基于TEM模的高增益超宽带天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超宽带技术是当前国际上一项蓬勃发展的热门技术,超宽带天线作为超宽带系统的重要组成部分之一,如何能够更好地为超宽带系统提供强有力支撑,已成为一项极具挑战性的课题。与此同时,在现代通信、雷达及无线监测与管理等应用领域,除了要求天线具有超宽带特性外,对于天线高增益特性也提出了更高要求。为了更好地满足上述两方面实际应用需求,本文将对基于TEM模的高增益超宽带天线进行深入研究,以期为高增益超宽带天线领域的科研工作探索出一些新思路和新方法。
     本文首先对超宽带天线国内外研究现状进行综述;其次,对超宽带天线的基本概念及理论进行简要介绍,明确了衡量超宽带天线性能的各项参数。在此基础上,重点对基于TEM模的高增益超宽带天线进行研究。
     作为超宽带面天线关键部分的超宽带馈源,其超宽带及高增益特性直接决定了超宽带面天线的相应特性。为此,对基于TEM模的超宽带馈源进行了详细研究。众所周知,TEM喇叭天线具有超宽带特性,但作为馈源时,会对面天线的电磁辐射造成遮挡,从而降低面天线增益。研究表明,TEM喇叭的表面电流主要分布在三角金属片两侧边缘。因此,可仅保留其表面电流集中的区域,从而形成了TEM模四线馈电臂超宽带馈源。与TEM喇叭馈源相比,采用TEM模四线馈电臂馈源的面天线阻抗特性无较大变化;并且,由于遮挡效应的减小,天线增益有了较大提高。在此基础上,研究了倒三角形、三角形和梭形三种基本的馈电臂形状对天线阻抗特性的影响,为超宽带抛物面天线馈源的设计与优化提供了理论基础。
     对基于TEM模的超宽带抛物面天线进行了深入的研究,设计了三角形、梭形、指数型和复合型四种类型的馈电臂。首先,根据解析法设计了三角形馈电臂超宽带抛物面天线,其具有很宽的阻抗带宽和较高的增益,天线的工作频带为1.5~9.5GHz ,带内增益为10.2~23.9dB ,口径效率为0.53~0.69。其次,为减小三角形馈电臂末端的电流聚集,将馈电臂设计为梭形,同时对馈电臂间夹角进行了优化,天线的工作频带扩展至1.1~18.4GHz,带内增益为11.3~28.4dB,与采用三角形馈电臂结构的超宽带抛物面天线相比,平均增益提高了3dB,口径效率达到0.7~0.76。接下来,为进一步优化天线性能,提出了指数型馈电臂结构。采用这种馈源结构的超宽带抛物面天线的工作频带可达1.05~20GHz以上,在工作频带内最大增益达到28.9dB,口径效率达到0.71~0.77。最后,为改善天线的低频特性,又提出了复合型馈电臂结构,将指数曲线与线性项相结合构成新的馈电臂边界形状。采用此馈源结构的抛物面天线,其下限工作频率由1.05GHz下降至0.7GHz,降低了33.3%,从而有效拓展了天线的低频端工作频率。而通过对馈电臂末端进行电阻加载处理,可继续降低天线的下限工作频率,通过选择合适的加载阻抗,最终使天线的工作频率下限降为0.3GHz,实现了良好的低频拓展效果。
     除了将抛物面天线作为高增益超宽带天线形式进行重点研究外,本文还对基于TEM模的超宽带透镜天线进行了探讨。在TEM喇叭的口径处加入介质透镜即构成了TEM模超宽带透镜天线,此结构可以较大程度地弥补和缓解相位差带来的色散现象,从而能够有效增强天线的远场辐射,提高天线增益。分别设计了双曲面透镜、椭球面透镜、球面透镜以及改进的双层介质球面透镜等几种天线形式。双曲面透镜和椭球面透镜在保持TEM喇叭超宽带阻抗特性的基础上,将天线的高频增益提高了10dB以上。为进一步扩展天线工作频带,提出了球面透镜以及改进的双层球面透镜设计,其工作带宽均可达到0.76~20GHz;尤其是由两种不同介质构成的双层球面透镜,在实现天线超宽带性能的前提下,可以明显改善高频端增益,与单层球面透镜相比,天线增益最大可提高5.5dB,这种分层介质的设计思想在实际应用中具有很高的参考价值。
     本文对基于TEM模的高增益超宽带天线进行了深入地研究,提出了几种天线模型,并进行了实验研究。本文提出的设计思路和设计方法具有良好的实际应用价值,可以为今后高增益超宽带天线的设计提供借鉴与参考。
Ultra-wideband is an international hotspot technology developing very rapidly at present. As one of the important components of the ultra-wideband system, ultra-wideband antenna has been a challenging research topic. Meanwhile, higher requirements for not only the ultra-wide band characteristics but also the high gain characteristics of the antenna are put forward when it comes to modern communications, radar and wireless monitoring and management applications.
     In this dissertation, the international research situation is summarized firstly. Afterward, the fundamental conceptions and theory is introduced briefly, and the performance parameters of the ultra-wideband antenna are defined. On this basis, the high gain ultra-wideband antenna based on TEM mode is researched detailedly.
     As the key component of the ultra-wideband antenna, the ultra-wideband characteristic and high gain characteristic of the feed will decide characteristics of the antenna. Therefore, the ultra-wideband feed based on TEM mode is studied in detail. The TEM horn has great ultra-wideband characteristic, however, when it is used as the feed of a paraboloid antenna, the metal plate will shadow the electromagnetic radiation hence decreasing the gain. Researches show that the surface current distribution of the TEM horn is mainly at the side edge, thus holding the concentrated region of the surface current will form the TEM mode four wirelike feed arms model. Compared with feeding by TEM horn, the paraboloid antenna with TEM mode four wirelike feed arms can maintain the good impedance characteristic, while the antenna gain is quite higher owing to the reduction of the blockage Then, three forms of feed arms are researched respectively, and the effect of different structure on antenna impedance performance has been given, which can be the theoretical basis for the design and optimization of feed arms.
     The ultra-wideband paraboloid antenna based on TEM mode is studied systematically, and design methods of four types of feed arms are proposed. The ultra-wideband paraboloid antenna with triangular feed arms can be designed by analytic means, and it has obtained good impedance and radiation characteristics. The operating frequency range of the antnna is 1.5 to 9.5GHz; and the gain is 10.2~23.9dB within the band, and the aperture efficiency is 0.53~0.69. In order to reduce the current at the end of triangular feed arms, fusiform feed arms are designed, and meanwhile, the angle between feed arms is optimized. The operating frequency range of the antenna can be extended to 1.1 to 18.4GHz, and the gain is 11.3~28.4dB within the band. The average gain is 3dB higher than that with triangular feed arms, and the aperture efficiency is 0.7~0.76. To further optimize the antenna performance, exponential tapered feed arms are proposed. This structure can broaden the operating frequency range of the antenna to 1.05 to 20GHz, and the maximum gain is 28.9dB within the band, and the aperture efficiency is 0.71~0.77. Furthermore, in order to improve the low-frequency characteristic, composite tapered feed arms are presented, which is formed by adding a linear term to the expression of exponential curve. The lowest operating frequency of the antenna is expanded to 0.7GHz, which is 33% lower than that of the exponential tapered feed arms, thus the lowest operating frequency is decreased effectively. In addition, further reduction of the lowest operating frequency can be realized by loading resistances at the end of feed arms. And the low limit frequency of the antenna has been decreased to 0.3GHz, and the effect of the low-frequency expansion is obviously.
     Besides the paraboloid antenna, the lens antenna can also be employed to be the high gain ultra-wideband directional antenna.The dielectric lens attached at the aperture of the TEM horn can compensate and eliminate the chromatic dispersion brought by the phase contrast, and can enhance the far field radiation effectively hence increasing the antenna gain. The hyperbolic lens, meniscus lens, single layer spherical lens, and double layers spherical lens are designed respectively. Compared with the TEM horn antenna, both of the hyperbolic lens antenna and the meniscus lens antenna can increase the antenna gain over 10dB, while the ultra-wideband impedance characteristic and directionality are kept very well. The spherical lens antenna can further extend the antenna bandwidth to 0.76 to 20GHz, and moreover, the double layers spherical lens will improve the gain of high band obviously, and the maximal increased gain can be 5.5dB. The design idea of stratified dielectric has good value to the practical application.
     The main purpose of this dissertation is to research and design the high gain ultra-wideb antenna based on TEM mode. Several antenna models are proposed , and experiments are preformed. The design ideas and methods presented in this dissertation have good value to practical application, and will provide consultation for the design of high gain ultra-wideband directional antenna in the future.
引文
1 J. Powell, A. Chandrakasan. Differential and Single Ended Elliptical Antennas for 3.1-10.6 GHz Ultra Wideband Communication. IEEE Antennas and Propagation Society, AP-S International Symposium, Monterey, CA, United States. 2004, 3: 2935~2938
    2 D. Porcino, W. Hirt. Ultra-Wideband Radio Technology: Potential and Challenges Ahead. IEEE Communications Magazine. 2003, (7): 66~74
    3李育红,周正.超宽带无线通信技术的新进展.系统工程与电子技术. 2005, 27(1): 20~24
    4 C. C. Chong, F. Watanabe and H. Inamura. Potential of UWB Technology for the Next Generation Wireless Communications. IEEE International Symposium on Spread Spectrum Techniques and Applications, ISSSTA-06, Manaus, Brazil, 2006: 422~429
    5 A. H. Muqaibel. Directional UWB Channel Characterization. International Conference on Computer and Communication Engineering, ICCCE08, Kuala Lumpur, Malaysia. 2008, 5: 621~625
    6 M. R. Mahfouz, C. Zhang, B. C. Merkl, M. J. Kuhn and A. E. Fathy. Investigation of High-accuracy Indoor 3-D Positioning Using UWB Technology. IEEE Transactions on Microwave Theory and Techniques. 2008, 56(6): 1316~1330
    7向新,王杰令,曾志斌,易克初,陈顺方.超宽带通信中的伪混沌脉冲位置调制.通信学报. 2009, 30(11): 106~112
    8 C. C. Chong, S. K. Yong and S. S. Lee. UWB Direct Chaotic Communication Technology. IEEE Antennas and Wireless Propagation Letters. 2005, 4(1): 316~319
    9 H. Tan, Q. Shen J. Guo. UWB-SAR: Applicable to Highway Technology. 2007 1st Asian and Pacific Conference on Synthetic Aperture Radar, APSAR 2007, Huangshan, China. 2007, 9: 215~217
    10 B. Waldmann, A. Goetz, R. Weigel. An ultra wideband positioning system enhanced by a short multipath mitigation technique. IEEE MTT-S International Microwave Workshop Series on Wireless Sensing, LocalPositioning and RFID, IMWS 2009, Cavtat, Croatia. 2009, 9: 1~4
    11 S. Y. Lin, H. R.Huang. Ultra-wideband mimo antenna with enhanced isolation. Microwave and Optical Technology Letters. 2009, 51(2): 570~573
    12 T.Santos, J.Karedal, P.Almers, F.Tufvesson, A. F.Molisch. Modeling the ultra-wideband outdoor channel: Measurements and parameter extraction method. IEEE Transactions on Wireless Communications. 2010, 9(1): 282~290
    13 R. Jafari, K.Gilani. Body sensor networks and ultra wideband communication. The 2008 IEEE International Conference on Ultra-Wideband, ICUWB 2008, Hannover, Germany. 2008, 3: 9~10
    14谢义方,方广有.基于无载频脉冲雷达信号等幅度追踪法检测生命信号.电子与信息学报. 2009, 31(5): 1132~1135
    15 C. Zhang, M. J.Kuhn, B. C.Merkl, A. E.Fathy, M. R.Mahfouz. Real-time noncoherent UWB positioning radar with millimeter range accuracy: Theory and experiment. IEEE Trans. on Microwave Theory and Techniques. 2010, 58(1): 9~20
    16 S. Kidera, T. Sakamoto. High-resolution 3-D imaging algorithm with an envelope of modified spheres for UWB through-the-wall radars. IEEE Trans. on Antennas and Propagation. 2009, 5(11): 3520~3529
    17 A. J. Braga, C.Gentile. An ultra-wideband radar system for through-the-wall imaging using a mobile robot. 2009 IEEE International Conference on Communications, ICC 2009, Dresden, Germany. 2009, 6: 1~6
    18 Y. Liu, S. X.Gong. A novel UWB clover-disc monopole antenna with RCS reduction. Journal of Electromagnetic Waves and Application. 2008, 22(8): 1115~1121
    19 B. Wu, Y. Ji, G. Fang. Analysis of GPR UWB half-ellipse antennas with different heights of backed cavity above ground. IEEE Antennas and Wireless Propagation Letters. 2010, 9: 130~133
    20沈爱国,姜秋喜.无载频超宽带雷达的梳状谱干扰技术.系统工程与电子技术. 2009, 31(1): 66~68
    21宋虎,陈建军.超高速数据采集系统在超宽带雷达中的应用.现代雷达. 2007, 29(7): 58~60
    22 S. Hantscher, A. Reisenzahn, C. G. Diskus. Ultra-wideband radar noisereduction for target classification. IET Radar, Sonar and Navigation. 2008, 2(4): 315~322
    23 H.Mu, J. Yao. Photonic generation of UWB pulses with pulse position modulation. Electronics Letters. 2010, 46(1): 99~100
    24 W. Wiesbeck, G. Adamiuk, C. Sturm. Basic properties and design principles of UWB antennas. Proceedings of the IEEE. 2009, 97(2): 372~385
    25 M.Ojaroudi, G. Kohneshahri, J. Noory. Small modified monopole antenna for UWB application. IET Microwaves, Antennas and Propagation. 2009, 3(5): 863~869
    26 Y. S. Radchenko, A. A. Zaitsev. Synthesis and analysis of algorithms for multi-alternative detection of UWB signals in channels with combined multipath propagation. Radioelectronics and Communications Systems. 2009, 52(3): 142~149
    27扈罗全,朱洪波.一种有多反射特性的超宽带信道建模方法.微波学报. 2007, 23(1): 56~61
    28 A. H. Muqaibel. Directional modelling of ultra wideband communication channels. IET Communications. 2010, 4(1): 51~62
    29 H. G. Schantz. Dispersion and UWB antennas. Ultra Wideband Systems. Joint with Conference on Ultra-wideband Systems and Technologies, Kyoto, Japan. 2004, 5: 161~165
    30 L. Paulsen, J. B. West, W. F. Perger, J. Kraus. Recent investigations on the volcano smoke antenna. IEEE Antennas and Propagation Society International Symposium, Columbus, OH, United states. 2003, 3: 845~848
    31 B. Lampe, K. Holliger. Resistively Loaded Antennas for Ground-penetrating Radar: A Modeling Approach. Geophysics. 2005, 70(3): 23~32
    32 K. Kim, J. W. R. Scott. Design of Resistively Loaded Vee Dipole for Ultrawide-band Ground-penetrating Radar Applications. IEEE Trans. on Antennas and Propagation. 2005, 53(8): 2525~2532
    33 V. A. Mikhnev, P. Vainikainen. Ultra-wideband Tapered-slot Antenna with Non-uniform Resistive Loading. 6th International Conference on Antenna Theory and Techniques, ICATT'07, Sevastopol, Ukraine. 2007, 9: 281~283
    34王均宏.阻抗加载脉冲天线的研究.通信学报. 1999, 20: 90~95
    35 D. O. Kim, N. I. Jo, D. M. Choi, C. Y. Kim. Design of the ultra-widebandantenna with 5.2 GHz/5.8 GHz band rejection using rectangular split-ring resonators (SRRS) loading. Journal of Electromagnetic Waves and Applications. 2009, 23(17): 2503~2512
    36 T. Dissanayake, K. P. Esselle, M. R. Yuce. Dielectric loaded impedance matching for wideband implanted antennas. IEEE Trans. on Microwave Theory and Techniques. 2009, 57(10): 2480~2487
    37 W. C. Liu, C. M. Wu,; S. H. Chung, J. L.Jaw. Strip-loaded CPW-fed triangular monopole antenna for UWB operation. Microwave and Optical Technology Letters. 2008, 50(12): 3097~3101
    38王元坤,李玉权.线天线的宽频带技术.西安电子科技大学出版社, 1995: 57~58
    39 Z. N. Low, J. H. Cheong, C. L. Law, W. T. Ng, and Y. J. Lee. Pulse Detection Algorithm for Line Of Sight (LOS) UWB Ranging Applications. IEEE Antenna and Wireless Propagation Letters. 2005, 4: 63~67
    40饶育萍,牛忠霞,王锋.加载单极子天线的宽带特性研究.无线电工程. 2004, 34(2): 37~38
    41韩增富,王均宏.并联介质加载偶极天线脉冲辐射特性的研究.物理学报. 2005, 54(2): 642~647
    42张春青,邹卫霞.并联介质加载折叠臂偶极天线的辐射特性.无线电工程. 2006, 36(8): 34~36
    43 J. G. Maloney, G. S. Smith. A study of transient radiation from the Wu-King resistive monopole-FDTD analysis and experimental measurements. IEEE Trans. Antennas Propagat. 1993, 41(5): 668~676
    44 T. P. Montoya, G. S. Smith. A comparison of several broadband loaded monopoles for pulse radiation. Antennas and Propagation Society International Symposium, Newport Beach, CA, USA. 1995, 1: 198~201
    45 T. P. Montoya, G. S. Smith. A study of pulse radiation from several broad-band loaded monopoles. IEEE Trans. on Antennas Propagation. 1996, 44(8): 1172~1182
    46 S. Sadek, Z. Katbay. Ultra wideband CPW bow-tie antenna. Ultra wideband CPW bow-tie antenna. Proceedings of the 2009 International Conference on Electromagnetics in Advanced Applications, ICEAA '09, Torino, Italy. 2009, 9: 261~263
    47 A. Mehdipour, A. Mohammadpour, F. D. Karim, S. Reza, R. Abdel. Modified slot bow-tie antenna for UWB applications. Microwave and Optical Technology Letters. 2008, 50(2): 429~432
    48 K. L. Shlager, G. S. Smith, J. G. Maloney. Optimization of bow-tie antennas for pulse radiation. IEEE Trans. Antennas Propagat. 1994, 42(7): 975~982
    49魏福显,王春和.电阻加载蝶形天线的性能研究.物探与化探. 2006, 30(5): 427~429
    50 A. A. Lestari, A.G. Yarovoy, L.P. Ligthart. Improvement of bow-tie antennas for pulse radiation. Antennas and Propagation Society International Symposium, San Antonio, TX, United states. 2002, 4:566~569
    51 A. A. Lestari, A.G. Yarovoy, L.P. Ligthart. RC-loaded bow-tie antenna for improved pulse radiation. IEEE Trans. Antennas Propagation. 2004, 52,(10): 2555~2563
    52 A. A. Lestari, A. B. Suksmono, E. Bharata, A.G. Yarovoy, L.P. Ligthart. Small UWB antenna with improved efficiency for pulse radiation. Antenna Technology: Small Antennas and Novel Metamaterials. 2005, (3): 295~298
    53 A. A. Lestari, D. Yulian, Liarto, A.B. Suksmono, E. Bharata, and et al. Improved bow-tie antenna for pulse radiation and its implementation in a GPR survey. International Workshop on Advanced Ground Penetrating Radar, Naples, Italy. 2007, 6: 197~202
    54周游,潘锦,聂在平.时域背腔式领结天线的工程化设计.电子科技大学学报. 2005, 34(1): 1~3
    55 A. Duzdar, G. Kompa. A Novel Inverted Trapezoidal Antenna Fed by a Ground Image Plane and Backed by a Reflector. 30th European Microwave Conference, Paris, France, 2000, 10: 1~4
    56 A. S. Turk. Ultra-wideband TEM horn design for ground penetrating impulse radar systems. Microwave and Optical Technology Letters. 2004, 41(5): 333~336
    57 A. Zhang, L. Wang, C.Guo, Y. Jiang. Constant Impedance TEM Horn Antenna: Aperture and Characteristic Impedance's Impacts on Axial Electric Field. Journal of Infrared, Millimeter, and Terahertz Waves. 2009, 30(10): 1067~1072
    58王向晖,蒋延生,汪文秉. FDTD方法用于TEM喇叭天线传输效应的计算.现代雷达. 2003, 25(11): 41~43
    59 K. L. Shlager and G. S. Smith. TEM horn antenna for pulse radiation: an optimized design. Antennas and Propagation Society International Symposium, Newport Beach, CA, USA. 1995, 1: 228~231
    60刘立业,粟毅,毛钧杰.一种超宽带天线的辐射特性分析.无线电工程. 2005, 35(7): 42~43
    61刘立业,粟毅,刘克成,毛钧杰. FDTD分析探地雷达天线的辐射特性.微波学报. 2005, 21: 91~95
    62 Jing Li, X. Y. Zhu, M. X. Wang, Lang Jen. A new design of TEM horn antennas for pulse radiation. Asia Pacific Microwave Conference Proceedings, APMC, Hong Kong, China. 1997, 2: 629~631
    63 C. C. Lin, H. R. Chuang and Y. C. Kan. A 3-12 GHz UWB Planar Triangular Monopole Antenna with Ridged Ground-plane. Progress in Electromagnetics Research. 2008, 83: 307~321
    64 W. Ren, J. Y. Deng and K. S. Chen. Compact PCB Monopole Antenna for UWB Applications. Journal of Electromagnetic Waves and Applications. 2007, 21(10): 1411~1420
    65 R. Zaker, C. Ghobadi and J. Nourinia. A Modified Microstrip-fed Two-step Tapered Monopole Antenna for UWB and WLAN Applications. Progress in Electromagnetics Research. 2007, 77: 137~148
    66 W. S. Chen, S. C. Wu and K. N. Yang. A Study of the Printed Heart Monopole Antenna for IEEE 802. 16a/UWB Applications. IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, United states. 2006, 7: 1685~1688
    67 W. S. Chen, S. C. Wu. A printed heart monopole antenna with band-rejected characteristics for IEEE 802.16A and UWB applications. Microwave Journal. 2007, 50(5): 164~167
    68 D. N. Elsheakh, H. A. Elsadek, E. A. Abdallah, M. F. skander, H. Elhenawy. Ultra-wideband and miniaturization of the microstrip monopole patch antenna (MMPA) with modified ground plane for wireless applications. Progress In Electromagnetics Research Letters. 2009, 10: 171~184
    69延晓荣,钟顺时,梁仙灵.渐变共面波导馈电的新型超宽带印刷单极天线.电波科学学报. 2008, 23(5): 823~827
    70 D. C. Chang, M. Y Liu, C. H. Lin. A CPW-fed U type monopole antenna for UWB applications. 2005 IEEE Antennas and Propagation Society International Symposium and USNC/URSI Meeting, Washington, DC, United states. 2005, 2: 512~515
    71 R. Eshtiaghi, J. Nourinia, C. Ghobadi. Electromagnetically coupled band-notched elliptical monopole antenna for UWB applications. IEEE Trans. on Antennas and Propagation. 2010, 58(4): 1397~1402
    72吕文俊,朱洪波.超宽带折环天线的设计与研究.通信学报. 2010, 31(2): 76~80
    73宋小弟,冯恩信,傅君眉.一种用于WLAN的小型双频宽带印刷单极天线.微波学报. 2009, 25(6): 71~74
    74 W. S.Chen, K. C. Yang. A Compact CPW-fed rectangle-trapezoid-rectangle shaped monopole antenna for ultra-wideband systems. Microwave Journal. 2008, 51(10): 150~158
    75 J. X. Xiao, M. F. Wang, G. J. Li. A printed circular-ring monopole antenna with band-notched feature for uwb application. Microwave and Optical Technology Letters. 2010, 52(4): 827~830
    76 J H Jung, W Y Choi and J H Choi. A small wide-band microstrip-fed monopole antenna. IEEE Microwave and Wireless Component Letters, 2005, 15(10): 703~705
    77 J. X. Liang, L. Guo. CPW-fed Circular Disc Monopole Antenna for UWB Applications. IEEE International Workshop on Antenna Technology: Small Antennas and Novel Metamaterials, Singapore. 2005, 3: 505~508
    78 D. Chen, C. H. Cheng. A novel compact ultra-wideband (UWB) wide slot antenna with via holes. Progress in Electromagnetics Research. 2009, 94: 343~349
    79 M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan, K. Vasudevan. Design of a microstip fed step slot antenna for UWB communication. Microwave and Optical Technology Letters. 2009, 51(4): 1126~1129
    80张文梅,陈雪,韩国瑞,陈新伟.平面超宽带天线的设计与研究.电波科学学报. 2008, 23(2): 335~339
    81 I. Hossain, S. Noghanian, L. Shafai, S. Pistorius. Coplanar waveguide fed taper arc slot antenna for microwave imaging and ultra wide bandapplications. Microwave and Optical Technology Letters. 2009, 51(11): 2607~2611
    82 S. Hu, W. B. Dou, C. L. Law. A tapered slot antenna with flat and high gain for ultra-wideband applications. Journal of Electromagnetic Waves and Applications. 2009, 23(5): 723~728
    83王照峰,杨宏春,阮成礼.新型异面结构高功率Vivaldi天线.微波学报. 2009, 25(3): 22~24
    84 S Sadat and M Fardis. A compact microstrip square-ring slot antenna for UWB applications. IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, United states. 2006, 7: 4629~4633
    85 D D. C. Chang , J. C. Liu and M. Y. Liu. Improved U-shaped stub rectangular slot antenna with tuning pad for UWB applications. Electronics Letters, 2005, 41(20): 1095~1097
    86 S. H. Hsu and K Chang. Ultra-thin CPW-fed rectangular slot antenna for UWB applications. IEEE Antennas and Propagation Society International Symposium, Albuquerque, NM, United states. 2006, 7: 2587~2590
    87 E. S. Angelopoulos, A. Z. Anastopoulos, D. I. Kaklamani, A. A. Alexandridis, F. Lazarakis, K. Dangakis. Circular and elliptical CPW-Fed slot and microstrip-fed antennas for ultrawideband applications. IEEE Antennas and Wireless Propagation Letters, 2006, 5: 294~297
    88 M. Gopikrishna, D. D. Krishna, C. K. Aanandan, P. Mohanan, K. Vasudevan. Compact linear tapered slot antenna for UWB applications. Electronics Letters. 2008, 44(20): 1174~1176
    89 S. Nikolaou, G. E. Ponchak, J. Papapolymerou, M. M. Tentzeris. Conformal double exponentially tapered slot antenna (DETSA) on LCP for UWB applications. IEEE Trans. on Antennas and Propagation. 2006, 54(6): 1663~1669
    90 B. Wu, Y. Ji; G. Fang. Design and measurement of compact tapered slot antenna for UWB microwave imaging radar. Proceedings of 9th International Conference on Electronic Measurement and Instruments,ICEMI 2009, Beijing, China. 2009, 8: 2226~2229
    91 A. Z. Hood, T. Karacolak, E. Topsakal. A Small Antipodal Vivaldi Antenna for Ultrawide-Band Applications. IEEE Antennas and Wireless PropagationLetters. 2008, 7: 656~660
    92 C. E. Baum, E. G. Farr. Impulse Radiating Antenna. Ultra-Wideband, Short-Pulse Electromagnetics. New York, 1993: 139~148
    93 E. G. Farr, C. E. Baum, W. D. Pratheg, L. H. Bowen. Multifunction Impulse Radiating Antennas: Theory and Experiment. Ultra-Wideband, Short-Pulse Electromagnetlcs 4. 1999: 131~144
    94 L. H. Bowen, E. G. Farr. An Ultra-Compact Impulse Radiating Antenna. Sensor and Simulation Note. 2004, 494: 1~38
    95 W. D. Prather, C. E. Baum, J. M. Lehr, J. P. O’Loughlin. Ultra-Wideband Source Research. IEEE Pulsed Power Conference, Monterey, CA, USA. 1999: 185~189
    96孟凡宝,杨周炳,马弘舫,周传明,陆巍,虞惠龙,吴文涛,鞠炳全.高功率半抛物面冲击脉冲辐射天线系统实验研究.强激光与粒子束. 1999, (11) 6: 725~728
    97 S. Vongsack, C. Phongcharoenpanich, S.Kosulvit, T. Wakabayashi. A Unidirectional Antenna Using Circular Disc Monopole Excited Circular Ring above Cylindrical Reflector. International Symposium on Communications and Information Technologies, ISCIT 2008. 2008, 10: 242~246
    98 Y. Ito, M. Ameya, M. Yamamoto, T. Nojima. Unidirectional UWB array antenna using leaf-shaped bowtie elements and flat reflector. Electronics Letters. 2008, 44(1): 9~11
    99郭晨,张安学,吴辉,蒋延生,汪文秉.高功率超宽带双馈源抛物面天线设计与仿真.电波科学学报. 2008, 23(4): 658~661
    100 J. J. H. Wang. Theory of a Class of Planar Frequency-independent Omnidirectional Traveling-wave Antennas. IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, MAPE2005, Beijing, China. 2005, 1: 434~437
    101 B. Pan, Y. Li, G. E.Ponchak, J. Papapolymerou, M. M. Tentzeris. A 60-GHz CPW-fed high-gain and broadband integrated horn antenna. IEEE Trans. on Antennas and Propagation. 2009, 57(4): 1050~1056
    102 H. F. Kashani, M. Shahpari, H. Ameri. Dual band dual polarized antenna with high efficiency for base transceiver stations. Journal of Electromagnetic Waves and Applications. 2008, 22(10): 1371~1379
    103 C. J. Buchenauer, J. S. Tyo, J. S. H. Schoenberg. Aperture Efficiencies of Impulse Radiating Antennas. Sensor and Simulation Notes. 1997,421: 25~26
    104 D. V. Giri, J. M. Lehr, W. D.Prather, C. E. Baum, R. J. Torres. Intermediate and far fields of a reflector antenna energized by a hydrogen spark-gap switched pulser. IEEE Transactions on Plasma Science. 2000, 28(5): 1631~1636
    105 V. A. Solomko, P. Weger. A fully integrated 3.33.8-GHz power amplifier with autotransformer balun. IEEE Trans. on Microwave Theory and Techniques. 2009, 57(9): 2160~2172
    106 S. N. Makarov, R. Ludwig. Analytical model of the split-coaxial balun and its application to a linearly-polarized dipole or a CP turnstile. IEEE Trans. on Antennas and Propagation. 2007, 55(7): 1909~1918
    107 C. H. Tseng, Y. C. Hsiao. A new broadband Marchand balun using slot-coupled microstrip lines. IEEE Microwave and Wireless Components Letters. 2010, 20(3):157~159
    108 D. M. Pozar. Microwave Engineering. Second Edition. John Wiley & Sons, Ltd, 1998: 275~295
    109 D.Hofer, V.K.Tripp. A low-profile broadband balun feed. IEEE Antennas and Propagation Society International Symposium, Ann Arbor, MI, USA. 1993, 1: 458~461
    110 M. A. Grossberg. Extremely Rapid Computation of the Klopfenstein Impedance Taper. Proceedings of the IEEE. 1968, 56: 1629~1630
    111 K. Chung, S.Pyun, J. Choi. Design of an ultrawide-band TEM horn antenna with a microstrip-type balun. IEEE Trans. on Antennas and Propagation. 2005, 53(10): 3410~3413
    112 B. A. Kramer, C. C. Chen, M. Lee, J. L. Volakis, Fundamental limits and design guidelines for miniaturizing ultra-wideband antennas. IEEE Antennas and Propagation Magazine. 2009, 51(4): 57~69
    113 B. Biscontini, P. Russer. A Novel Planar Multilayered Ultra Wide Band (UWB) Cylindrical Refector Antenna. Asia-Pacific Microwave Conference, APMC2007, Bangkok, Thailand. 2007, 12: 1~4
    114 M. Manteghi, Y. Rahmat-Samii. On the characterization of a reflector impulse radiating antenna (IRA): full-wave analysis and measured results.IEEE Trans. on Antennas and Propagation. 2006, 54(3): 812~822
    115 S. K. Ryu, D. M. Yeon, Y. H. Kim. Approximated synthesis design of plano-convex teflon lens suitable for microwave traffic monitoring sensor. Asia-Pacific Microwave Conference Proceedings, APMC2001, Taipei. 2001, 3: 1056~1059
    116 Z. X. Wang, W. B. Dou. Design and analysis of thin diffractive/refractive lens antennas. Journal of Electromagnetic Waves and Applications. 2006, 20(15): 2239~2251
    117 R. T. Lee, G. S. Smith. On the Characteristic Impedance of the TEM Horn Antenna. IEEE Trans. on Antennas and Propagation. 2004, 52(1): 315~318

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700