超宽带穿墙雷达成像技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带穿墙雷达是一种基于超宽带(UWB)技术的短距离目标探测雷达,能够对建筑物或障碍物后隐藏目标进行非入侵式探测、定位、成像、跟踪及识别等,在城区巷战、反恐斗争、人质救援等领域具有广泛的应用前景。为了获得良好的探测性能,成像技术是关键。现有文献大多采用后向投影(BP)算法或延时求和(DAS)波束形成方法,它们利用较少的先验信息就能够快速而简单地实现目标的成像。但是,这些方法存在点扩展函数的主瓣宽度过宽和旁瓣电平过高的问题,会导致系统在分辨率和图像对比度上存在局限。此外,很少有文献涉及到从天线阵列设计和编码脉冲调制方面来改善成像性能。本文紧密围绕超宽带穿墙成像技术的实际问题,对成像算法、多发多收(MIMO)阵列理论与设计、伪混沌脉位调制技术等关键问题进行了深入的研究,为实际系统的设计和应用提供理论指导。本文的具体工作安排如下:
     1.分析BP算法和DAS算法成像的原理,指出存在的问题,从稳健自适应波束形成角度提出两种解决方法。方法一:提出了混合稳健Capon波束形成(RCB)和相干系数(CF)加权的超宽带穿墙成像方法,即RCB_CF。该方法根据穿墙电磁传播特性,首先补偿墙体的传播损耗和传播时延以实现接收阵列的数据配准,然后利用RCB提高成像的分辨率,利用改进的CF加权通过凸显同相信号而压制非同相信号提高成像的对比度。方法二:提出了双稳健波束互相关系数加权的超宽带穿墙成像方法。该方法将基阵交替划分为两个子阵,利用双约束稳健Capon波束形成(DRCB)独立估计各子阵波束输出信号,将输出信号求和,取其能量作为像值。另外,根据两个波束的输出信号具有非常相似的主瓣响应和不同旁瓣响应的特点,取它们的互相关系数加权像值,达到减小旁瓣以提高成像对比度的目的。时域有限差分(FDTD)数值仿真和实验数据处理结果验证了两种方法的有效性。
     2.从最小均方误差(MMSE)波束形成理论入手,通过分析MMSE波束最优权矢量中的标量系数和CF之间的关系,寻求RCB_CF算法与MMSE波束最优权矢量之间的共性,提出了变尺度MMSE波束形成算法,给出了标量系数加权最小方差波束形成算法的一般形式。针对穿墙探测环境的特殊性,对变尺度MMSE波束形成算法中的参数进行了稳健估计。FDTD数值仿真和实验数据分析了变尺度MMSE波束形成算法用于穿墙成像中的性能。
     3.特征空间波束形成器(ESB)利用信号子空间和噪声子空间的正交特性,保留了权矢量在信号子空间中的分量,掘弃了权矢量在噪声子空间中的分量,提高了输出信噪比(SNR),特别适合穿墙成像中噪声的抑制。论文首先分析了ESB算法的性能,指出其用于穿墙成像存在的问题,然后提出了一种ESB_RCB方法。该方法将RCB的权矢量向信号子空间上投影得到其权矢量,不仅保持了RCB算法的高分辨能力,还通过降低噪声分量提高了成像的对比度。FDTD数值仿真和实验数据处理验证了该方法的有效性。
     4.利用多发多收(MIMO)天线阵列对UWB穿墙成像系统阵列进行稀疏化处理不失为一种很好的选择。与单发多收(SIMO)天线阵相比,MIMO阵列可以利用相同数量的天线获得更大的阵列孔径和更小的阵元间隔,提供更好的主瓣和旁瓣控制。论文从成像模型入手,讨论了UWB MIMO阵列的等效阵列问题,给出了UWB MIMO阵列的设计方法,通过仿真验证了有效性和在穿墙成像系统中应用的可行性。此外,提出了互相关系数加权稳健Capon波束的UWB MIMO成像算法,FDTD数值仿真和实验结果表明该方法能够获得成像的高分辨和高图像信噪比。
     5.为了提高目标探测能力,冲激脉冲体制的超宽带穿墙雷达通常采取发射周期脉冲串信号,在接收端进行多脉冲积累的方法。针对发射周期脉冲串信号存在距离模糊和抗窄带干扰能力相对较差等问题,提出了伪混沌脉位调制UWB脉冲雷达体制。论文根据超宽带信号模糊函数的定义,推导了伪混沌脉位调制脉冲串信号模糊函数的数学表达式以分析距离模糊性,此外分析了窄带干扰抑制能力。通过建立的穿墙室内目标多径散射模型,仿真分析了伪混沌脉位调制脉冲串信号用于穿墙雷达的目标探测能力、抗干扰性能和成像效果,并与单脉冲信号、周期脉冲串信号进行了比较。对于室内复杂的多径散射模型,往往会有多径信号产生的虚假目标,通过分析它的特征提出一种多视角成像数据融合的抑制方法。FDTD仿真数据验证了方法的有效性。
Ultrawideband through-the-wall radar (TWR) is a kind of short-range surveillanceradar based on UWB technology. The capabilities of electromagnetic waves to penetratethrough nonmetallic materials provide a unique opportunity to detect, localize, image,track, and identify hidden objects behind the buildings or the barriers, with a wide rangeof applications in urban-warefare, anti-terrorism situations, hostage rescue situations,and other fields. In order to achieve good surveillance performace, imaging targets is animportant aspect. There are lots of algorithms proposed for through the wall radarimaging. Most of these algorithms are based on the back projection (BP) algorithm ordelay-and-sum (DAS) beamforming method, which can fast and simply image hiddentargets with a little prior knowledges. However, these methods with the wide mainlobeand high sidelobe level of the point spread functions (PSF) suffer from low imagingresolution and contrast. On the other hand, there are few articles on design of theantenna array and coded pulse modulation technology for improving through-the-wallimaging quality. This thesis thoroughly investigates the challenging problem of UWBthrough the wall imaging technology in the terms of imaging algorithms, MIMOantenna array theory and design, and pseudo chaotic pulse position modulationtechnology, which povide theoretical guidance for through-the-wall radar system designand application. The main content of this thesis can be summarized as follows:
     1. The principle of BP algorithm and DAS beamforming in through-the-wall radarimaging is analyzed, and the causes of problems of these algorithms are pointed. Twodifferent solutions to this problem based on the robust adaptive beamforming areaddressed. Firstly, an ultrawideband through-the-wall imaging algorithm that combinesthe robust Capon beamforming (RCB) with coherence factor (CF) weighting, namelyRCB_CF, is proposed. The received signals from all channels are alligned bycompensating for geometric attenutation, wall propagation attenutation and refractioneffects. Then RCB can improve the image quality in terms of resolution, and modifiedCF weighting can improve contrast and sidelobes by emphasizing the in-phase signalsand reducing the out-of-phase ones. Therefore, RCB_CF method results in simultaneousimprovement of imaging resolution and contrast, outperforming both BP algorithm andDAS beamformer. The other algorithm is an ultrawideband through-the-wall imagingmethod using cross-correlation weight of dual constrained robust beamforming (DRCB).Array is divided two subarrays alternately, and DRCB is applied to estimate the beamformings output signal each of two subarrays. The energy of their sum is regardedas pixel value in order to achieve higher resolution and much better interferencesuppression capabilities. Because these two beamformers give a well-correlatedmainlobe response and a different or uncorrelated sidelobe response, thecross-correlated coefficient of two beamformings output signals is weighted for eachpixel to suppress sidelobe so as to significantly improve constrast. The excellentperformance of the proposed methods is demonstrated by finite difference of time
     domain (FDTD) numerical simulations and the experimentally measured data results.2. By observing the relation between the scalar factor of the minimum meansquared error (MMSE) beamforming weights and CF used for sidelobe suppression, andfinding the connection between RCB_CF method and MMSE beamfoming algorithm, ascaled MMSE beamforming is proposed. Due to the inhomogeneous wall medium,errors in antenna positions, quantization effects, etc, the robust estimation methods ofunknown parameters of a scaled MMSE beamforming are presented, and a generalformula of the scalar factor weighting a minimum variance distortionless response(MVDR) beamforming is given. The effectiveness of the proposed beamformer isdemonstrated in though-the-wall imaging by FDTD numerical simulations and the
     experimentally measured data.3. The weight vector of thr eigenspace-based beamformer (ESB) is obtained byprojecting the weight vector of minimum-variance beamformer onto the signal subspaceof the measurement covariance matrix. The projection removes a residual noise-subspace componenet that considerably degrades the signal-to-noise (SNR) of thebeamformer output. Therefore, the ESB produces a SNR significantly higher than thatfrom minimum-variance beamformer, thus, it is a suitable method for noise suppressionin through-the-wall imaging. We analyze the performances of ESB, and point out theproblems of ESB adapted to through-the-wall imaging. Herein, ESB_RCB algorithm isproposed. The weight vector of the ESB_RCB is calculated by projecting the RCBweight vector with aiming at robustness against both finite-sample effects and steeringvector mismatches, onto a signal subspace constructed from the eigenstructure of theloaded sample covariance matrix. We show that the ESB_RCB method effectivelyreduces noise and enhances the contrast while the high resolution of RCB is retained.The effectiveness of the proposed method is validated in FDTD numerical simulations
     and the experimentally measured data.4. The configuration of the multiple-input multiple-output (MIMO) array is a goodchoice of a sparse aperture array for UWB through-the-wall imaging system. MIMO array can achieve higher cross resolution and lower sidelobe level because it can getlarger array aperture and smaller array element spacing with the same number ofelements as the conventional single-input multiple-output (SIMO) array. According tothe imaging model, an equivalent array for UWB MIMO antenna arrays is analyzed andthe design strategies for UWB MIMO array are given. Simulation results demostrate theeffectiveness of the design strategies and the feasibility of their application inthrough-the-wall imaging system. In addition, UWB MIMO imaging algorithms usingcross-correlation coefficient weighting robust Capon beamforming is proposed. Theimaging results show that the proposed method can achieve high resolution andsignal-to-noise ratio in the image by FDTD numerical simulations and theexperimentally measured data.
     5. UWB impulse through-the-wall radar usually transmits pulse trains of verysmall width at regular intervals in time. However, it has range ambiguity and relativelypoor anti-narrowband-interference ability. The pseudo chaotic pulse-position-modulatedUWB radar system is proposed to solve these problems. An analytical expression of theambiguity function for the pseudo chaotic pulse-position-modulated ultrawidebandpulses is derived, and the range ambiguous characteristics are investigated. Thecapability of rejecting narrowband interference is also analyzed, which can provide atheoretical guidance for waveform design and performance analysis of through-the-wallradar system. A multipath scattering in an enclosed room comprising four walls ismodeled. The target detection capability, performace in narrowband interferenceenvironment, and imaging results of the pseudo chaotic pulse-position-modulatedtechnique are analyzed compared with the single pulse system and pulse trains system atregular intervals. In addition, when imaging targets inside a room, the interference ofmultipath will cause ghosts into the image, which can deteriorate the detection of target.We show that the aspect dependence feature of multipath ghosts is found inthrough-the-wall images. An image fusion method from multiple-view imaging isdeveloped for the suppression of ghosts in through-the-wall radar imaging. Validation ofthe proposed method with FDTD simulation data is provided.
引文
[1] K. M. Chen, Y. Huang, J. Zhang. Microwave life-detection systems for serachinghuman subjects under earthquake rubble or behind barrier. IEEE Transactions onBiomedical Engineering,2000,47(1):105-113.
    [2] A. Yarovoy, J. Matuzas, B. Levitas, et al.. UWB radar for human being detection.IEEE Aerospace Electronic Systems Magazine,2006,21(3):10-14.
    [3] A. Nezirovic, A. G. Yarovoy, and L. P. Ligthart. Signal processing for improveddetection of trapped victims using UWB radar. IEEE Transactions on Geoscienceand Remote Sensing,2010,48(4):2005-2014.
    [4]L. M. Frazier. Surveillance through walls and other opaque materials. IEEEAerospace and Electronic Systems Magazine,1996,11(10):6-9.
    [5] M. A. Barnes, S. Nag, and T. Payment. Covert situational awareness with handheldultrawide-band short pulse radar. Radar Sensor Technology VI, Proceedings ofSPIE,2001,4374:66-77.
    [6] S. Nag, H. Fluher, and M. A. Barnes. Preliminary interferometric images of movingtargets obtained using a time-modulated ultra-wide band through-wall penetrationrada. Proceedings of IEEE Radar Conference,2001,5:64-69.
    [7] S. Nag, M. A. Barnes, and T. Payment, et al.. An ultrawideband through-wall radarfor detecting the motion of people in real time. Proceedings of SPIE,2002, Vol.4744, pp.48-57.
    [8] S. Suzuki, T. Matsui, H. Kawahara, et al.. A non-contact vital sign monitor systemfor ambulances using dual-frequency microwave radars. Medical and BiologicalEngineering and Computing,2009,47(7):101-105.
    [9] E. M. Staderini. UWB radars in medicine. IEEE Aerospace and Electronic SystemsMagazine,2002,17(1):13-18.
    [10]何永波.超宽带雷达回波信号微动特征识别研究[D].成都理工大学硕士学位论文,2009.
    [11] S. E. Borek. An overview of through the wall surveillance for homeland securitry.Applied Imagery and Pattern Recognition Workshop,2005,6.
    [12] O. Sisma, A. Gaugue, C. Libebe, et al.. UWB radar:vision through a wall.Telecommun Systems,2008,28:53-59.
    [13] R. Dilsavor, W. Ailes, P. Rush, et al.. Experiments on wideband through the wallimaging, SPIE,2005,5808:196-209.
    [14] E. Engin and B. Ciftcioglu. High resolution ultrawideband wall penetrating radar.Microwave and Optical Technology Letters,2007,49(2):320-325.
    [15]熊小芸,张兆田,吴国政.生命探测雷达在汶川地震救灾中发挥作用[J].中国科学基金,2008(4):26.
    [16]汶川地震救灾救援工作研究报告,2009.
    [17]医工系“生命探测雷达”参加陕西省首批抗震救援大队奔赴北川. http://news.fmmu.edu.cn/专题报道.
    [18] http://news.cntv.cn/20110810/106048.shtml.
    [19]美国国防部高级研究规划局(DARPA)2009年战略计划,2009:16.
    [20]雷达示波器. http://jczs.sina.com.cn.
    [21] http://special.cpst.net.cn.
    [22] G. Barrie and J. Tunaley. An analysis of through-and in-the-wall UWB impulseradar: system design considerations. Defence R&D Canada-Ottwa TechnicalMemorandum,2003:1-11.
    [23] F. Ahmad, M. G. Amin and S. A. Kassam. Synthetic aperture beamformer forimaging through a dieletric wall. IEEE Transactions on Aerospace and ElectronicSystems,2005,41(1):271-283.
    [24] M. Mahfouz, A. Fathy, and Y. Yang, et al. See-through-wall imaging using Ultra-wideband pulse systems.34thApplied Imagery and Pattern Recognition Workshop:Multi-modal Imaging, Washington, DC,2005:48-53.
    [25] Y. Yang, and A. E. Fathy. See-through-wall imaging using ultra wideband short-pulse radar system. IEEE Antennas Propagation International Sympsuim,Washington, DC,2005,3B:334-337.
    [26]A. Nezirovic, A. G. Yarovovy, and L. P. Ligthart. Experimental study on humanbeing detecting using UWB radar. In Proceeding IRS,2006:1-4.
    [27]A. Beeri, R. Daisy.High-resolution through-wall imaging.Proceedings of SPIE onSensors, and Command,Control, Communications, and Intelligence(C3I) technolo-gies for homeland security and homeland defense,2006,Vol.6201, pp.1-6.
    [28]A. G. Yarovovy, X. Zhuge, T. G. Savelyev, et al.. Comparision of UWBtechnologies for human being detection with radar. Proceeding of Eureopn RadarConference,2007, pp.295-298.
    [29] F. Ahmad,Y. Zhang and M.Amin.Three-dimensional wideband beamforming forimaging through a single wall. IEEE Geoscience and Remote Sensing Letters,2008,5(2):176-179.
    [30] C. Lai and R. M. Narayanan. Ultrawideband random noise radar design forthrough-wall surveillance. IEEE Transactions on Aerospace Electronic Systems,2010,46(4):1716-1730.
    [31] M. Thiel, and K. Sarabandi. Ultrawideband multi-static scattering analysis ofhuman movement within buildings for the purpose of stand-off detection andlocalization. IEEE Transactions on Antennas and Propagation,2011,59(4):1261-1268.
    [32] C. Le, T. Dogaru, Lam Nguyen, et al.. Ultrawideband (UWB) radar imaging ofbuilding interior: measurements and predictions. IEEE Transactions oOnGeoscience and Remote Sensing,2009,47(5):1409-1420.
    [33] Y. Yang and A. E. Fathy. Development and implementation of a realtime see-through-wall radar system based on FPGA. IEEE Transactions on Geoscience andRemote Sensing,2009,47(5):1270-1280.
    [34] A. R. Hunt. Awideband imaging radar for through-the-wall surveillance.Proceedings of SPIE,2004, Vol.5403, pp.590-596.
    [35]谭覃燕,Henry Leung,宋耀良.基于混沌调频信号的超宽带穿墙SAR成像[J].电子与信息学报,2011,33(2):388-394.
    [36] N. Marrref, P. Millot, C. Pichot, et al.. Astudy of FM-CW radar for the detection ofhuman beings in motion inside a building. IEEE Transactions on Geoscience andRemote Sensing,2009,47(5):1297-1300.
    [37] M. Dehmollaian and K. Sarabandi. Refocusing through building walls usingsynthetic aperture radar. IEEE Transactions on Geoscience and Remote Sensing,2008,46(6):1589-1599.
    [38]崔国龙,孔令讲,杨建宇.步进变频穿墙成像雷达中反投影算法研究[J].电子科技大学学报,2008,37(6):864-867.
    [39]Y.-S. Yoon, and M. G. Amin. Spatial filtering for wall-clutter mitigation inthrough-the-wall radar imaging. IEEE Transactions on Geoscience and RemoteSensing,2009,47(9):3192-3208.
    [40]H. Wang, R. M. Narayanan, and Z. O. Zhou. Through-wall imaging of movingtargets using UWB random noise radar. IEEE Antennas and Wireless PropagationLetters,2009,8:802-805.
    [41]王宏.超宽带穿墙雷达成像及多普勒特性研究[D].电子科技大学博士学位论文,2009.
    [42]黄冬梅.基于IR-UWB穿墙成像系统的性能研究[D].哈尔滨工业大学博士学位论文,2011.
    [43]Cambridge Consultants Inc., Prism200, Cambridge, MA.[Online]. http://www.cambridge consultants.com/prism_200.html.
    [44]Camero USA Corp., Xaver800Vision System,Vienna,VA.[Online].http://www.camero-tech.com/xaver800.html.
    [45]孟升卫,黄琼,方广有等.超宽带穿墙雷达动目标跟踪成像算法研究[J].仪器仪表学报,2010,31(3):500-506.
    [46]裴可琦.国产TDR-6000穿墙探测雷达.兵器知识,2010,11:27-29.
    [47] A. H. Muqaibel and A. Safaai-Jazi. A new formulation for characterization ofmaterials based on measured insertion transfer function [J]. IEEE Transaction onMicrowave Theory Technology,2003,51(8):1946-1951.
    [48]A. H. Muqaibel, A. Safaai-Jazi, A.Bayram, et al. Ultra-wideband through-the-wallpropagation[J]. IEEE Proceeding Microwave Antennas Propagation,2005,152(6):581-588.
    [49]李禹. UWB-TWDR的运动目标检测与定位[D].国防科学技术大学硕士学位论文,2003.
    [50]陈洁,方广有,李芳.时域波束形成在超宽带穿墙成像雷达中的应用[J].电子与信息学报,2008,30(6):1341-1344.
    [51] W. A. Chamma, S. Kashyap. Detection of target behind walls using Ultra-wideband short pulse: numerical simulation. Defence R&D Canada-OttwaTechnical Memorandum,2003:1-24.
    [52] G. Barrie. Ultra-wideband synthetic aperture imaging: data and image processing.Defence R&D Canada-Ottwa Technical Memorandum,2003:1-10.
    [53] F. Ahmad, G. J. Frazer, S. A. Kassam, et al.. Design and implementation ofnear-field, wideband syntheic aperture beamformers. IEEE Transactions onAerospace and Electronic Systems,2004,40(1):206-220.
    [54] F. Ahmad, M. G. Amin and S. A. Kassam. Synthetic aperture beamformer forimaging through a dieletric wall. IEEE Transactions on Aerospace and ElectronicSystems,2005,41(1):271-283.
    [55]谭覃燕,Henry Leung,宋耀良.穿墙SAR成像中的墙体参数误差分析和估计[J].电子与信息学报,2011,33(3):665-671.
    [56]朱延平,沈庭芝,王卫江等.穿墙雷达系统中信号检测的新算法[J].北京理工大学学报,2005,25(8):734-738.
    [57] Song Lin-ping, Yu Chun, and Liu Qing-huo. Through-wall Imaging (TWI) by radar:2-D Tomographic results and analyses. IEEE Transactions on Geoscience andRemote Sensing,2005,43(12):2793-2798.
    [58] F. Soldovieri and R. Solimene. Through-wall imaging via a linear inverse scatteringalgorithm. IEEE Geoscience and Remote Sensing Letter,2007,4(4):513-517.
    [59] F. Soldovieri, R. Solimene and G. Prisco. A multiarray tomographic approach forthrough-wall imaging. IEEE Transactions on Geoscience and Remote Sensing,2008,46(4):1192-1199.
    [60] R. Solimene, F. Soldovieri, and G. Prisco, et al. Three-dimensional through-wallimaging under ambiguous wall parameters. IEEE Transactions on Geoscience andRemote Sensing,2009,47(5):1310-1317.
    [61] R. Solimene, A. Brancaccio, and R. Pierri. TWI experimental results by a linearinverse scattering approach. Progress In Electromanetic Research(PIER),2009,Vol.91, pp.259-272.
    [62]雷文太.脉冲GPR高分辨成像算法研究[D].国防科学技术大学博士学位论文,2006.
    [63]蔚婧.合成孔径雷达地面运动目标检测若干关键技术研究[D].西安电子科技大学博士学位论文,2009.
    [64] F. Ahmad, M. G. Amin. Noncoherent approach to through-the-wall radarlocalization. IEEE Transactions on Aerospace an Electronic Systems,2006,42(4):1405-1419.
    [65]陈洁.超宽带雷达信号处理及成像方法研究[D].中国科学院研究生院博士学位论文,2007.
    [66] T. Sakamoto and T. Sato. A target shape estimation algorithm for pulse radarsystems based on boundary scattering transform. IEICE Transactions onCommunications,2004, E87-B(5):1357-1365.
    [67] S. Kidera, T. Sakamoto, and Toru Sato. High-resolution3-D imaging algorithmwith an envelope of modified spheres for UWB through-the-wall radars. IEEETransactions onAntennas and Propagation,2009,57(11):3520-3529.
    [68] S. Hantscher, A. Reisenzahn, and C. G. Diskus. Through-wall imaging with a3-DUWB SAR algorithm. IEEE Signal Processing Letter,2008,15(2):269-272.
    [69]黄琼,陈洁,屈乐乐等.一种快速超宽带穿墙雷达成像算法[J].电子与信息学报,2009,31(8):2001-2005.
    [70]吴世有,黄琼,陈洁等.基于超宽带穿墙雷达的目标定位识别算法[J].电子与信息学报,2010,32(11):2624-2629.
    [71]黄琼,吴世有,孟升卫等.基于超宽带雷达的运动人体目标跟踪成像算法[J].电子学报,2011,39(3):531-537.
    [72] M. Dehmollaian, M. Thiel and K. Sarabandi. Through-the-wall imaging usingdifferential SAR. IEEE Transactions on Geoscience and Remote Sensing,2009,47(5):1289-1296.
    [73] P. C. Chang, R. J. Burkholder, and J. L. Volakis, et al.. High-frequency EMCharacterization of through-wall building imaging. IEEE Transactions onGeoscience and Remote Sensing,2009,47(5):1375-1387.
    [74] C. Debes, M. G. Amin, and A. M. Zoubir. Target detection in single-andmultiple-view through-the-wall radar imaging. IEEE Transactions on Geoscienceand Remote Sensing,2009,47(5):1349-1361.
    [75]C. Debes, J. Riedler, A. M. Zoubir and M. G. Amin. Adaptive target detection withapplication to through-the-wall radar imaging. IEEE Transaction on SignalProcessing,2010,58(11):5572-5582.
    [76] M. M. Nikolic, A. Nehorai, and A. R. Djordjevic. Estimating moving targets behindreinforced walls using radar. IEEE Transactions on Antennas and Propagation,2009,57(11):3530-3538.
    [77] T. Dogaru and C. Le. SAR images of rooms and buildings based on FDTDcomputer models. IEEE Transactions On Geoscience and Remote Sensing,2009,47(5):1388-1401.
    [78] R. J. Burkholder and J. L. Volakis. Time-reversal radar imaging through periodicstructures. IEEE Antennas ans Propagation Symposium and USNC/URSI NationalRadio Science Meeting, Charleston,SC,2009,1-5June, pp.1-4.
    [79]M. E. Yavuz. Through-the-wall sensing using time-reversal antenna array. EUCAP10-European Conference onAntennas and Propagation,2010, April,pp.1-4.
    [80] R. Dubroca, N. Fortino, J-Y. Dauvignac, et al.. Time reversal-based processing forhuman targets detection in realistic through-the-wall scenarios. Proceedings of the8thEuropean Radar Conference, Manchester, United Kingdom,2011,Oct., pp.1-4.
    [81] Li LianLin, ZHANG Wenji, Li Fang. A novel autofocusing approach for real-timethrough-wall imaging under unkonwn wall characterisitics[J]. IEEE Transactions onGeoscience and Remote Sensing,2010,48(1):423-431.
    [82] F. Ahmad and M. G. Amin. High-resolution imaging using Capon beamformers forurban sensing applications. In Proceedings of the IEEE International Conferenceon Acoustics, Speech and Signal Processing(ICASSP2007),2007,4:985-988.
    [83] Y.-S. Yoon and M. G. Amin. High-resolution through-the-wall radar imaging usingbeamspace MUSIC. IEEE Transactions on Antennas Propgation,2008,56(6):1763-1774.
    [84] Y.-S. Yoon and M. G. Amin. High-resolution through-the-wall radar imaging basedon beamspace eigenstructure subsapce methods. Proceedings of SPIE,2008,Vol.6947,pp.1-11.
    [85] Y.-S. Yoon, M. G. Amin and F. Ahmad. MVDR beamforming for through-the-wallradar imaging. IEEE Transactions on Aerospace and Electronic Systems,2011,47(1):347-366.
    [86] Ahmad F. and Amin M. Multi-location wideband synthetic aperture imaging forurban sensing applications. Journal of the Franklin Institute,2008,345(6):618-639.
    [87]王宏,周正欧,李延军等.超宽带脉冲穿墙雷达互相关BP成像[J].电子科技大学学报,2011,40(1):16-19.
    [88]G. Wang and M. G. Amin. Imaging through unknown walls using different standoffdistances. IEEE Transactions On Signal Processing,2006,54(10):4015-4025.
    [89] F.Ahmad, M G Amin and G. Mandapati. Autofocusing of through-the-wall radarimagery under unknown wall characteristics. IEEE Transactions on ImageProcessing,2007,16(7):1785-1795.
    [90] H. Dong-Mei and Z.Qin-Yu. Impulse radio ultra-wide-band through wall imagingradar based on multiple-input multiple-output antenna arrays. InformationTechnology Journal,2010,9(4):782-789.
    [91] A. R. Hunt. Image formation through walls using a distributed radar sensor array.Proceedings of the32ndapplied imagery pattern recognition workshop, washington,DC, USA,2003:232-237.
    [92] T. S. Ralston, G. L. Chartvat. Real-time through-wall imaging using an ultra-wideband multiple-input multiple-output(MIMO) phased array radar system. IEEEInternational Symposium on Phased Array Systems and Technology(Array),Waltham MA,2010,12-15Oct., pp.551-558.
    [93] Jacob Qaknin, Ron Daisy, Amir Berri. Antenna array design for through wallimaging sytems by means of maximization. Proceedings of SPIE,2008, Vol.6947,pp.1-7.
    [94]G. L. Chartvat, L. C. Kempel, E. J. Rothwell, et al. An ultrawideband (UWB)switched-antenna-array radar imaging system. IEEE Internatioanl Symposium onPhased Array Sytems and Technology,2010,12-15Oct., pp.543-550.
    [95] X. P. Masbernat, M. G. Amin, F. Ahmad,et al.. An MIMO-MTI approach forthrough-the-wall radar Imaging applications. International Waveform Diversity andDesign Conference,2010,8-13Aug., pp.188-192.
    [96] F. Ahmad and S. A. Kassam. Performance analysis and array design for widebandbeamformers. Journal of Electronic Imaging,1998,7(4):825-838.
    [97] F. Ahmad and S. A. kassam. Coarray analysis of the wide-band point spreadfunction for active array imaging. Signal Processing,2001,(81):99-115.
    [98] X. Zhuge, A. G. Yarovoy, T.G. Savelyev, et al.. Modified Kirchhoff migration forUWB MIMO array-based radar imaging. IEEE Transactions on Geoscience andRemote Sesing,2010,48(6):2692-2703.
    [99]X. Zhuge and A. G. Yarovoy. A Sparse aperture MIMO-SAR-Based UWB imagingsystem for concealed weapean detection. IEEE Transactions on Geoscience andRemote Sesing,2011,49(1):509-518.
    [100] A. G. Yarovoy, T.G.Savelyev, P. J. Aubry, et al.. UWB array-based sensor fornear-field imaging. IEEE Transactions on Microwave Theory Technology,2007,55(6):1288-1295.
    [101] X. Zhuge. Short-range ultra-wideband imaging with multiple-input multiple-output arrays[D].PhD Thesis at Delft University of Technology,2010.
    [102]K. E. Browne, R. J. Burkholder, and J. L. Volakis. Through-wall opportunisticsensing system utilizing a low-cost flat-plane array. IEEE Transactions onAntennas and Propagation,2011,59(3):859-868.
    [103]贺峰,朱国富,周智敏.超宽带穿墙雷达对人体动目标探测的实验研究[J].现代雷达,2010,32(7):29-33.
    [104]张群英,方广有.伪随机序列编码脉冲信号在探地雷达中的应用研究[J].电子与信息学报,2011,33(2):424-428.
    [105]岳光荣,葛利嘉.超宽带无线电抗干扰性能研究[J].电子与信息学报,2002,24(11):1544-1550.
    [106]罗娟,岳光荣,李仲令等.提高超宽带冲激无线电信号抗单频干扰能力的参数选择[J].通信学报,2004,25(12):131-137.
    [107]王涛.脉冲超宽带通信系统的天线和信号设计研究[D].浙江大学博士学位论文,2006,6.
    [108]M. G. M. Hussain. Principles of high resolution radar based on nonsinusoidalwaves-part II: generallized ambiguity function. IEEE Transactions onElectromagnetic Compatibility,1989,31(4):369-375.
    [109]祝忠明,王绪本等.伪随机编码超宽带短脉冲的探测能力研究[J].强激光与粒子束,2006,18(11):1883-1887.
    [110] V. Venkatasubramanian and H. Leung. A novel chaos-based high-resolutionimaging technique and its application to through-the-wall imaging. IEEE SignalProcessing Letters,2005,12(7):528-531.
    [111] V. Venkatasubramanian, H. Leung, and X. Liu. Chaos UWB radar for through-the-wall imaging. IEEE Transactions on Image Processing,2009,18(6):1255-1265.
    [112] J.-F. Synnevag, A. Austeng, and S. Holm. Adaptive beamforming applied tomedical ultrasound imaging. IEEE Transactions on Ultrasonics, Ferroelectrics,and Frequency Control,2007,54(8):1606-1613.
    [113]J.-F. Synnevag, A. Austeng, and S. Holm. Benefits of minimum-variancebeamforming in medical ultrasound imaging. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2009,56(9):1868-1879.
    [114] Yao Xie, Bin Guo, Luzhou Xu,Jian Li, and Peter Stoica. Multistatic adaptivemicrowave imaging for early breast cancer detection. IEEE Transactions onBiomedical Engineering,2006,53(8):1647-1657.
    [115]J. Li, P. Stoica, and Z. Wang. On robust Capon beamformer and diagonal loading.IEEE Transactions on signal Processing,2003,51(7):1702-1715.
    [116]P. C. Li and M. L. Li. Adaptive imaging using the generalized coherence factor.IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,2003,50(2):128-141.
    [117]S.-L. Wang, C.-H Chang, H.-C.Yang, et al.. Performance evaluation ofcoherence-based adaptive imaging using clinical breast data. IEEE Transactions onUltrasonics, Ferroelectrics, and Frequency Control,2007,54(8):1669-1679.
    [118]B. M. Asl and A. Mahloojifar. Minimum variance beamforming combined withadaptive coherence weighting appiled to medical ultrasound imaging. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,2009,56(9):1923-1931.
    [119]J. K. Burkholder and K. E. Browne. Coherence factor enhancement of through-wall radar images. IEEE Antennas and Wireness Propagtion letters,2010,9:842-845.
    [120] C. Seo and J. T Yen. Sidelobe suppression in ultrasound imaging using dualapodization with cross-correlation. IEEE Transactions on Ultrasonics,Perroelectrics, and Frequency Control,2008,55(10):2198-2210.
    [121]C. Seo and J. T Yen. Evaluating the robustness of dual apodization with cross-correlation. IEEE Transactions on Ultrasonics, Perroelectrics, and FrequencyControl,2009,56(2):291-303.
    [122] J. Li, P. Stoica, and Z. Wang. Doubly Constrained robust Capon beamformer.IEEE Transactions on signal Processing,2004,52(9):2407-2423.
    [123] Y. Huang and M. Nakhkash. Characterisation of layered dielectric medium usingreflection coefficient. Electronics Letters,1998,34(12):1207-1208.
    [124] C. Li. Ultrawideband model-based synthetic aperture radar imaging throughcomplex media. PhD thesis of The Ohio State University,2000.
    [125]戴凌燕,王永良,李荣锋等.基于不确定集的稳健Capon波束形成算法性能分析[J].电子与信息学报,2009,31(12):2931-2936.
    [126] Experiments on wideband through the wall imaging. http://www. engineering.villanova.edu/cac/TWRI-experiments.
    [127] Yonina C. Eldar, Arye Nehorai and Particio S. La Rosa. A competitive mean-squared error approach to beamforming. IEEE Transactions on Signal Processing,2007,55(11):5143-5154.
    [128]L. Chang and C. C. Yeh. Performance of DMI and eigenspace-based beamformers.IEEE Transactions onAntennas and Propagation,1992,40(11):1336-1347.
    [129] S.-J Yu and J.-H. Lee. The statistical performance of eigenspace-based adaptivearray beamformer. IEEE Trans. Antennas and Propagation,1996,44(5):665-671.
    [130]刘晓军,刘聪锋,廖桂生.子空间投影稳健波束形成算法及其性能分析[J].系统工程与电子技术,2010,32(4):669-673.
    [131] K. Sekihara, S. S. Nagarajan, David Peoppel, et al.. Reconstructing spatio-emporal activities of nerual sources Using an MEG vetor beamformer technique.IEEE Transactions On Biomedical Engineering,2001,48(7):760-771.
    [132] K. Sekihara, S. S. Nagarajan, D. Peoppel, et al.. Application of an MEGeigenspace beamformer to reconstructing spatio-temporal activities of nerualsources. Human Brain mapping,2002,15:199-215.
    [133]B. M. Asl and A. Mahloojifar. Eigenspace-based minimum variance beamformingapplied to medical ultrasound imaging. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control,2010,57(11):2381-2390.
    [134] Z. Xu. Peturbation analysis for subspace decomposition with application insubspace-based algorithms. IEEE Transactions on Signal Processing,2002,50(11):2820-2830.
    [135]董延坤,葛临东.一种改进的稳健自适应波束形成算法[J].信号处理,2007,23(1):46-49.
    [136]粟毅,朱宇涛,郁文贤,许红波,雷文太.多通道雷达天线阵列的设计理论与算法[J].中国科学:信息科学,2010,40(10):1372-1383.
    [137]王怀军,粟毅,黄春琳.基于天线布阵的MIMO雷达成像研究[J].信号处理,2009,25(8):1203-1206.
    [138]王怀军,许红波,陆珉,粟毅.基于MIMO雷达的高分辨成像方法[J].微波学报,2009,25(5):79-83.
    [139]韩兴斌,胡卫东,郁文贤,杜小勇.分布式多通道雷达成像技术[J].电子与信息学报,2007,29(10):2354-2358.
    [140]王怀军,陆珉,许红波,朱宇涛,粟毅.MIMO雷达成像外场实验研究[J].信号处理,2009,25(11):1814-1819.
    [141] J. L. Schwartz, B. D. Steinberg. Ultrasparse, ultrawideband arrays. IEEETransactions on Ultrasonics, Ferroelectrics, and Frequency Control,1998,45(2):376-393.
    [142] G. Krieger, J. Mittermayer, S. Buchreuss, et al.. Sector imaging radar for enhancedvision. Aerospace Science and Technology,2003,7:147-158.
    [143]金添,娄军,宋千等.虚拟孔径天线配置及其成像性能研究[J].电子与信息学报,2011,33(10):2458-2463.
    [144] M. G. M. Hussain. Principles of space-time array processing for ultrawidebandimpulse radar and radio communications. IEEE Transactions on VehicularTechnology,2002,51(3):393-403.
    [145] P. Setlur, G. M. Amin, and F. Ahmad. Multipath model and exploitation inthrough-the-wall and urban radar sensing. IEEE Transactions on Geoscience andRemote Sensing,2011,49(10):4021-4034.
    [146]赵兴浩,陶然.无源雷达GSM信号模糊函数研究[J].现代雷达,2004,26(2):31-34.
    [147]谭覃燕,宋耀良.超宽带穿墙SAR成像中的多径干扰抑制[J].数据采集与处理,2011,26(5):300-307.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700