin Aeronautics Company, 1996.
    [179]肖业伦.航空航天器运动的建模—飞行动力学的理论基础[M].北京:航空航天大学出版社, 2006.
    [180] I. Moir and A. Seabridge. Aircraft Systems[M]. Harlow: Longman Scientific & Technical, 1992.
    [181] M. V. Cook. Flight Dynamics Principles (2nd edition)[M]. New York: John Wiley & Sons, Inc., 2007.
    [182] Dan Necsulescu1, Yi-Wu Jiang, Bumsoo Kim. Neural Network Based Feedback Linearization Control of an Unmanned Aerial Vehicle[J]. International Journal of Automation and Computing, 2007, 4(1): 71~79.
    [183] D. Enns, D. Bugajski, R. Hendrick, and G. Stein. Dynamic Inversion: an Evolving Methodology for Flight Control Design[J]. International Journal of Control, 1994, 59(1): 71~91.
    [184] Jacob Reiner, Gary J. Balas and WillRobust L. Garrard. Flight Control Design Using Robust Dynamic Inversion and Time Scale Separation[J]. Automatica, 1996, 32(11): 1493~1504.
    [185]郭锁凤,申功璋,吴成富.先进飞行控制系统[M].北京:国防工业出版社, 2003.
    [186]朱家强.基于神经网络和动态逆的超机动飞行控制技术研究[D].南京:南京航空航天大学, 2004.
    [187]胡孟权.推力矢量飞机非线性飞行控制律设计研究[D].西安:西北工业大学, 2002.
    [188] Taeyoung Lee and Youdan Kim. Nonlinear Adaptive Flight Control UsingBackstepping and Neural Networks Controller[J]. Journal of Guidance, Control, and dynamics, 2001, 24(4): 675~682.
    [189] Kokotovic P V. The Joy of Feedback: Nonlinear and Adaptive[J]. IEEE Control Systems Magazine, 1992, 12(3): 7~17.
    [190] Kokotovic P V, Krstic M, Kanellakopoulos I. Backstepping to Passivity: Recursive Design of Adaptive Systems[C]//Proceedings of the 31st IEEE Conference on Decision and Control, 1992: 3276~3280.
    [191]陈永亮.飞机大迎角非线性动力学特性分析与控制[D].南京:南京航空航天大学, 2007.
    [192]朱恩,郭锁凤,陈传德.超机动飞机的非线性动态逆控制[J].航空学报, 1998, 19(1): 45-49.
    [193] M. Thoma, M. Morari. Nonlinear Analysis and Synthesis Techniques for Aircraft Control[M]. Berlin: Springer, 2007.
    [194] P. J. Rousseeuw. Least Median of Squares Regression[J]. Journal of the American Statistical Association, 1984, 79(388): 871-880.
    [195] P. J. Rousseeuw and A. M. Leroy. Robust Regression and Outlier Detection[M]. New York: John Wiley & Sons, Inc., 2003.
    [196] P. J. Rousseeuw and K. Van Driessen. Computing LTS Regression for Large Data Sets[J]. Data Mining and Knowledge Discovery, 2006, 12(1): 29-45.
    [197] MIL-STD-1797A, Military Standard-Flying Qualities of Piloted Vehicles[S]. January, 1990.
    [198]杨伟,章卫国,杨朝旭等.容错飞行控制系统[M].西安:西北工业大学出版社, 2007.
    [199]周东华,叶银忠.现代故障诊断与容错控制[M].北京:清华大学出版社, 2000.
    [200]王福利,张颖伟.容错控制[M].沈阳:东北大学出版社, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700