便携式液压冲击可控震源信号设计与系统研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程地震和城市地震等浅层地震勘探中,与传统液压驱动可控震源相比,便携式液压可控震源具有明显优势。本文以国家863计划重点项目“金属矿地震勘探关键技术与装备”为依托,研制了一种便携性强、工作精度高、系统稳定性好、非破坏性的可控震源——便携式液压冲击可控震源。
     本文所做工作如下:
     1.针对车载式液压驱动的扫频震源的在山区等复杂环境下使用不便的缺点,设计了液压驱动便携式冲击可控震源系统。便携式液压冲击可控震源系统整体结构采用了模块化设计,各模块间能够实现快速组装和拆卸,使系统易于携带,解决了因地形复杂而无法搬运和使用的困难。根据震源激振器的结构特点,设计了适合震源系统的基板,提高了震源系统与大地的耦合性。
     2.在便携式液压冲击可控震源的控制系统中,采用小型PLC作为控制系统的核心器件,提高了系统扫描信号的精度。在控制系统内设计的反馈机制,实现了对PLC和调速阀的实时监测,有利于对系统的工作状态进行判断,保证系统处于安全运行状态。
     3.针对浅层地震勘探对可控震源激发扫描信号要求,以及便携式液压冲击可控震源系统的特点,研究了适用于该系统的脉冲序列扫描信号——单次线性脉冲扫描信号、多次分段线性升频脉冲扫描信号。
     4.开展了对便携式液压冲击可控震源的实验研究,实验数据表明,与VIBSIST50震源相比,便携式液压冲击可控震源激发的地震波信号输出力较强、传输距离较远、信号的分辨率较高。
In association with the national major project of863plan of "Key techniquesand equipments of metallic mineral deposit", the paper launched a study on thesystem development of portable hydraulic impact seismic sources, according to thecharacteristics of the seismic sources system, and designed for a hydraulic system inscanning signals. In portable hydraulic impact of seismic sources system, thehardware designed, and control scheme formulated, and the design of the scanningsignals are based on solid theories and experiments for the foundation. On portablehydraulic impact of seismic sources system of research, the paper provides acorresponding reference for hydraulic drive of seismic sources in the furtherdevelopment of the use.
     Overall, this paper expounds the important significance of controlled seismicsource in seismic exploration, and the application of related technology and thescanning technology in the field of seismic exploration, and the record principle ofpulse coding sequence scanning signal. This paper discusses the hardware andsoftware design of portable hydraulic impact seismic sources system, on thecharacteristics of portable hydraulic impact of seismic sources, designs a singlelinear impulsive scanning signals and multiple piecewise linear frequency signals.Through the experiments, it is verified that the design scheme of portable hydraulicimpact seismic sources system is the feasibility and high efficiency.
     The major contents of this paper are as follows.
     According to vehicle-mounted hydraulic drive of vibroseis' huge volume, insome areas of the complex terrain, its efficiency of the work is lower, and even can'tbe used. The paper designed the portable hydraulic impact seismic sources system.Through the analysis of continuous sweep frequency technology and Mini-Sosie technology, and according to the characteristics of hydraulic transmission, the paperdesigned linear pulse scanning signals for the hydraulic impact system. Around theseismic exploration theory, and the design of the scanning signals, and the design ofsoftware and hardware in seismic sources system, and experimental research, thepaper made a systematic study of the portable hydraulic impact seismic sourcessystem.
     This paper summarized the principle of seismic exploration of controllableseismic source, related technology and scanning technology in the seismicexploration areas, and analyzed and summarized the autocorrelation function of theconsecutive series of linear and nonlinear sweep frequency signal. In view of highquality sweep frequency signal is difficult to realize in the actual seismic exploration,and made a detailed study of pulse coding sequence scanning technology, the paperdesigned scanning signals for hydraulic transmission system, and deduced theexpression of the scanning signals stimulate rules, and provided the theory basis fora software program designed for the control system.
     The hardware and software design, the modular design system is used in theportable hydraulic impact seismic sources system. According to the functions of theparts of the system is different, the whole system into three subsystems-the powersystem, control system, and execution system. Modular technology not only reducesthe total weight of the system, and can be quickly set up of seismic sources platform,and greatly improves the portability of the source system. The paper made discuss indetails, including the system's general structure, subsystem structure and function,and provided the subsystem structure diagram. In the control system, theintroduction of small PLC as the control systematic core, improves the stability ofthe system, and control accuracy and the anti-interference ability. In the executionsystem, according to the characteristics which the mechanical structure of the sourcevibration exciter, execution system designed the substrate; substrate quality weightand low gravity, further improve the coupling between the source system and theearth.
     In the study of the portable hydraulic impact seismic sources system, through did a lot of system testing experiments, find the best work parameters of the wholesystem. After grasped the system of the parameters of the best of the work state, inthe same conditions, used different control schemes for experiments. In order to beable to better reflect various performance indicators, in the experiment, made acomparison between the portable hydraulic impact seismic sources system andCanada VIBSIST50seismic source.
     The main achievements that the paper acquired were:
     1. The design of the scanning signals of the seismic sources system, used forreference of sweep frequency technology and Mini-Sosie technology, after did thecombination and improvement, putted forward a single linear impulsive scanningsignals and multiple piecewise linear frequency signals, deduced the mathematicalexpressions of the variation of the scanning signals. Compared to two signals, theseismic wave signal inspired by multiple piecewise linear frequency signals, closerto random signal pulse sequences, be able to improve the SNR of the seismic wavesignal.
     2. In hardware design of the seismic source, the modular design of the wholesystem structure improved systematic portability. In the control system, the use ofPLC enhanced the control precision of the system and the anti-interference ability.Programming software of PLC is simple and practical, and easies to softwaredevelopment and maintenance. The monitor of PLC, realized real-time monitoringof the output signal from the control system. Substrate use of the execution system,improved the coupling between the source system and the earth.
     3.3. Through have done a lot of system testing experiments, found theparameters of best work and the critical state, for example, scanning signals schemeof multiple piecewise linear frequency signals, when the source vibration exciterstart to work, the output signal from logic controller of ZelioLogic not less than3.55mv. The experiment under the same environment, analyzed the seismic data afterdecoded, compared with a Canadian source of VIBSIST50, the seismic wave signal,stimulated by the portable hydraulic impact seismic sources system, has strongeroutput force, and transmission distance is farther, and higher resolution.
引文
[1]朱海华.青藏高原复杂地质条件近垂直反射地震资料采集与处理[D].北京:中国地质科学院,2005
    [2]王兵.高分辨地震勘探仪器设计研究[D].合肥:中国科学技术大学,2008.
    [3] Zhouhong Wei, Thomas F. Phillips, Michael A. Hall. Fundamental discussionson seismic vibrators [J]. Geophysics, Nov2010,75:13-25.
    [4]刘洪斌,陈如恒.地震勘探震源的历史与发展[J].石油机械,1997,25(8):43~45
    [5] ChapmanW L,Brown G L, Fair D W. The Vibroseis System: A high-frequencytool [J]. Geophysics,1981,46(12):1657~1666.
    [6]凌云,高军,孙德胜,等.可控震源在地震勘探中的应用前景与问题分析[J].石油物探.2008,47(5):425~437
    [7]林君.电磁驱动可控震源地震勘探原理及应用[M].科学出版社,2004.
    [8]朱广生,陈传仁,桂志先.勘探地震学教程[M].武汉大学出版社,2005.12
    [9]姚姚.地震波场与地震勘探[M].地质出版社,2006.6.
    [10] Wood L.C., Treitel S. Seismic signal processing. Proceedings of the IEEE.,April1975[C],63:649-661
    [11]陶知非.世纪之交论可控震源的发展与变化[J].物探装备,2000,10(1):1-6.
    [12] S. N. Domenico. Generation of seismic waves by weight drops [J]. Geophysics,1958,23:665-683.
    [13] Edwin B. Neitzel. Seismic reflection records obtained by dropping a weight [J].Geophysics,1958,23:58-80.
    [14] Chen Z B, Lin J. Design for vibrator field experiment based on vibrator-Earthsystem.Journal of Geoscientific Research in Northeast Asia,2000,3(1):107~113.
    [15]什内尔索纳等著,李乐天,裘慰庭译.可控震源地震勘探[M].石油工业出版社,1993.10
    [16]董敏煜.地震勘探信号分析[M].山东:石油大学出版社,1989.
    [17]高建.脉冲编码可控震源信号设计与系统研究[D].长春:吉林大学,2009.
    [18]柴治媛.可控震源伪随机扫描方法与地震响应的数值模拟[D].长春:吉林大学,2007.
    [19]张子三,林君,付晓江,等.浅析可控震源的扫描技术[J].石油仪器,1997,11(6):10~14.
    [20]陈祖斌,林君.可控震源扫描控制技术研究[J].计算机工程与应用,2007,7:241~243.
    [21]王忠仁,陈祖斌,姜弢,等.可控震源扫描控制技术研究[J].吉林大学学报(地球科学版),2006,36(4):627~630.
    [22]金昊.可控震源伪随机扫描技术研究[D].长春:吉林大学,2006.
    [23] Barbier M. G, Bondon P, Mellinger, R, et al. Mini-SOSIE for land seismology[J]. Geophys. Prosp.1976,24:518-527.
    [24] Barbier M G, Viallix J R. SOSIE: A new tool for marine seismology [J].Geophysics,1973,22(4):673-683.
    [25] Barbier M G, Viallix J R. Pulse coding in seismic prospecting——SOSIE andSEISCODE [J]. Geophysical Prospecting,1974,22:153-175.
    [26]高霞,魏文博,永旺.小型冲击叠加震源及应用效果[J].勘探地球物理进展,2006,29(4):290~295.
    [27]王忠仁,高健,孙锋.脉冲编码可控震源信号设计[J].地球物理学进展,2008,23(6):1931~1935.
    [28]张利平.液压传动与控制[M].西北工业大学出版社,2005,08.
    [29]胡小江.新型液压打桩锤研究[D].西安:西安建筑科技大学,2004.
    [30]邹炳燕.新型液压桩锤控制系统的研制与开发[D].天津:天津大学,2004.
    [31]韩林山,臧海燕.轻型液压打桩机主机结构的优化设计[J].水利电力机械.2005,27(2):39~41.
    [32]康晶,杜元虎.电液数字阀的PLC直接控制及特性[J].机床与液压,2004,6:69-70,39-41.
    [33]褚金利.一种数字阀调节系统及其PLC控制的研究[D].兰州:兰州理工大学,2005.
    [34] Bian YonGPMing,Xu Xinming,Zhu Lijing. Variable Frequency HydraulicSpeed Control System Based on CAN open[C]. Education Technology andComputer (ICETC),20102nd International Conference on, June22-24,2010:V3-264-V3-268.
    [35]陈洁.新技术形势下PLC的发展前景[J].机械工程与自动化,2004,04:84~89.
    [36]朱明星,李庆峰. PLC在液压传动控制系统中的应用[J].铜陵职业技术学院学报,2006,4:49~51.
    [37] In-Sung Jung, Mulman B.M., Thapa D. PLC Control Logic Error Monitoringand Prediction Using Neural Network. Natural Computation,2008[C]. ICNC'08. Fourth International Conference on, Oct18-20,2008:484-488
    [38] Shuting Zeng,Zhijia Yang,et al. A high performance architecture design ofPLC dedicated processor[C]. Advanced Computer Theory and Engineering(ICACTE),2010.3rd International Conference on.Aug20-22,2010: V2-424-V2-428
    [39] Dong Yulin, Zheng Chunjiao. Design and research of embedded PLCdevelopment system. Computer Research and Development (ICCRD),2011[C].3rd International Conference on. March11-13,2011:226–228
    [40] Ianoz, M., Korovkin, N. Progress in the PLC development during the years2003-2004. Electromagnetic Compatibility and Electromagnetic Ecology,2005[C]. IEEE6th International Symposium on. June21-24,2005:4-9
    [41]隋振有,隋凤香. PLC应用与编程技术[M].中国电力出版社,2009,3.
    [42]刘国富.工程船舶液压系统设计及打桩船液压系统的改进设计与仿真研究[D].上海:上海海事大学,2004.
    [43]胡均平,吴伟辉,朱桂华,等.新型高精度大通径电液比例调速阀的研究[J].机械设计与研究,2004,20(1):55~57.
    [44]谢志刚.基于流量放大原理和电反馈原理的比例阀研究[D].太原:太原理工大学,2003.
    [45]霍燚.通用比例阀数字控制器的研制[D].大连:大连理工大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700