纳米Ag/TiO_2涂层托槽的研制及其抗菌性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在口腔正畸临床领域,固定矫治器作为一种高效能矫治器得到广泛应用,并取得良好疗效。但其主体成分托槽结构复杂,导致菌斑附着增加并影响口腔微环境,从而引起牙釉质脱矿及牙周损害。预防并控制菌斑附着是预防龋病及牙周炎症的关键,如何对托槽材料进行改进,抑制口腔致病菌的黏附与增生是目前口腔正畸学领域研究的方向之一。随着口腔材料学的发展,纳米抗菌材料的出现为开发新型托槽材料提供了新选择。
     绝大多数纳米抗菌材料使用的是单一纳米抗菌剂,如纳米TiO2、纳米银等,这些材料自身具有一定的缺陷,限制了它们的应用。以纳米TiO2为载体的复合银系无机抗菌剂成为新型抗菌材料研究的一个重要方向,具有独特的力学性能、抗菌性能及生物学相容性,应用前景非常广阔。
     目前国内外尚无将纳米Ag/TiO2材料与技术应用于口腔正畸托槽的报导,本研究拟在普通金属托槽表面制备纳米Ag/TiO2涂层,研制具有美观、高强、耐磨及可见光催化甚至在黑暗环境中仍具有抑菌性能的纳米Ag/TiO2涂层托槽,通过理化性能、抗菌性能和生物相容性检测,证实托槽具有纳米材料独特的力学及生物学性能,为解决托槽周边牙釉质龋和正畸治疗引起的牙周损伤等正畸临床常见棘手问题提供有效途径,并推进纳米技术在口腔正畸材料领域的广泛应用。本研究包括以下三章内容:
     第一章纳米Ag/TiO2涂层托槽的制备及理化性能检测
     目的:
     制备纳米Ag/TiO2涂层托槽,并对其理化性能进行检测。
     方法:
     本研究选择临床上常用的普通金属托槽,抛光、超声清洗、冲洗干燥后备用。使用溶胶-凝胶法制备TiO2凝胶,用旋转涂敷法在普通金属托槽表面涂敷TiO2薄膜,然后浸渍在AgNO3溶液中,获得Ag/TiO2薄膜,经过120℃热处理后分别在120、200、300℃下退火,冷却,制备出不同退火温度下纳米Ag/TiO2涂层托槽A、B、C组。
     在扫描电镜下对普通金属托槽、纳米TiO2涂层托槽和纳米Ag/TiO2涂层托槽的表面形貌、微观结构及A组纳米Ag/TiO2涂层托槽的断面形貌进行观察。
     测量普通金属托槽、纳米TiO2涂层托槽及A、B、C组纳米Ag/TiO2涂层托槽的表面粗糙度。
     采用划痕实验法检测纳米TiO2涂层和A、B、C组纳米Ag/TiO2涂层与基体托槽的结合强度。
     用X射线衍射仪分析纳米TiO2涂层托槽及A、B、C组纳米Ag/TiO2涂层托槽表面涂层的晶体结构和物相。
     对纳米TiO2涂层托槽及A组纳米Ag/TiO2涂层托槽进行X射线光电子能谱分析。
     采用紫外—可见分光光度计测量石英玻璃片上纳米TiO2涂层及A、B、C组纳米Ag/TiO2涂层的透光率。
     结果:
     扫描电镜图片显示金属托槽表面虽经抛光,但仍较粗糙,存在较大的沟壑状和坑状凹陷。纳米TiO2涂层是由许多球形微小颗粒组成的颗粒膜,组成薄膜的Ti02颗粒粒径为10-30nm。纳米Ag/TiO2涂层也是由许多球形微小颗粒组成的颗粒膜,具有严整的组织结构;组成薄膜的Ti02颗粒粒径均匀;Ag颗粒均匀分布在薄膜上,粒径约为50-100nnm,很少出现团聚现象。A、B、C组托槽中纳米Ag颗粒的直径随着退火温度的升高逐渐增大且分布更密集。
     对纳米Ag/TiO2涂层托槽的断面形貌观察显示纳米Ag/TiO2涂层托槽表面涂层的厚度约为120nm,厚度均匀,表面平整、光滑,表面光洁度高,并可见Ag颗粒沉积在涂层上。
     粗糙度测试结果显示纳米TiO2涂层托槽和纳米Ag/TiO2涂层托槽与普通商业用金属托槽表面粗糙度差异无统计学意义。纳米TiO2涂层与基体的结合强度为1.18kg, A、B、C组纳米Ag/TiO2涂层的结合强度分别为1.16、1.12、1.26kg。
     XRD谱图显示纳米TiO2和Ag/TiO2涂层的XRD曲线上均出现锐钛矿型TiO2的衍射峰;纳米Ag/TiO2涂层的XRD曲线上均出现Ag0的衍射峰,且随着退火温度的升高,Ag衍射峰的强度也增大。
     XPS全谱图显示纳米TiO2和Ag/TiO2涂层的主要成分分别为:Ti、O、C和Ag、 Ti、O、C; TiO2中的Ti2p能级分解为2个能级:Ti2p1/2和Ti2p3/2,中心峰值分别为464.6ev和458.9ev;2者峰值差为5.7ev;加入Ag后,Ti2p的结合能峰值向较高能值漂移;Ag/TiO2中的Ag3d能级分解为2个能级:Ag3d5/2和Ag3d3/2,其中心峰值分别为368.1ev和374.1ev;2者峰值差为6ev。
     纳米TiO2涂层及A、B、C组纳米Ag/TiO2涂层的透光率谱图显示TiO2涂层在波长<350nm的紫外光区有完全吸收;Ag沉积后,吸收边发生红移,透光率下降,且随着退火温度的降低,透光率也逐渐下降。
     结论:
     1.本研究采用溶胶-凝胶法在普通金属托槽表面成功地制备了纳米Ag/TiO2薄膜涂层。
     2.该纳米Ag/TiO2涂层分布均匀,厚度和纳米Ag、TiO2颗粒均为纳米尺度,保证了纳米材料的特性;且表面光洁度高,具有足够的涂层基体结合强度,可以满足口腔正畸临床的需要。
     3.纳米Ag/TiO2涂层中TiO2为锐钛矿型,Ag以单质形式存在,随着退火温度的升高,Ag颗粒的结晶度提高且颗粒长大。
     4.Ag的沉积增加了TiO2的光催化活性,并使其具有可见光催化性能。
     5.随着Ag沉积颗粒粒径的减小,TiO2在可见光激发条件下的光催化活性增强。
     6.退火温度120℃较为合适,制成的纳米Ag/TiO2涂层中Ag和TiO2颗粒粒径较小,既具备足够的结合强度又有较强的可见光催化活性。
     第二章纳米Ag/TiO2涂层托槽的抗菌性能研究
     目的:
     研究纳米Ag/TiO2涂层托槽的抗菌性能,初步探讨抗菌机制,为临床应用提供理论依据。
     方法:
     制备A组纳米Ag/TiO2涂层托槽,对照组为普通金属托槽和同条件下纳米TiO2涂层托槽,消毒后备用。使用同样方法在不锈钢17-4表面涂敷纳米TiO2薄膜涂层和Ag/TiO2薄膜涂层。复苏变形链球菌、血链球菌、伴放线放线杆菌、具核梭杆菌、牙龈卟啉单胞菌和中间型普氏菌,培养并制备成菌悬液。使用贴膜法检测纳米Ag/TiO2涂层对上述口腔常见菌的抗菌活性,计算抗菌率并在不同时间点观察灭菌效果。
     将普通金属托槽、纳米TiO2涂层托槽和纳米Ag/TiO2涂层托槽浸泡于混合菌液中,培养48h后在扫描电镜下观察抗细菌黏附效果。
     将变形链球菌与纳米Ag/TiO2涂层托槽共同培养6h、18h、24h、48h,提取GTF粗酶,采用Somogyi-Nelson法测定上清液中还原糖含量,计算GTF活性单位,分析不同时间点纳米Ag/TiO2涂层托槽对变形链球菌GTF活性的影响。
     向纳米Ag/TiO2涂层上滴加牙龈卟啉单胞菌菌悬液,分不同抗菌时间测量胞内外牙龈素的活性单位与蛋白含量,计算牙龈素比活,分析纳米Ag/TiO2涂层托槽对胞内外牙龈素比活的影响。
     结果:
     抗菌实验结果显示纳米Ag/TiO2涂层在黑暗环境下对所有实验菌均有抗菌活性,20min后抗菌率达到了80.2%以上。黑暗环境下纳米Ag/TiO2涂层作用30-60min后即可完全杀死菌液中的口腔常见细菌,而纳米TiO2涂层作用240min后也未显示出抗菌活性。纳米Ag/TiO2涂层对不同菌种的杀菌时间存在差异,对变形链球菌、血链球菌及牙龈卟啉单胞菌的杀灭时间最短,为20-30min;对伴放线放线杆菌、具核梭杆菌及中间型普氏菌的杀灭时间延长为30-60min。
     扫描电镜照片显示纳米Ag/TiO2涂层托槽表面黏附的细菌数量明显少于普通金属托槽及纳米TiO2涂层托槽。普通金属托槽表面有大量的细菌黏附,呈致密片状分布,形成多层菌膜;纳米TiO2涂层托槽表面也见大量的细菌黏附,呈颗粒状,但未见多层菌膜形成;而纳米Ag/TiO2涂层托槽表面黏附的细菌明显少于前2者,呈散在分布。
     在各时间点,普通托槽组、纳米TiO2涂层托槽组和纳米Ag/TiO2涂层托槽组GTF活性依次下降;纳米Ag/TiO2涂层托槽组GTF活性比其余3组明显降低;除48h时间点外,TiO2托槽组GTF活性比空白对照组下降,差异有统计学意义;普通托槽组GTF活性与空白对照组差异无统计学意义。Ag/TiO2托槽对GTF活性的抑制作用强弱顺序为:18h>24h>6h>48h,除18与24h时间点外,其余时间点两两比较Ag/TiO2托槽对GTF活性的抑制作用差异均有统计学意义。
     在纳米Ag/TiO2涂层作用下,牙龈卟啉单胞菌胞内外牙龈素比活随抗菌时间推移均呈下降趋势,10min内细菌胞内牙龈素比活明显大于胞外,10min后两者无明显差异;胞外牙龈素比活水平在20min内基本持平,之后随时间延长呈缓慢下降趋势;胞内牙龈素比活20min内出现明显下降,之后下降趋势减慢。
     结论:
     1.纳米Ag/TiO2涂层托槽在黑暗环境下对口腔常见细菌有较强的抗菌作用。
     2.纳米Ag/TiO2涂层托槽对口腔常见细菌有较好的抗黏附作用。
     3.纳米Ag/TiO2涂层托槽能有效抑制变形链球菌葡糖基转移酶的活性,从而对变形链球菌有良好抗黏附作用。
     4.纳米Ag/TiO2涂层托槽在杀死牙龈卟啉单胞菌的同时还可降解细菌胞内外的牙龈素,显著抑制其活性。
     第三章纳米Ag/TiO2涂层托槽的生物相容性评价
     目的:
     对纳米Ag/TiO2涂层托槽进行生物相容性测试,为其在临床的安全使用提供实验依据。
     方法:
     在不锈钢17-4圆片表面涂敷纳米TiO2薄膜涂层和Ag/TiO2薄膜涂层,加入DMEM培养液制取浸提液,取复苏后的L929细胞与其共同培养,在倒置相差显微镜下观察细胞形态;使用MTT法计算细胞增殖度并进行材料毒性程度分级;用碘化丙啶染色细胞后荧光显微镜下观测细胞死亡情况;用流式细胞仪检测分析细胞周期,进行细胞毒性试验。
     将纳米TiO2薄膜涂层和Ag/TiO2薄膜涂层试样用生理盐水浸泡提取浸提液,加入新鲜稀释抗凝兔血,测量吸光度值,计算材料溶血率,进行溶血试验。
     将纳米TiO2薄膜涂层和Ag/TiO2薄膜涂层试样用生理盐水浸泡提取浸提液,对小鼠灌胃,观察动物行为是否有毒性体征出现;对试验前后体重进行测量,观察体重变化;处死动物,进行病理解剖,肉眼观察动物重要脏器有无病理变化;在显微镜下观察小鼠心、肺、脾、肺、肾有无病理改变,进行短期全身毒性试验。
     取涂敷纳米Ag/TiO2薄膜涂层的不锈钢17-4圆片和同样规格的口腔用牙胶圆片,缝合固定到金黄色仓地鼠的颊囊黏膜上,观察动物的活动情况,有无全身不良反应;观察试件与口腔内黏膜接触处的局部黏膜反应;处死动物,对颊囊部全层组织进行病理组织学观察,并进行病理反应分级,进行口腔黏膜刺激试验。
     结果:
     细胞毒性试验形态学观察结果显示试验组细胞形态数量与对照组无明显区别,可见大量分裂细胞;荧光显微镜下见只有极少量细胞被PI染成红色,可能为正常凋亡细胞,各组未见明显差异;MTT试验结果显示各组细胞增殖度较为接近,毒性等级均为0-1级;细胞周期分析未见异常,各组之间无明显差异。
     溶血试验中试验组的吸光度值明显低于阳性对照组,TiO2组和Ag/TiO2组的溶血率分别为0.255%、0.637%,均小于5%,即均不会引起急性溶血。
     短期全身毒性试验中试验组和对照组60只小鼠无一例死亡,临床毒性体征分级都是无症状;试验组小鼠体重增长与对照组比较差异均无统计学意义;病理解剖肉眼观察动物重要脏器未见充血、出血、水肿等明显病理变化;显微镜下观察小鼠心、肺、脾、肺、肾未出现变性、萎缩、坏死等病理变化。
     口腔黏膜刺激试验中动物活动正常,饮食正常;与试验材料和对照材料接触的颊囊黏膜表面及其周围未见充血、水肿、糜烂及溃疡等反应;试验组与阴性对照组接触处颊囊黏膜组织切片基本相同,未见异常变化,病理反应评分除1侧为轻度外,其余均为0级。
     结论:
     1.纳米Ag/TiO2涂层托槽对细胞不产生明显毒性。
     2.纳米Ag/TiO2涂层托槽不会引起急性溶血反应。3.纳米Ag/TiO2涂层托槽浸提液对小鼠产生的影响与生理盐水无差异,没有短期全身毒性。
     4.纳米Ag/TiO2涂层托槽对仓地鼠口腔黏膜没有刺激性,具有良好的生物安全性。
     综上所述,本研究成功研制出纳米Ag/TiO2涂层托槽,具有良好的机械性能;对口腔常见细菌具有优异的抗菌性能和抗黏附作用;对机体无毒性,生物相容性良好,可以满足正畸临床需要,但还需进一步深入研究之后才能应用于临床。
In orthodontic clinic, fixed appliance has been widely used for its efficiency and gained fine therapeutic effect. But the structure of its main composition-brackets is complex, leading to dental plaque increasing and having impact on micro-circumstance in oral cavity, so enamel decalcification, gingivitis and periodontitis were caused. Prevention and control of dental plaque adhesion is the key of dental caries and periodontitis prevention. Improve the material of brackets so to inhibit adhension and growth of pathogenic bacterium in oral cavity is one of the investigative directions in orthodontics sphere. Along with the development of the science of dental materials, the appearance of nanometer antibiosis materials provids new choice for new bracket materials exploitation.
     Most nanometer antibiosis materials utilize single nanometer antibacterial agent such as nanometer titanium dioxide, nanometer sliver and so on. These materials have defect of their own, so the application are constrainted. Silver-loaded titanium dioxide becomes an important direction of new antibiosis materials investigation. It has specific mechanical property, antibiosis function and biocompatibility, so it has broad prospect of application.
     There is no report of using nanometer Ag/TiO2materials and technique in orthodontics brackets at home and abroad. This study plans to make nanometer Ag/TiO2coating on ordinary metal brackets so to develop nanometer Ag/TiO2coating on brackets that has fine appearance, high intensity, visible photocatalytic activity and bacteriostasis effect even in dark circumstances. Detect the efficiency of physics, chemistry, antibiosis and biocompatibility of the brackets so as to confirm the specific mechanical and biological properties of the brackets. Our aim is to provide effective method for solving adamantine caries and periodontal inflammation, and to promote the use of nanometer technology in orthodontic materials area. This study consists of three chapters below:
     Part One Development of nanometer Ag/TiO2coated brackets and physicochemical properties detection
     Objective
     To develop nanometer Ag/TiO2coated bracket and detect its physicochemical properties.
     Methods
     In this study, we chose ordinary metal brackets widely used in clinic, polish, ultrasonic clean, flush and dry. TiO2gel was produced by sol-gel method. TiO2film was coated on brackets surface, and then soaked in AgNO3solution. Ag/TiO2film was heat treated under120degree, then annealing under120,200,300degree respectively, then nanometer Ag/TiO2coated bracket A,B,C were produced.
     Scanning electron microscope (SEM) was used to observe the micromorphology of surface of ordinary metal brackets, nanometer TiO2coated bracket and nanometer Ag/TiO2coated bracket. Cross-section topography of nanometer Ag/TiO2coated bracket group A was also observed.
     The surface roughness of metal bracket, nanometer TiO2coated bracket and nanometer Ag/TiO2coated bracket were measured.
     The combination intensity between smear layer of nanometer TiO2and nanometer Ag/TiO2with basis material were analyzed by scratch experimentation.
     The crystal structure and phase of nanometer TiO2coated bracket and nanometer Ag/TiO2coated bracket were analyzed by XRD.
     The chemical components of nanometer TiO2coated bracket and nanometer Ag/TiO2coated bracket were characterized using XPS.
     The transmittance of nanometer TiO2coating and nanometer Ag/TiO2coating on quartz glass were mearsured by UV-VIS.
     Results
     SEM results showed that the surface of ordinary metal bracket was rough and existenced major ravine andpitlike depression. Nanometer TiO2coating film was constructed by many sphericity micro-particles, the diameter of which was10-30nm. Nanometer Ag/TiO2film was also constructed by many sphericity micro-particles, with orderly structure, the diameter of TiO2particles were uniformity, Ag particles were distributed on the film, the diameter of which was50-100nm. Aggregation phenomenon was seen seldomly. The diameter of Ag particles became bigger and distributed more intensively with the annealing temperature arising.
     The section micromorphology showed that the thickness of nanometer Ag/TiO2film was about120nm, the film was well-distributed and had smooth surface, Ag particles could be seen deposited on the film.
     There were no statistically differences among the surface roughness of five groups of brackets. The combination intensity of the nanometer TiO2smear layer with basis material was1.18kg, the numerical value of A,B,C groups of nanometer Ag/TiO2were1.16,1.12,1.26kg respectively.
     XRD showed that there were anatase TiO2diffraction peak in both curves of TiO2and Ag/TiO2films. Ag0diffraction peak appeared in the curve of Ag/TiO2, and the intensity became larger as the temperature arising.
     XPS showed main components of TiO2and Ag/TiO2were Ti, O,C and Ag,Ti,O,C respectively. The Ti2p level in TiO2was divided into2levels:Ti2p1/2and Ti2p3/2, the central peak were464.6ev and458.9ev, the difference was5.7ev. The peak value of binding energy of Ti2p drifted to high energy after Ag deposoted. The Ag3d level in Ag/TiO2was divided into2levels:Ag3d5/2and Ag3d3/2, the central peak were368.1ev and374.1ev, the difference was6ev.
     The TiO2transmittancy spectrogram showed ultraviolet light<350nm could be completely absorbted, red shift of the absorption happened and transmittancy decreased after Ag deposited. The transmittancy decreased as the annealing temperature decreasing.
     Conclusion
     1. The results confirmed that nanometer Ag/TiO2coated brackets were developed successfully by sol-gel method.
     2. This nanometer Ag/TiO2coating was well-distributed, the thickness and diameter of particles were all in nanometer scale, so that the characteristics of nanometer materials were guaranteed. It had smooth surface and enough combination intensity with basis material, which could meet the clinical demand of orthodontics.
     3. TiO2in the film was anatase TiO2. Ag existed by the form of simple substance. Ag particles grew up as the annealing temperature increasing.
     4. The photochemical catalytic activity of TiO2increased by the deposition of Ag, and made it owned visible light photoresponse.
     5. The visible light photoresponse increased by the decrease of diameter of Ag.
     6. The result indicated that choose120degree as annealing temperature is suitable, for the diameter of Ag and TiO2were small, which owned enough combination intensity and strong visible light photoresponse.
     Part Two
     Research on bactericidal ability of nanometer Ag/TiO2coated brackets
     Objective
     To study the bactericidal ability of nanometer Ag/TiO2coated bracket and investigate the mechanism initially, in order to provide theoretical evidence.
     Methods
     A group nanometer Ag/TiO2bracket was prouduced and TiO2and Ag/TiO2coatings were coated on stainless steel17-4with the same method. S.mutans, S.sangui, A.actinomycetemcomitans, F.nucleatum, P.gingivalis and P.intermedia were anabiosised and cultured into bacteria liquid. Film applicator coating method was used to test the antibacterial efficacy of Ag/TiO2coating.
     3groups of brackets were soaked in the mixed bacteria liquid. After48h, SEM was used to observe the anti-adhesive efficacy of the coating.
     Cocultured S.mutans with Ag/TiO2coated bracket for6,18,24,48h, then extracted coarse GTF. The content of reducing sugar in supernatant was tested by Somogyi-Nelson method, and activity of GTF was calculated in order to analyze the influence of Ag/TiO2coating on GTF in different times.
     The activity of gingpains ecto-cellular and intra-cellular and protein level were measured and specific activity of gingpains was calculated in order to analyze the effect of Ag/TiO2coating on gingpains.
     Results
     The result showed more than80.2%of bacteria were killed within20minutes in dark circumstance which confirm fine antibacterial effect of Ag/TiO2coating. The coating could kill all the bacteria after30-60min, while TiO2coating did not exhibit antibacterial effect after240min. There were differences among the time of killing different strains.
     SEM showed the bacterial number adhered on the surface of nanometer Ag/TiO2coated bracket was obviously fewer than on the surface of metal bracket and nanometer TiO2coated bracket. There were considerable bacteria adhere to the surface of metal bracket, distributed compactly and formed multilayer pellicle. There were also massive bacteria adhere to the surface of nanometer TiO2coated bracket, in grainy structure, no multilayer pellicle was seen. There were obvious slight bacteria adhere to the surface of nanometer Ag/TiO2coated bracket, scattered distributed.
     In different times, GTF activity of metal bracket group, nanometer TiO2coated bracket group and nanometer Ag/TiO2coated bracket group descended by turns, GTF activity in nanometer Ag/TiO2coated bracket group was obviously lower than3orther groups, GTF activity in nanometer TiO2coated bracket group was lower than blank control group besides at48h, there were statistically differences among these groups. There were no statistically differences between GTF activity of metal bracket group and nanometer TiO2coated bracket group. The sequence of inhibition of nanometer Ag/TiO2coated bracket on GTF activity were:18h>24h>6h>48h. There were statistically differences between the inhibition in different times besides18h and24h.
     The specific activity of gingpains ecto-cellular and intra-cellular both had downtrend as the time lasting. The specific activity of gingpains intra-cellular was obviously bigger than ecto-cellular within10min, the difference became small after10min. The specific activity of gingpains ecto-cellular did not change much within20min, then assumed slow downtrend. The specific activity of gingpains intra-cellular descented obviously within20min, then steped down downtrend.
     Conclusion
     1. The results confirmed the outstanding antibacterial property of nanometer Ag/TiO2coated bracket in dark circumstance.
     2. Nanometer Ag/TiO2coated bracket had fine adherence resistance to common bacteria in oral cavity.
     3. The bracket could effectively restrain the activity of GTF so that it has excellent adherence resistance to S.mutans.
     4. The bracket could lead to gingpains degradation ecto-cellular and intra-cellular while killing P.gingivalis.
     Part Three
     Biocompatibility evaluation of nanometer Ag/TiO2coated bracket
     Objective
     Biocompatibility of nanometer Ag/TiO2coated bracket was examined in order to provide experimental evidence for its use in clinic.
     Methods
     TiO2and Ag/TiO2coatings were spreaded on the surface of stainless steel wafer. Add DEME to the wafers, and cocultured with L929cell. The morphous of cell were observed under inverted phase contrast microscope. Relative growth rate was calculated by MTT method and carried out toxity degree grading. The death of cell was observed under fluorescene microscope. Cell cycle was detected by flow cytometry.
     Leaching liquor was extracted from TiO2and Ag/TiO2coatings and added to fresh anticoagulation cony blood, optical density was measured and hemolysis rate was calculated.
     Lavaging mouse with leaching liquor extracted from TiO2and Ag/TiO2coatings, observing toxicity physical sign, measuring body weigh change before and after experiment, and then observe pathological change of organs heart, hepar, lien, lung and kidney.
     Sutured the wafer to the cheek pouch of inaurate hamster, observed the activity of animals and mucous membrane reaction in the contact region, then observe the full-thickness of cheek pouch under microscope, and carry out pathology reaction grading.
     Results
     There were no differences among3groups of cells under inverted phase contrast microscope and fluorescene microscope.Toxicity levels of3groups were0-1. There were no abnormality seen in cell cycle.
     Optical density in test group was obviously lower than positive control group. The hemolysis rate of TiO2group and Ag/TiO2group were0.255%and0.637%. They were both less than5%, which meaned no acute haemolysis was induced.
     There was no death in all the animals, clinical toxicity physical sign were all asymptomatic, there was no difference between test group and control group in body weigh increasing, the organs were observed under microscope and no pathological change was found.
     The animals acted and took food normally, no pathological change was observed in the contact mucous membrane of cheek pouch both in macroscopic and microscope observation.
     Conclusion
     1. Nanometer Ag/TiO2coated bracket had no toxicity for cell.
     2. No acute haemolysis was induced by nanometer Ag/TiO2coated bracket.
     3. The influence of leaching liquor extracted from Ag/TiO2coating on mouse had no difference with sodium chloride and no short-term systemic toxicity was observed.
     4. Nanometer Ag/TiO2coated bracket had no stimulation to oral mucosa of hamster, so it had fine biological properties.
     Above all, nanometer Ag/TiO2coated bracket was developed successfully, which could meet the clinical demand for it has excellent mechanical function, owns outstanding bactericidal ability and adhesion resistance, and possesses fine biocompatibility. But futher study should be carried out before it be used in orthodontic clinic.
引文
[1]Atack NE,Sandy JR,Addy M. Periedental and microbiological changes associated with the placement of orthodontic appliance:A review J Periodonto,1996,67 (2):78-85.
    [2]潘一春,张丁,傅民魁.固定矫治器粘接前后颊面菌斑pH值和变形链球菌附着的改变.口腔正畸学,2003,10(1):23-26.
    [3]高晓辉,吴晶,杨圣辉,等.不同材质托槽对菌斑附着的实验研究.首都医科大学学报,2002,23(3):256-257.
    [4]朱志祥,汪道新.纳米材料研究及发展趋势.实用美容整形外科杂志,2002,12(4):200-202.
    [5]Kim T, Lee M, Lee S, et al. Development of surface coating technology of TiO2 powder and improvement of photocatalytic activity by surface modification. Thin Solid Films,2005,47(5):171-177.
    [6]Janczyk A,Wolnicka-Glubisz A,Urbanska K,et al. Photodynamic activity of Platinum (IV) chloride surface-modified TiO2 irradiated with visible light.Free Radic Biol Med,2008,44(6):1120-1130.
    [7]李志军,王红英.纳米二氧化钛的性质及应用前景.广州化工,2006,34(1):23.
    [8]汪多仁.纳米二氧化钛光催化抗菌剂的开发与应用进展.北京日化,2007,27(2):14.
    [9]Tada H,Ishida T,Takao A,et al.Drastic enhancement of TiO2-photocatalyzed reduction of nitrobenzene by loading Ag clusters.Langmuir,2004,20(19):7898-7900.
    [10]Chan SC,Barteau MA.Preparation of highly uniform Ag/TiO2 and Au/TiO2 supported nanoparticle catalysts by photodeposition.Langmuir,2005,21(12): 5588-5595.
    [11]Hu C,Lan Y,Qu J,et al.Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria.J Phys Chem B,2006,110(9):4066-4072.
    [12]Tayade RJ,Kulkarni RG,Jasra RV.Transition metalion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water.Ind Eng Chem Res,2006,45 (15):5231-5238.
    [13]Sun L,Li J,Wang CL,et al.Ultrasound aided photochemical synthesis of Ag loaded TiO2 nanotube arrays to enhance photocatalytic activity.J Hazardous Materials, 2009,171 (1-3):1045-1050.
    [14]Alt V, Bechert T, Steinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials, 2004,25 (18):4383-4391.
    [15]Madhumathi K,Sudheesh KPT,Abhilash S,et al.Development of novel chitin/ nanosilver composite scaffolds for wound dressing applications.J Mater Sci Mater Med,2010,21(2):807-813.
    [16]Keck CM,Schwabe K. Silver-nanolipid complex for application to atopic dermatitis skin:rheological characterization, in vivo efficiency and theory of action. J Biomed Nanotechnol,2009,5(4):428-436.
    [17]Edmiston CE Jr, Markina V.Reducing the risk of infection in vascular access patients:An in vitro evaluation of an antimicrobial silver nanotechnology luer activated device.Am J Infect Control,2010,38(6):421-423.
    [18]Artun J,Brobakken B O.Prevalence of carious white spots after orthodontic treatment with mulibonded appliances. Eur J Orthod,1989,95:327-333.
    [19]胡炜,王勤,傅民魁.口腔固定矫治器应用中牙釉质脱矿的临床调查.口腔正畸学,2001,8(2):51-54.
    [20]Vinod K,Amb ili R,Davidovit ch Z,et al.Gingiva and orthodontic treatment. Seminars in Orthodontics,2007,13(4):257-271.
    [21]张扬,洪玉华,张丹.固定矫治器治疗期间牙冠表面菌斑指数调查.中国血液流变学杂志,2004,14(1):124-125.
    [22]RisticM,Vlahovic Svabic M,Sasic M,et al.Clinical and microbiological effects of fixed orthodontic appliances on periodontal tissues in adolescents.Orthod Craniofacial Res,2007,10(4):187-195.
    [23]Nancy M,Ruoqiong C,Joel D R,et al.Oral bacteria in plaque and invading buccal cells of young orthodontic patients. Am Orthod Dentofac Orthop,2006,130(6):698.
    [24]林立,罗颂椒,梁甲兴,等.正畸矫治器对牙面菌斑组成变化的影响.华西口腔医学杂志,2002,20(2):121-123.
    [25]Rosenbloom RG,Tinanoff N.Salivary streptococcus mutans levels in patients before,during and after orthodontic treatment.Am Orthod Dentofac Orthop, 1991,100:35-37.
    [26]赵弘,谢以岳,孟焕新,等.固定矫治器对错合患者牙周组织影响的研究.中华口腔医学杂志,2000,35(4):286-288.
    [27]Naranjo AA,Trivino ML,Jaramillo A,et al.Changes in the subgingival microbiota and periodontal parameters before and 3 months after bracket placement. Am J Orthod Dentofacial Orthop,2006,130(3):275.e17-22.
    [28]肖水清,张勇,宋新宇,等.正畸治疗中牙龈指数及龈沟液细菌的变化研究.口腔正畸学,2004,11(4):164-168.
    [29]陆卉,周慧敏,宋晓波,等.成人正畸患者龈下菌斑中牙龈卟啉单胞菌的变化.华西口腔医学杂志,2010,28(2):166-169.
    [30]胥保华,夏枚生,邓岳松,等.纳米技术与纳米微粒及其在生物医学领域的研究应用.生物医学工程学杂志,2004,21(2):333-336.
    [31]Schoonman J.Nanostructured material in soild state ionics.Solid State Ionics, 2000,135(1-4):5-19.
    [32]白春礼.中国纳米科技研究的现状及思考.物理,2002,31(2):65-70.
    [33]White sides M.过去与未来的纳米机器.科学(Scientific American中文版),2001,(12):62-67.
    [34]Tang YH,Sun JS,Huang YC,et al.Studies of photokilling of bacteria using titanium dioxide nanoparticles.Artif Organ,2008,32(2):167-174.
    [35]Rincn GA,Pulgarin C.Use of coaxial photocatalytic reactor(CAPHORE) in the TiO2 photo-assisted treatment of mixed E.coli and Bacillus sp.and bacterial community present in wastewater.Catalysis Today,2005,101(3-4):331-344.
    [36]Chamorn Maneerat,Yasuyoshi Hayata.Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests.Int J Food Microbiol,2006,107 (2):99-103.
    [37]张学鹏,刘奕,孙跃东.普通基托与含纳米二氧化钛基托功能矫治器对儿童龋病活性影响的比较.中国组织工程研究与临床康复,2008,12(1):141-143.
    [38]Zhang AP,Sun YP.Photocatalytic killing effect of TiO2 nanoparticles on Ls 21742 thuma colon carcinoma cells.World J Gastroenterol,2004,10(21):3191-3193.
    [39]Xiong YY,Fei XX,Xiong JW,et al. Study on preparation of visible light activated nitrogen-doped TiO2 and its photodesdrucing effect on leukemic HL60 cells in vitro raremetal.Mater Engin,2006,35(11):1735-1739..
    [40]Sathish M,Viswanathan B,Viswanath R P.Characterization and photocatalytic activity of N-doped TiO2 prepared by thermal decomposition of Ti-melamine complex.Appl Catal B:Environmental,2007,74(3-4):307-312.
    [41]Chi B,Zhao L,Jin T.One-step template-free route for synthesis of mesoporous N-doped titania spheres.J Phys Chem C,2007,111(17):6189-6193.
    [42]Yu H F. Photocatalytic abilities of gel-derived P-doped TiO2. J Phys Chem Solids, 2007,68(4):600-607.
    [43]Peng T,Daik,Y Ih,et al. Photosensitization of different ruthenium(Ⅱ) complex dyes on TiO2 for photocatalytic H2 evolution under visible-light. Chemical Physics Letters,2008,460(1/3):216-219.
    [44]Moona J, Yuna C Y,Chung KW,et al.Photocatalytic activation of TiO2 under visible light using Acid Red 44.Catalysis Today,2003,87(1/4):77-86.
    [45]Alexandrescu R,Morjan I,Scarisoreanu M,et al.Structural incestigations on TiO2 and Fe-doped TiO2 nanoparticles synthesized by laser pyrolysis. Thin Solid Films,2007,515(24):8438-8445.
    [46]Kmd H,Choid K,Kin S J,et al.The effect of phase type on photocatalytic activity in transition metal doped TiO2 nanoparticles. Catalysis Communications, 2008,9 (5):654-657.
    [47]Bessekhouad Y,Robert D,Weber J V.Bi2S3/TiO2 and Cds/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollut. Journal of photochemistry and photobiology A:chemistry,2004,163:569-580.
    [48]Donia B,Ror A, Gary L,et al.Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide.Journal of molecular catalysis A; Chemical,2002,180:193-200.
    [49]Zhang F X,Pi Y,Cui J,et al.Unexpected selective photocatalytic reduction of nitrite to nitrogen on silver-doped titanium dioxide.J Phys Chem C,2007,111 (9):3756-3761.
    [50]Andrea R M, Henrique A.J.L M, JoseR.G, et al.Deposition of TiO2 and Ag:TiO2 thin films by the polymeric precursormethod and their application in the photodegradation of textile dyes. Applied Catalysis B:Environmental, 2009,90(1/2):205-212.
    [51]Ke D, Liu H, Peng T,et al.Preparati on and photocatalytic activity of WO3/TiO2 nanocomposite particles.Materials Letters,2008,62(3):447-450.
    [52]Chong S V, Suresh N, Xia J, et al.TiO2 nanobelts/CdSSe quantum dots nanocomposite.J Phys Chem C,2007,111(28):10389-10393.
    [53]Rustogi R,Mill J,Fraser JF,et al.The use of acticoat in neonatal burns. Burns,2005,31:878-882.
    [54]Dunn K,Edwards Jones V.The role of ActicoatTM with nanocrystalline silver in the management of burns. Burns,2004,30:sl-s9.
    [55]Dibro P,Dzioba J,Gosink KK,et al.Chemiosmotic mechanism of antimicrobial activity of Ag(+) in vibvio cholerae.Antimicob Agents Chemother,2002,46: 2668-2670.
    [56]Li Wenru.Xie Xiaobao.Shi Qingshan,et al.Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.Applied Microbiology and Biotechnology,2010,85(4):1115-1122.
    [57]Kim K J.Sung W S,Suh B K,et al.Antifungal activity and mode of action of silver nano-particles on Candida albicans.Biometals.2009,22(2):235-242.
    [58]Matsumura Y,Yoshikata K,Kunisaki S,et al.Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate.Applied and Environmental Microbiology,2003,69(7):4278-4281.
    [59]Mi F I,Wu Y B,Shy S S.Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery.J BiomedMater Res,2002,59 (3):438.
    [60]谢小保,李文茹,曾海燕,等.纳米银对大肠杆菌的抗菌作用及其机制.材料工程,2008(10):106-109.
    [61]Kim J S,Kuk E,Yu K N,et al.Antimicrobial effects of silver nanoparticles. Nanomedicine:Nanotechnology,Biology,and Medicine,2007,3(1):95-101.
    [62]Pal S,Tak Y K,Joardar J,et al.Nanocrystalline silver supported on activated carbon matrix from hydrosol:antibacterial mechanism under prolonged incubation conditions.Journal of Nanoscience and Nanotechnology,2009,9(3):2092-2103.
    [63]Rivas B L,Pereira E,Maureira A.Functional water-soluble polymers:Polymer-metal ion removal and biocide properties.Polym Int,2009,58:1093-1114.
    [64]佘文君,张富强.6种纳米级载银无机抗菌剂对口腔病原菌的抗菌活性比较.上海口腔医学,2003,12(5):356-358.
    [65]Papaioannou W,Gizani S,Nassika M,et al.Adhesion of Streptococcus mutans to different types of brackets. Angle Orthodontist,2007,77(6):1090-1095.
    [66]Van Gastel J,Quirynen M,Teughels W, et al. Influence of bracket design on microbial and periodontal parameters in vivo. Journal of Clinical Periodontology, 2007,34(5):423-431.
    [67]J A Chapman,W E Roberts,G J Eckert,et al.Risk factors for incidence and severity of white spot lesions during treatment with fixed orthodontic appliances. Am Orthod Dentofac Orthop,2010,138(2):188-194.
    [68]R Alves de Souza,M B Borges de Araujo Magnani,D F Nouer,et al.Periodontal and microbiologic evaluation of 2methods of arch wire ligation:ligature wires and elastomeric rings. Am Orthod Dentofac Orthop,2008;134(4):506-512.
    [69]P E Benson,A A Shah,D T Millett,et al. Fluorides, orthodontics and deminerali-zation:asystematic review.Journal of orthodontics,2005,32(2):102-114.
    [70]P E Ellis,P E Benson.Potential hazards of orthodontic treatment-what your patient should know.Dental update,2002,29(10):492-496.
    [71]赵志雄,范新跃.正畸治疗对儿童龋病活跃性影响.延安大学学报(医学科学版),2007,5(4):49.
    [72]S M Lee, S Y Yoo, H S Kim et al. Prevalence of putative periodontopathogens in subgingival dental plaques from gingivitis lesions in Korean orthodontic patients.Journal of Microbiology,2005,43(3):260-265.
    [73]Papaioannou W,Panagopoulos A,Koletsi-Kounari H, et al. Adhesion of Porphyro-monas gingivalis and biofilm formation on different types of orthodontic brackets. Int J Dent,2012:471380.
    [74]S J Ahn,S J Lee,B S Lim,et al.Quantitative determination of adhesion patterns of cariogenic streptococci to various orthodontic brackets.Am Orthod Dentofac Orthop,2007,132(6):815-821.
    [75]赵康,苏波.正畸托槽上涂敷含氟缓释涂层以预防牙釉质脱矿的方法[P].中国专利:200510042700,2005-5-25.
    [76]余哲,白玉兴,厉松.粘贴含氟正畸托槽后菌斑和唾液中氟离子的变化.北京口腔医学,2011,19(6):332-335.
    [77]束嫘.纳米陶瓷涂层托槽的开发研制及其力学、生物学特性研究[D].西安:第四军医大学,2005.
    [78]Jing D.Zhang Y,Cuo L,et al. Study on the synthesis of Ni doped mesoporous TiO2 and its photocatalytic activity for hydrogen evolution in aqueous methanol solution.Chem Phys Lett,2005,415(123):74-78.
    [79]Senzhang,Chun-yan Liu,YunLiu,et al.Room temperature synthesis of nearly monodispe rserodlike rutile TiO2 nanoerystals.Materials Letter,2009,(63):127-129.
    [80]Huang C J.Room-temperature formation of tiantalum oxide films by liquid phase deposition.Thin Solid Films,2005,478:332-337.
    [81]Takeda S,Suzuki S,Odaka H,et al.Photoeatalytic TiO2 hin films deposited onto glass by DC magnetron sputtering.Thin Solid Film,2001,392(2):338.
    [82]C Ampelli,R Passalaequa,S Perathoner,et al. Synthesis of TiO2 thin films: relationship between preparation conditions and nanostrueture.Top Catal,2008, (50):133-144.
    [83]Keiji K,Masaaki U,Shigeyuki E.Effect of surface roughness of porcelain on adhesion of bacteria and their synthesizing glucan.Prosthet Dent,2009,83(6): 664-667.
    [84]Bulad K,Taylor R L,Verran J,et al.Colonization and penetration of denture soft lining materials by Candida albicans.Dent Mater,2004,20(2):167-175.
    [85]Buser D,Nydegger T,Oxland T,et al.Interface shear strength of titanium implants with a sandblasted and acid-etched surface:a biomechanical study in the maxilla of miniature pigs.Biomed Mater Res,1999,45:75-83.
    [86]余凤斌,陈莹.磁控溅射对薄膜附着力的影响.绝缘材料,2008,41(6):41-44.
    [87]唐伟忠.薄膜材料制备原理、技术及应用.北京:冶金工业出版社,,2003.
    [88]Djaoued Y,Robichaud J,Thibodeau M,et al.Photocatalytic properties of nanocrystalline titanium dioxide films in the degradation of domoic acid in aqueous solution:potential for use in mollusean shellfish biotoxin depuration facilities. Food Additives&Contaminants,2009,26(2):248-257.
    [89]Ulrieh Fesenhues.Calcination of metatianium acid to titanium dioxide white pigments.Chem Eng Teehnol,2001,24(7):685-694.
    [90]Jirapat A,Puangrat K,Supapan S.Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater,2009,168(1):253-261.
    [91]Xin B,Jing L,Ren Z,et al. Effects of Simultaneously Doped and Deposited Ag on the Photocatalytic Activity and Surface States of TiO2. Phys Chem B, 2005,109(7):2805-2809.
    [92]Hu C,Lan Y,Qu J,et al. Ag/AgBr/TiO2 visible light photocatalyst for destruction of azodyes and bacteria. Phys Chem B,2006,110(9):4066-4072.
    [93]Tayade R J,Kulkarni R G, Jasra R V. Transition metal ion impregnated mesoporous TiO2 for photocatalytic degradation of organic contaminants in water. Ind Eng Chem Res,2006,45 (15):5231-5238.
    [94]周学东,王志凌,张静仪,等.对氨基苯甲酸对牙龈卟啉单胞菌胰酶样蛋白酶活性的影响.中国微生态学杂志,2001,13(6):333-335.
    [95]Pengwei Huo,Yongsheng Yan,Songtian Li,et al.Preparation of polyophenylene-diamine/TiO2/fly-ash cenospheres and its photo-degradation property on antibiotics. Appl Sur Sci,2010,256(11):3380-3385.
    [96]纳米无机材料抗菌性能检测方法.北京:中国标准出版社,2008.
    [97]王潇婕,许智轩,赵彦涛等.添加纳米二氧化钛树脂基托材料抗菌性能的研究.临床口腔医学杂志,2007,23(5):270-272.
    [98]Imazato S.Antibacterial properties of resin composites and dentin bonding systems.Dent Mater,2003,19 (6):449-457.
    [99]Ohashi S,Saku S,Yamamoto K. Antibacterial activity of silver inorganic agent YDA filler. J Oral Rehabil,2004,31(4):364-367.
    [100]Brgers R,Eidt A,Frankenberger R,et al.The antiadherence activity and bactericidal effect of microparticulate silver additives in composite resin mater ials. Arch Oral Biol,2009,54(6):595-601.
    [101]郭春兰.纳米银医用抗菌敷料在预防外科手术部位切口感染中的应用.护理学报.2007,14(10):79.
    [102]胡英,张旭,王为黎,等.光触媒材料抗菌效果及其影响因素观察.中国消毒学杂志,2008,,25(1):7-9.
    [103]黄岳元,米钰,郭人民,等.TiO2/Ag纳米抗菌材料.西北大学学报(自然科学版),2003,33(5):566-568.
    [104]白石,莫安春,鲜苏琴,等.纳米抗菌复合膜的理化性能及对口腔细菌抗菌性能的实验研究.华西口腔医学杂志,2008,26(4):358-361.
    [105]MycA,VanheckeT,LandersJJ,et al. The fungicidal activity of novel nanoemulsion (X8W60PC) against clinically important yeast and filamentous fungi. Mycopathologia,2002,155(4):195-201.
    [106]Nostro A, Cannatelli MA, Crisafi G, et al. Modifications of hydrophobicity, in vitro adherence and cellular aggregation of Streptococcus mutans by Helichrysum italicum extract. Lett Appl Microbiol,2004,38(5):423-427.
    [107]Shimotoyodome A, Koudate T, Kobayashi H, et al. Antimicrob Agents Chemother,2007,51 (10):3634-3641.
    [108]Tanzer JM, Grant L, Thompson A, et al. Amylase-binding proteins A (AbpA) and B (AbpB) differentially affect colonization of rats'teeth by Streptococcus gordonii. Microbiology,2003,149 (9):2653-2660.
    [109]Quirynen M, Vogels R, Pauwels M, et al. Initial subgingival colonization of 'pristine'pockets. J Dent Res,2005,84 (4):340-344.
    [110]JohannaT, PekkaK. Adherenee of Streptococcus mutans to an E-glass fiber-reinforced composite and conventional restorative materials used in prosthetic dentistry. J Bomed Mater Res,2000,49,250.
    [111]TheodoreE, GeorgeE, WilliamA. Mierobial attachment on orthodontic early pellicle formation on braeket materials.Am J Orthod Dentofac Orthop,1995, 108:351.
    [112]Tamesada M, Kawabata S, Fujiwara T, et al. Synergistic effects of streptococcal glucosyl tansferases on adherence biofilmformation.J Dent Res,2004,83 (11): 874-879.
    [113]Yoshida A, Kuramitor HK. Streptococcus biofilm formation:utilization of a gtfB promoter-green fluorescent protein construct to monitor development. Microbiology,2002,148 (11):3385-3394.
    [114]Idone V,Brendtro S,Gillespie R,et al.Effect of an orphan response regulator on Streptococcus mutans Sucrose-Dendent adherence and cariogenesis. Infection and Immunity,2003,71(8):4351-4360.
    [115]Tsuda H, Yamashita Y, ToyushimaK, et al.Role of serotype-specific polysaccharide in the resistence of Steptococcus mutans to phagocytosis by human Polymor-pbonuclear leukocytes.Infect Immun,2000,68(2):644-650.
    [116]程睿波,陈旭,刘淑杰,等.白屈菜红碱对变形链球菌葡糖基转移酶和细胞外水不溶性多糖的影响.上海口腔医学,2007,16(3):324-327.
    [117]李淼,肖丽英,李继遥,等.常见致龋菌代谢组学鉴定的初步研究.华西口腔医学杂志,2007,25(4):342-344.
    [118]Toh EC,Dashper SG,Huq NL,et al.Porphyromonas gingivalis cysteine proteinase inhibition by kappa-easein peptides. Antimicrob Agents Chemother,2011,55 (3):1155-1161.
    [119]Nikawa H,Yamashiro H,Makihira S,et al.In vitro cariogenic potential of Candida albicans.Mycoses,2003,46(11-12):471-478.
    [120]O'Brien-Simpson NM, Veith PD, Dashper SG,et al. Porphyromonas gingivalis gingipains:the molecular teeth of a microbial vampire. Curr Protein Pept Sci, 2003,4(6):409-426.
    [121]Frazer LT, O'Brien-Simpson NM, Slakeski N,et al. Vaccination with recombinant adhesins from the RgpA-Kgp proteinase-adhesin complex protects against Porphyromonas gingivalis infection.Vaccine,2006,24(42/43):6542-6554.
    [122]Umeda JE, Missailidis C, Longo PL, et al. Adhesion and invasion to epithelial cells by fimA genotypes of Porphyromonasgingivalis. Oral Microbiol Immunol, 2006,21(6):415-419.
    [123]Takii R, Kadowaki T, Baba H, et al. A Functional virulence complex composed of gingipains, adhesins, and lipopolysaccharide shows high affinity to host cells and matrix proteins and escapes recognition by host immune systems. Infect Immun,2005,73(2):883-893.
    [124]Kadowaki K, Nakayama K, Okamoto K, et al. Porphyromonas gingivalis proteinases as virulence determinants in progression of periodontal diseases. J Biochem,2000,128(2):153-159.
    [125]Houle MA, Grenier D, Plamondon P, et al. The collagenase activity of Porphyromonas gingivalis is due to Arg-gingipain. FEMS Microbiol Lett,2003, 221(2):181-185.
    [126]Bodet C, Chandad F, Grenier D. Modulation of cytokine production by Porphyromonas gingivalis in a macrophage and epithelial cell co-culture model. Microbes Infect,2005,7(3):448-456.
    [127]Lucas D, Andre A, Lourenco M, et al. Biocompatibility Evaluation of Epiphany/ Resilon Root Canal Filling System in Subcutaneous Tissue of Rats. J Endod, 2010,36(1):110-114.
    [128]Williams DF. On the mechanisms of biocompatibility. Biomaterials.2008,29 (20):2941-2953.
    [129]YY0268-2001《牙科学用于口腔的医疗器械生物相容性临床前评价第1单元:评价与试验项目选择》.北京:中国标准出版社,2001.
    [130]Montanaro L, Campoccia D, Arciola CR. Advancements in molecular epidemiology of implant infections and future perspectives. Biomaterials.2007, 28(34):5155-5168.
    [131]Vanden Beucken JJ,Walboomers XF,Vos MR,et al.Cyto-and histocompatibility of multilayered DNA-coatings on titanium.J Biomed Mater Res A,2006,77(1): 202-211.
    [132]中国标准出版社第一编辑室编.医疗器械生物学评价标准汇编.北京:中国标准出版社,2003.
    [133]Richardson R, Miller JA, Reichera WM. Polyimides as biomaterials Preliminary biocompatibility testing. Biomaterials,1993,14(1):627.
    [134]Sujata K. Bhatia, Ann B. Yetter. Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements. Cell Biol Toxicol,2008,24:315-319.
    [135]Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods,1983, 65 (1-2):55-63.
    [136]王喜云,王远亮.生物材料的生物学评价方法研究进展.北京生物医学工程,2007,26(2):95-98.
    [137]Thonemann B, Schmalz G, Hiller KA, et al. Responses of L929 mouse fibroblasts, primary and immortalized bovine dental papilla-derived cell lines to dental resin components. Dent Mater,2002,18(4):318-323.
    [138]Jorg Weyermann, Dirk Lochmann, Andreas Zimmer. A practical note on the use of cytotoxicity assays.International Journal of Pharmaceutics,2005,288 (2,20): 369-376.
    [139]Yourtee MD, Tong PY, Rose LA, et al. Effect of spiroortho cabonate volume modifier comonomers on the in vitro toxicology of trial non-shrinking dental epoxy copolymers. Res Commun Mol Pathol Pharmacol,2009,86(3):347.
    [140]Xue Wang, Yang Xia, Laikui Liu, et al. Comparison of MTT assay, flow cytometry and RT-PCR in the evaluation of cytotoxicity of five prosthodontic materials. Journal of Biomedical materials Research B:Applied Biomaterials,2010,95(2):357-364.
    [141]Gorbet MB, Sefton MV. Biomaterial-associated thrombosis:roles of coagulation factors, complement, platelets and leukocytes. Biomaterials,2004,25(26):5681-5703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700