抗营养因子对牙鲆(Paralichthys Olivaceus)利用大豆蛋白源的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择我国典型的肉食性鱼类牙鲆(Paralichthys olivaceus)为研究对象,采用传统养殖实验、体外细胞培养和胃内灌喂三种不同的实验模式比较研究影响牙鲆利用大豆蛋白的因素,阐明水生动物不能有效利用植物性蛋白源的原因。研究内容包括:(1)大豆皂甙对牙鲆摄食、生长和组织学的影响;(2)大豆异黄酮对牙鲆摄食、生长和组织学的影响;(3)三种大豆抗营养因子对牙鲆肠上皮细胞形态、存活率、增殖、膜完整性和功能的影响;(4)等摄食条件下用豆粕替代鱼粉对牙鲆生长、饲料效率和表观消化率的影响。主要研究结果如下:
     (1)以鱼粉为主要蛋白源,鱼油为脂肪源,小麦粉为糖源,以三氧化二钇为外源性指示剂,制成4种等氮、等能(粗蛋白49.1%,总能20.1 KJ/g)的实验饲料,使饲料中大豆皂甙实际含量分别达到0 (对照组)、0.08%、0.32%和0.64%,研究不同大豆皂甙含量对牙鲆(2.58±0.01 g)摄食、生长、饲料效率、表观消化率和组织学的影响。实验在室内循环海水养殖系统中进行,每个处理设置三个重复,每天投喂2次,达饱食水平。分别在养殖实验开始、28 d和结束时对牙鲆进行称重。实验结果表明,随着饲料中大豆皂甙水平的升高,牙鲆摄食率、平均体重、鱼体粗脂肪含量和饲料粗蛋白表观消化率均显著下降(P < 0.05)。在实验前28 d,随着饲料中大豆皂甙含量的提高,牙鲆的摄食率呈线性下降趋势(r =– 0.869,P < 0.001),但试验结束时各组间摄食率相比较差异不显著(P > 0.05)。与对照组相比较,无论在28 d还是试验结束时,饲料中添加0.64%大豆皂甙都显著降低了牙鲆的平均体重(P < 0.001)。添加0.32%的大豆皂甙在28 d时的平均体重显著低于对照组(P < 0.05),但是试验结束时平均体重与对照组没有显著差异(P > 0.05)。高浓度的大豆皂甙(0.64%)还造成了牙鲆肝脏和后肠组织的病理性变化。通过分析认为,高含量的大豆皂甙显著抑制了牙鲆的摄食和生长性能,因此在以大豆制品来替代鱼粉饲喂牙鲆时不应该忽略大豆皂甙的抗营养作用。
     (2)以鱼粉为主要蛋白源,鱼油为脂肪源,小麦粉为糖源,以三氧化二钇为外源性指示剂,制成4种等氮、等能(粗蛋白49.1%,总能20.1 KJ/g)实验饲料,使饲料中大豆异黄酮实际含量分别达到0 (对照组)、0.1%、0.4%和0.8%,研究不同大豆异黄酮含量对牙鲆(2.58±0.01 g)摄食、生长、饲料效率、表观消化率和组织学的影响。实验在室内循环海水养殖系统中进行,每个处理设置三个重复,每天投喂2次,达饱食水平。实验结果表明,在饲料中添加0.1%和0.4%的大豆异黄酮对牙鲆摄食、生长、饲料效率、鱼体组成、表观消化率和组织学结构均没有显著影响(P > 0.05)。而与对照组相比较,饲料中添加0.8%大豆异黄酮显著降低了牙鲆的平均体重、鱼体的粗脂肪含量和饲料表观消化率(P < 0.05),并造成了牙鲆后肠组织的病理性变化。通过分析认为,如果饲料中大豆异黄酮的含量不超过0.4%,它对牙鲆的抗营养作用不明显。由于一般大豆制品中大豆异黄酮的含量在0.1~0.3%,因此本文建议在使用大豆制品来替代鱼粉饲喂牙鲆时可以不用考虑大豆异黄酮的抗营养作用。
     (3)通过分离和原代培养牙鲆肠道上皮细胞,并以其为细胞模型,研究大豆中三种热稳定性抗营养因子对其形态、存活率、增殖、膜完整性和功能的影响。本实验研究的三种抗营养因子为大豆皂甙、植酸和棉子糖,其在培养液中的浓度分别为2、4和8 g L~(-1)。结果表明:与其他三个处理组相比(对照、植酸和棉子糖),在培养液中添加2 g L~(-1)的大豆皂甙显著抑制牙鲆肠道上皮细胞的存活、增殖和细胞碱性磷酸酶活力(P < 0.001),并严重破坏了牙鲆肠上皮细胞细胞膜的完整性,改变了细胞的形态结构;与对照组相比,在培养液中添加4 g L~(-1)的植酸显著改变牙鲆肠上皮细胞的形态结构,并抑制细胞的存活、增殖、细胞膜完整性和细胞碱性磷酸酶活力(P < 0.05);与对照组相比,在培养液中添加8 g L~(-1)的棉子糖对牙鲆肠道上皮细胞的形态结构、存活、增殖、细胞膜完整性和细胞碱性磷酸酶活力均没有显著影响(P > 0.05)。本实验添加的浓度参考了这三种抗营养因子在一般大豆制品中的含量,也是当牙鲆摄食含有50%豆粕的饲料后它的肠上皮细胞所在环境的抗营养因子含量,比其他以细胞为研究模型的报道要高。通过分析认为,在使用大豆制品来替代鱼粉饲喂牙鲆时应重视大豆皂甙和植酸对鱼类肠道的损害作用,并设法去除,不过可以不用考虑棉子糖的抗营养作用。
     (4)以鱼粉和豆粕为蛋白源,配制了4种等氮等能的实验饲料(粗蛋白50.0%,总能20.5 KJ/g)。采用长时间胃内灌喂法(被动摄食)投喂牙鲆(60.0±0.66 g),在摄食量相同的情况下,研究以鱼粉为蛋白源的饲料中添加多种抗营养因子(0.2%大豆胰蛋白酶抑制因子、0.2%大豆皂甙、0.2%大豆异黄酮、0.4%植酸钠和0.5%棉子糖)和以45%豆粕替代鱼粉为蛋白源的饲料中添加晶体氨基酸(0.75%蛋氨酸和0.25%赖氨酸)对牙鲆生长、存活、饲料效率和表观消化率的影响。实验在室内循环海水养殖系统中进行,每桶5尾鱼,每个处理设置三个重复,每天人工灌喂饲料1次,每尾鱼1ml (干重0.54 g)。研究结果表明:采用灌喂法养殖的牙鲆生长和存活状况良好,对照组饲料效率达到1.22,且实验期间没有出现鱼体死亡现象;在摄食量相同的情况下,用豆粕替代45%的鱼粉显著降低了牙鲆的体增重、饲料效率和表观消化率(P < 0.05),且平均体增重还不到鱼粉组的一半(从15.68g到7.73g,P < 0.05);在摄食量相同的情况下,饲料中添加多种抗营养因子在实验开始的前四天显著降低了牙鲆的体增重和饲料效率(P < 0.05),但随着实验周期的延长,在饲料中添加多种抗营养因子对牙鲆的体增重、饲料效率和表观消化率均没有显著影响(P > 0.05);在摄食量相同的情况下,与豆粕组相比较,在豆粕饲料中添加蛋氨酸和赖氨酸对牙鲆的体增重、饲料效率和表观消化率均没有显著影响(P > 0.05)。通过分析认为,在用豆粕替代45%鱼粉的实验中,抗营养因子不是导致牙鲆生长下降的主要因素;在替代45%鱼粉的豆粕饲料中添加蛋氨酸和赖氨酸并不能有效改变豆粕的替代效果;由于本实验采用的是人工灌喂的投喂模式,不会存在诱食性差的因素。因此本文认为可能还存在影响牙鲆利用大豆蛋白源的其他因素,并提出了以下三个易被忽略的因素:①豆粕中存在大量不能被鱼类利用的能量物质;②大豆蛋白本身的抗营养作用;③大豆蛋白和鱼粉蛋白水解生成的小肽混合物组成不同。
Three experiment models (feeding trail, primary culture of intestinal epithelial cell in vitro and gastric infusion) were conducted to investigate the factors that influence the utilization of soybean meal by Japanese flounder (Paralichthys olivaceus). The objectives of the present study were to investigate why aquatic animal can not effectively utilize the plant protein sources, and how to increase the dosage of plant protein sources in aquatic feed by pretreatment and nutritional combination. The present studies include the following: (1) Effects of soybean saponins on feed intake, growth and histological structure of juvenile Japanese flounder; (2) Effects of soybean isoflavones on feed intake, growth and histological structure of juvenile Japanese flounder; (3) Effects of three soybean antinutritional factors on the morphology, livability, viability, membrane integrity and functions of intestinal epithelial cells of Japanese flounder; (4) Effects of fishmeal replacement by soybean meal on growth, feed efficiency ratio and apparent digestibility of Japanese flounder at equal feed intake. The results were summarized as follows:
     (1) Triplicate groups of juvenile Japanese flounder (2.58±0.01 g) were fed graded levels of soybean saponins for 56 days. The basal diet contained fish meal, fish oil and wheat flour, in which different levels of soybean saponins were added to obtain 0, 0.8, 3.2 and 6.4 g kg-1saponins (Diet 1 to 4). Feed intake, growth, feed efficiency ratio (FER), apparent digestibility and distal intestine structure were studied in fish fed different diets. Fish were weighed at day 28 and 56, and feed consumption was monitored daily. Results showed that feed intake, weight, whole-body crude lipid and apparent digestibility coefficients (ADC) of crude protein decreased significantly with increasing dietary soybean saponins levels (P < 0.05). Feed intake linearly decreased with increasing dietary saponins levels during the first four weeks (r =–0.869, P < 0.001), but no significant difference was detected among dietary treatmens at the end of the experiment (P > 0.05). Diet 4 significantly decreased the weight and FER of fish at day 28 and 56 compared to the other treatments (P < 0.05). The weight of fish fed Diet 3 was significantly depressed at day 28 but had no statistical difference at day 56 with the control diet. The integrity of histological structure of the distal intestine was gradually destroyed as soybean saponins levels increased. These results indicated that high level of dietary soybean saponins significantly depressed the feed intake and growth responses of Japanese flounder. It is suggested that the adverse effects of saponins in the soybean products can not be neglected when they were used as alternate fish feed ingredients.
     (2) Triplicate groups of juvenile Japanese flounder (2.58±0.01 g) were fed graded levels of soybean isoflavones for 56 days. The basal diet contained fish meal, fish oil and wheat flour, in which different levels of soybean isoflavones were added to obtain 0, 1.0, 4.0 and 8.0 g kg-1 isoflavones (Diet 1 to 4). Feed intake, growth, FER, apparent digestibility and distal intestine structure were studied in fish fed different diets. Results showed that 1.0 and 4.0 g kg-1 isoflavones supplementation (Diet 2 and Diet 3) did not significantly affect feed intake, weight, FER, whole-body composition and apparent digestibility coefficients (ADC) of the fish compared to the control group (P > 0.05). Diet 4 with 8.0 g kg-1 isoflavones significantly depressed the weight, FER, crude lipid content in fish body and ADC of flounder compared to the other groups (P < 0.05). The integrity of histological structure of the distal intestine was also destroyed in the fish fed Diet 4. These results indicat that soybean isoflavones are unlikely to affect fish growth performance at the level to be present in usual soybean products (1~3 g kg-1).
     (3) Intestinal epithelial cells of Japanese flounder were isolated and cultured in vitro to evaluate and compare the effects of three heat stable soybean antinutritioanl factors on its morphologic characterization, livability, viability, membrane integrity and function. Four different treatments were tested in this experiment: Control, SS (contain 2 g L~(-1)soybean saponins), SP (contain 4 g L~(-1)sodium phytate) and SR (contain 8 g L~(-1)raffinose). Results showed that soybean saponins at the concentration of 2 g L~(-1) in the culture medium significantly decreased the livability, viability and alkaline phosphatase (AKP) activity of the intestinal epithelial cells compared to the other three treatments (P < 0.001), the integrity of the membrane and cell morphology were also found severely damaged in the saponin-treated cells. Sodium phytate at the level of 4 g L~(-1) in the culture medium significantly decreased the livability, viability and AKP activity of the intestinal epithelial cells compared to the control group (P < 0.05), integrity of the cell membrane and the cell morphology were also damaged in the sodium phytate-treated cells. Raffinose at the level of 8 g L~(-1) in the culture medium did not significantly afftect the livability, viability and AKP activity of the intestinal epithelial cells compared to the control group (P > 0.05). These results indicat that the negative effects of soybean saponins and phytate in the soybean products can not be neglected when they used as alternative fish feed ingredients, while raffinose at levels to be present in fish diets containing commercially available plant-derived protein sources, are unlikely to affect fish growth performance.
     (4) Using fishmeal and soybean meal as protein sources, four isonitrogenous (crude protein 50.0%) and isocaloric (gross energy 20.5 KJ/g) semiliquid diets were formulated to meet the protein and energy requirements of Japanese flounder. The study was performed to evaluate the effect of supplementation of antinutritional factors (0.2% soybean trypsin inhibitor, 0.2% soybean saponins, 0.2% soybean isoflavones, 0.4% sodium phytate and 0.8% raffinose) and amino acids (0.75% methionine and 0.25% lysine) on growth performance and nutrient digestibility of Japanese flounder (60±0.66 g) fed diets containing either fishmeal or 45% fishmeal replacement by soybean meal as dietary protein. The fish of all treatments were force-fed by gastric tube at equal feed intake. Diet was assigned to triplicate groups of 5 fish per aquarium. Every fish were infused 1 ml semiliquid feed (0.54 g dry matter) to the stomach per day and weighed every four days. Results showed that force-feeding was a feasible method to rear flounder with high feed efficiency ratio (FER, 1.22 in control) and survival (100%). Although feed intake was equal, 45% fish meal replaced by soybean meal significantly decreased the weight gain, FER, and digestibility compared to the control treatment (P < 0.05). Supplementation with antinutritional factors significantly decreased the weight gain and FER of the fish compared to the control group only in the first four day (P < 0.05), but had no significant effect during the rest experiment period (P > 0.05). Weight gain, FER and digestibility were not affected by supplementation with amino acids compared to the soybean meal group (P > 0.05). It is suggested that there might be some other factors that restrict the utilization of soybean meal by Japanese flounder besides antinutritional factors and amino acids imbalance. The following three factors are hypothesized: some energy substances contained in soybean that can not be well utilized by fish; the negative effect of the soybean protein itself; different composition of hydrolyzed small peptides between fish meal and soybean meal.
引文
Abel, H., Becker, K., Meske, C., Friedrich, W., 1984. Possibilities of using heat-treated full-fat soybean in carp feeding. Aquaculture 42, 97–108.
    Abdel-Fattah, El-Sayed, 1999. Alternative dietary protein sources for farmed tilapia, Orecchromis spp. Aquaculture 179, 149–168.
    Alam, M.S., Teshima, S., Koshio, S., 2002a. Arginine requirement of juvenile Japanese flounder Paralichthys olivaceus estimated by growth and biochemical parameters. Aquaculture 205, 127–140.
    Alam, M.S., Teshima, S., Yaniharto, D., 2002b. Influence of different dietary amino acid patterns on growth and body composition of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 210, 359–369.
    Albrektsen, S., Mundheim, H., Aksnes, A., 2006. Growth, feed efficiency, digestibility and nutrient distribution in Atlantic cod (Gadus morhua) fed two different fish meal qualities at three dietary levels of vegetable protein sources. Aquaculture 261, 626–640.
    Amaya, E., Davis, D. A., Rouse, D.B., 2007. Alternative diets for the Pacific white shrimp Litopenaeus vannamei. Aquaculture 262, 419–425.
    Andrews, J.W., Page, J.W., 1974. Growth factors in the fish meal component of catfish diets. J. Nutr. 104, 1091–1096.
    AOAC (Associaton of Official Analytical Chemists), 1995. Official Methods of Analysis, 17th edn. AOAC International, Gaithersburg, Maryland, USA.
    Apines, M.J.S., Satoh, S., Kiron, V., Watanabe, T., Aoki, T., 2003. Availability of supplemental amino acid-chelated trace elements in diets containing tricalcium phosphate and phytate to rainbow trout, Oncorhynchus mykiss. Aquaculture 225, 431–444.
    Arndt, R.E., Hardy, R.W., Sugiur, S.H., Dong, F.M., 1999. Effects of heat treatment and substitution level on palatability and nutritional value of soy defatted flour in feeds for Coho Salmon, Oncorhynchus kisutch. Aquaculture 180, 129–145.
    Attele, A.S., Wu, J.A., Yuan, C.S., 1999. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58, 1685–1693.
    Awoniyi, C.A., Roberts, D., Veeramachaneni, D.N., Hurst, B.S., Tucker, K.E., Schlaff, W.D., 1998. Reproductive sequelae in female rats after in utero and neonatal exposure to the phytoestrogen genistein. Fertil. Steril. 70, 440–447.
    Babich, H., Borenfreund, E., 1991. Cytotoxicity and genotoxicity assays with cultured fish cells: a review. Toxic in vitro 5, 91–100.
    Bach Knudsen, K.E., 1997. Carbohydrate and lignin contents of plant materials used in animal feeding. Animal Feed Science and Technology 67, 319–338.
    Baeverfjord, G., Krogdahl, A., 1996. Development and regression of soybean meal induced enteritis in Atlantic salmon, Salmo salar L., distal intestine: a comparison with the intestines of fasted fish. J. Fish Dis. 19, 375–387.
    Bairagi, A., Ghosh, K.S., Sen, S.K., Ray, A.K., 2002. Duckweed (Lemna polyrhiza) leaf meal as a source of feedstuff in formulated diets for rohu (Labeo rohita Ham.) fingerlings after fermentation with a fish intestinal bacterium. Bioresource Technology 85, 17-24.
    Barros, M.M., Lim, C., Klesius, P.H., 2002. Effect of soybean meal replacement by cottonseed meal and iron supplementation on growth, immune response and resistance of Channel Catfish (Ictalurus puctatus) to Edwardsiella ictaluri challenge. Aquaculture 207, 263– 279.
    Barth, A., Kreutz, W., M?ntele, W., 1994. Changes of protein structure, nucleotide microenvironment, and Ca2+-binding states in the catalytic cycle of sarcoplasmic reticulum Ca2+-ATPase: investigation of nucleotide binding, phosphorylation and phosphoenzyme conversion by FTIR difference spectroscopy, Biochim. Biophys. Acta. 1194, 75–91.
    Baumann, E., Stoya, G., Volkner, A., Richter, W., Lemke, C., Linss, W., 2000. Hemolysis of human erythrocytes with saponin affects the membrane structure. Acta Histochem. 102, 21– 35.
    Bautista-Teruel, M.N., Fermin, A.C., Koshio, S.S., 2003. Diet development and evaluation for juvenile abalone, Haliotisasinina: animal and plant protein sources. Aquaculture 219, 645–653.
    Bedford, M.R., 2000. Exogenous enzymes in monogastric nutrition their current value and future benefits. Animal Feed Science and Technology 86, 1–13.
    Berhow, M.A., Wagner ,E.D., Vaughn ,S.F., Plewa, M.J., 2000. Characterization and antimutagenic activity of soybean saponins. Mutation Research 448, 11–22.
    Bingham, S.A., Atkinson, C., Liggins, J., Bluck, L., Coward, A., 1998. Phyto-oestrogens: where are we now? Br. J. Nutr. 79, 393–406.
    Biswas, A. K., Kaku. H., Ji, S.C., Seoka, M., Takii, K., 2007. Use of soybean meal and phytase for partial replacement of fish meal in the diet of red sea bream, Pagrus major. Aquaculture 267, 284–291.
    Bols, N.C., Lee, L.E.J., 1991. Technology and uses of cell cultures from the tissues and organs of bony fish. Cytotechnology 6, 163-187.
    Boonyaratpalin, M, Suraneiranat, P, Tunpibal, T., 1998. Replacement of fish meal with various types of soybean products in diets for the Asian seabass, Lates calcarifer. Aquaculture 161, 67–78.
    Booth, C., Evans, G.S., Potten, C.S., 1995a. Growth factor regulation of proliferation in primary cultures of small intestinal epithelium. In Vitro Cell Dev. Biol. Anim. 31, 234–243.
    Booth, C., Patel, S., Bennion, G.R., Potten, C.S., 1995b. The isolation and culture of adult mouse colonic epithelium. Epithelial Cell Biol. 4, 76–86.
    Boxall, A.A., Fogg, L.A., Blackwell, P.A., Kay, P., Pemberton, E.J., Croxford, A., 2004. Veterinary medicines in the environment. Rev. Environ. Contam. Toxicol. 180, 1–91.
    Boza, B., 1995. Protein enzymic protein hydrolysates: nitrogen utilization in starved rats. Nutr. 73, 65-71.
    Bureau, D.P., Harris, A.M., Cho, C.Y., 1998. The effects of purified alcohol extracts from soy products on feed intake and growth of chinook salmon (Oncorhynchus tshawytscha) and rainbow trout (Oncorhychus mykiss). Aquaculture 161, 323-345.
    Burel, C., Boujard, T., Tulli, F., Kaushik, S.J., 2000. Digestibility of extruded peas, extruded lupin, and rapeseed meal in rainbow trout (Oncorhychus mykiss) and turbot (Psetta maxima). Aquaculture 188, 285-298.
    Burrells, C., Williams, P.D., Southgate, P.J., Crampton, V.O., 1999. Immunological, physiological and pathological responses of rainbow trout (Oncorhynchus mykiss) to increasing dietary concentrations of soybean proteins. Veterinary Immunology and Immunopathology 72, 277-288.
    Buttle, L.G, Burrells, A.C, Good, J.E., Williams, P.D., Southgate, P.J., Burrells, C., 2001. The binding of soybean agglutinin (SBA) to the intestinal epithelium of Atlantic salmon, Salmo salar and Rainbow trout, Oncorhynchus mykiss, fed high levels of soybean meal. Veterinary Immunology and Immunopathology 80, 237–244.
    Caine, W.R., Verstegen, M.W.A., Sauer, W.C., Tamminga, S., Schulze, H., 1998. Short communication: Effect of protease treatment of soybean meal on content of total soluble matter and crude protein and level of soybean trypsin inhibitors. Animal Feed Science Technology 71, 177–283.
    Calabrese, E.j., Baldwin, L.A., 2003. Toxicology rethinks its central belief. Nature 421, 691–692.
    Carlson, D., Poulsen, H.D., 2003. Phytate degradation in soaked and fermented liquid feed ffect of diet, time of soaking, heat treatment, phytase activity, pH and temperature. Animal Feed Science and Technology 103, 141–154.
    Casanova, M., You, L., Gaido, K.W., Archibeque-Engle, S., Janszen, D.B., Heck, H.A., 1999.
    Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol Sci. 51, 236–244.
    Catherine, B.P., Breton, B., Bennetau, B., 2001. Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the rainbow trout Oncorhynchus mykiss. Gen Comp Endocrinol. 121, 173–187.
    Chan, P.K., 2007. Acylation with diangeloyl groups at C21–22 positions in triterpenoid saponins is essential for cytotoxcity towards tumor cells, Biochem Pharmacol 73, 341–350.
    Cheng, Z.J., Hardy, R.W., Usry, J.L., 2003. Effects of lysine supplementation in plant protein-based diets on the performance of rainbow trout (Oncorhynchus mykiss) and apparent digestibility coefficients of nutrients. Aquaculture 215, 255–265.
    Cho, C.Y., Slinger, S.J., 1979. Apparent digestibility measurement in feedstuffs for rainbow trout. In: Halver, J.H., Tiews, K. (Eds.), Finfish Nutrition and Fish feed Technology, vol. 2. Heenemann, Berlin, Germany, pp. 239–247.
    Chou, R.L., Her, B.Y., Su, M.S., Hwang, G., Wu, Y.H., Chen, H.Y., 2004. Substituting fish meal with soybean meal in diets of juvenile cobia Rachycentron canadum. Aquaculture 229, 325–333.
    Chubb, L.G., 1982. Antinutritive factors in animal feedstuff. In: Recent advances in animal nutrition. Haresign, W. (Ed.) Butterworths, London, UK, 21-37.
    Cowey, C.B., Walton, M.J., 1988. Studies on the uptake of (14C) amino acids derived from both dietary (14C) protein and dietary (14C) amino acids by rainbow trout, Salmo gairdneri. Richardson. J. Fish Biol. 33, 293–305.
    Dabrowski, K., Kozak, B., 1979. The use of fish meal and soybean meal as a protein in the diet of grass carp. Aquaculture 18, 107-114.
    Dabrowski K, Poczyczynski P, K?ck G, Berger R., 1989. Effect of partially or totally replacing fishmeal protein by soybean meal protein on growth, food utilisation and proteolytic enzyme activities in rainbow trout (Salmo gairdneri). New in vivo test for endocrine pancreatic secretion. Aquaculture 77, 29–49.
    Dakwa, S., Sakyi-Dawson, E., Diako, C., Annan, N.T., Amoa-Awua,W.K., 2005. Effect of boiling and roasting on the fermentation of soybeans into dawadawa (soy-dawadawa). International Journal of Food Microbiology 104, 69-82.
    Day, O.J., González, H.G.P., 2000. Soybean protein concentrate as a protein source for turbot Scophthalmus maximus L. Aquacult. Nutr. 6, 221–228.
    Demonty, I., Lamarche, B., Jones, P.J.H., 2003. Role of isoflavones in the hypocholesterolemic effect of soy. Nutr. Rev. 61, 189–203.
    Deng, D. F., Refstie, S., Hemre, G.-I., Crocker, C. E., Chen, H. Y., Cech, J.J., Hung, S.S.O., 2000. A new technique of feeding, repeated sampling of blood and continuous collection of urine in white sturgeon. Fish Physiology and Biochemistry 22, 191–197.
    Deng, J.M., Mai, K.S., Ai, Q.H., Zhang, W.B., Wang, X..J., Xu, W., Liufu, Z.G., 2006. Effects of replacing fish meal with soy protein concentrate on feed intake and growth of juvenile Japanese flounder, Paralichthys olivaceus. Aquaculture 258, 503–513.
    Denstadli, V., Vegusdal, A., Krogdahl, ?., Bakke-McKellep, A.M., Berge, G.M., Holm, H., Hillestad, M., Ruyter, B., 2004. Lipid absorption in different segments of the gastrointestinal tract of Atlantic salmon (Salmo salar L.). Aquaculture 240, 385–398.
    Dersjant-Li, Y., 2002. The use of soy protein in aquafeeds. In: Cruz-Suarez, L.E., Ricque-Marie, D., Tapia-Salazar, M., Gaxiola-Cortes, M.G., Simoes, N. (Eds.), Advances in Aquaculture Nutrition: Sixth International Symposium of Aquaculture Nutrition, Cancun, Quintana Roo, Mexico.
    Drew, M.D., Borgeson, T.L., Thiessen D.L., 2007. A review of processing of feed ingredients to enhance diet digestibility in finfish. Animal Feed Science and Technology 138, 118–136.
    Egounlety, M., Aworh, O.C., 2003. Effect of soaking, dehulling, cooking and fermentation with Rhizopus oligosporus on the oligosaccharides, trypsin inhibitor, phytic acid and tannins of soybean (Glycine max Merr.), cowpea (Vigna unguiculata L. Walp) and groundbean (Macrotyloma geocarpa Harms). Journal of Food Engineering 56, 249-254.
    Elangovan, A., Shim, K.F., 2000. The influence of replacing fish meal partially in the diet with soybean meal on growth and body composition of juvenile tin foil barb (Barbodes altus). Aquaculture 189, 133-144.
    Escaffre, A.M., Zambonino, I.J.L., Cahu, C.L., Mambrini, M., Bergot, P., Kaushik, S.J., 1997. Nutritional value of soy protein concentrate for larvae of common carp (Cyprinus carpio) based on growth performance and digestive enzyme activities. Aquaculture 153, 63-80.
    Evans, G.S., Flint, N., Somers, A.S., Eyden, B., Potten, C.S., 1992. The development of a method for the preparation of rat intestinal epithelial cell primary cultures. J. Cell Sci. 101 (Pt 1), 219–231.
    Fagbenro,O.A., 1999. Comparative evaluation of heat-processed Winged bean Psophocarpus tetragonolobus meals as partial replacement for fish meal in diets for the African catfish Clarias gariepinus. Aquaculture 170, 287-305.
    FAO (Food and Agriculture Organization of the United Nations), F.D., 2009. The state of world fisheries and aquaculture. Food and Agriculture Organization of the United Nations, Rome.
    Floreto, E.A.T., Bayer, R.C., Brown, P., 2000. The effects of soybean-based diets, with and without amino acid supplementation, on growth and biochemical composition of juvenile American lobster, Homarus americanus. Aquaculture 189, 211–235.
    Forster, I., Ogata, H.Y., 1998. Lysine requirement of juvenile Japanese flounder Paralichthys olivaceus and juvenile red sea bream Pagrus major. Aquaculture 161, 131–142.
    Fowler, L.G., 1980. Substitution of soybean and cottonseed products for fish meal in diets fed to Chinook and coho salmon. Prog. Fish. Cult. 42, 86-91.
    Fowler, L.G., 1991. Poultry by-product meal as a dietary protein source in fall Chinook salmon diets. Aquaculture 99, 309-321.
    Francis, G., Makkar, H.P.S., Becker, K., 2001a. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 199, 197–227.
    Francis, G., Makkar, H.P.S., Becker, K., 2001b. Effects of Quillaja saponins on growth, metabolism, egg production, and muscle cholesterol in individually reared Nile tilapia (Oreochromis niloticus). Comp. Biochem. Physiol. C 129 (2), 105–114.
    Francis, G., Makkar, H.P.S., Becker, K., 2002a. Dietary supplementation with a Quillaja saponin mixture improves growth performance and metabolic efficiency in common carp (Cyprinus carpio L.). Aquaculture 203, 311–320.
    Francis, G., Makkar, H.P.S., Becker, K., 2002b. Effects of cyclic and regular feeding of Quillaja saponin supplemented diet on growth and metabolism of common carp (Cyprinus carpio L.). Fish Physiol. Biochem. 24 (4), 343–350.
    Francis, G., Levavi-Sivan, B., Avitan, A., Becker, K., 2002c. Effects of long term feeding of Quillaja saponins on sex ratio, muscle and serum cholesterol and LH levels in Nile tilapia (Oreochromis niloticus L.). Comp. Biochem. Physiol. C 133 (4), 591–601.
    Francis, G., Kerem, Z., Makkar, H.P.S., Becker, K., 2002d. The biological action of saponins in animal systems—a review. Brit. J. Nutr. 88, 587–605.
    Furuichi, M. and Yone, Y. 1981. Change of blood sugar and plasma insulin levels of fishes in glucose tolerance test. Bull. Jap. Soc. Sci. Fish. 47: 761–764.
    Ganapathy, V., Leiback, F.H., 1985. Is intestinal transport energized by a proton gradient. Am J Physiol. 249, 153–160.
    Gallagher, M.L., 1994. The use of soybean meal as a replacement for fish meal in diets for hybrid striped bass (Moronesaxatillis×M. chrysops). Aquaculture 126, 119–127.
    Gatlin, D.M., III, Phillips, H.F., 1989. Dietary calcium, phytate and zinc interactions in channel catfish. Aquaculture 79, 259–266.
    Gdala, J., Johansen, H.N., Knudsen, K.E.B., Knap, I.H., Wagner, P., J¢rgensen, O.B., 1997. The digestibility of carbohydrates, protein and fat in the small and large intestine of piglets fed non-supplemented and enzyme supplemented diets. Anim Feed Sci Technol. 65, 15-33.
    Gibson, P.R., van de Pol, E., Maxwell, L.E., Gabriel, A., Doe, W.F., 1989. Isolation of colonic crypts that maintain structural and metabolic viability in vitro. Gastroenterology 96, 283–291.
    Glencross, B.D., Boujard, T., Kaushik, S.J., 2003. Influence of oligosaccharides on the digestibility of lupin meals when fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 219, 703–713.
    Glencross, B.D., Carter, C.G., Duijster, N., Evans, D.R., Dods, K., McCafferty, P., Hawkins, W.E., Maas, R., Sipsas, S., 2004. A comparison of the digestibility of a range of lupin and soybean protein products when fed to either Atlantic salmon (Salmo salar) or rainbow trout (Oncorhynchus mykiss). Aquaculture 237, 333-346.
    Gomes, E., Kaushik, S., 1992. Effect of the replacement of dietary inorganic zinc/methionine on vegetable and animal protein utilization by rainbow trout. In: S.J. Kaushik and P. Luquet (Editors), Fish Nutriton in Practice, Biarritiz, France, 24-27 June 1991. INRA Edition, Les Colloques, pp.897-902.
    Gomes, E.F., Rema, P., Kaushik, S.J., 1995. Replacement of fish meal by plant proteins in the diets of rainbow trout (Oncorhynchus mykiss): digestibility and growth performance. Aquaculture 130, 177-186.
    Gontzea, I, Sutzescu, P., 1968. Natural antinutritive substances in foodstuffs and forages. Institute of Medicine and Pharmacy, Bucharest.
    Gouveia, A., Davies, S.J., 2000. Inclusion of an extruded dehulled pea seed meal in diets for juvenile European sea bass (Dicentrarchus labrax). Aquaculture 182, 183-193.
    Greenman, H.S., Rutten, M.J., Fowler, W.M., Scheffler, L., Shortridge, L.A., Brown, B., Sheppard, B.C., Deveney, K.E., Deveney, C.W., Trunkey, D.D., 1998. Herbicide/Pesticide effects on intestinal epithelial growth. Environmental Research 245, 34-42
    Hansen, A.C., Rosenlund, G., Karlsen, A., Koppe, W., Hemre, G., 2007. Total replacement of fish meal with plant proteins in diets for Atlanticcod (Gadus morhua L.) I—Effects on growth and protein retention. Aquaculture 272, 599–611.
    Haard, N. F., Dimes, L. E., Arndt, R. E., Dong,F. M. , 1996. Estimation of Protein Digestibility IV. Digestive Proteinases from the Pyloric Caeca of Coho Salmon (Oncorhynchus kisutch) Fed Diets Containing Soybean Meal. Comp. Biochem. Physiol. 115B (4) 533–540.
    Hardy, R.W., Kissil, G.W.M., 1997. Trends in aquaculture feeding. Feed Mix. 1997, 5: 31–34.
    Hartmann, T., 2007. From waste products to ecochemicals: Fifty years research of plant secondary metabolism. Phytochemistry. 68, 2831–2846.
    Heikkinen, J., Vielma, J., Kemil?inen, O., Tiirola, M., Eskelinen, P., Kiuru, T., Navia-Paldanius, D., Wright, A., 2006. Effects of soybean meal based diet on growth performance, gut histopathology and intestinal microbiota of juvenile rainbow trout (Oncorhynchus mykiss). Aquaculture 261, 259–268.
    Hendriks, H.G.C.J.M., van den Ingh, T.S.G.A.M., Krogdahl, A., Olli, J., Koninkx, J.F.J.G., 1990. Binding of soybean agglutinin to small intestinal brush border membranes and bush border membrane enzyme activities in Atlantic salmon (Salmo salar). Aquaculture 91, 163–170.
    Hernández, M.D., Martínez, F.J., Jover, M., García García, B., 2007. Effects of partial replacement of fish meal by soybean meal in sharpsnout seabream (Diplodus puntazzo) diet. Aquaculture 263, 159–167.
    Higgs, D.A., Fagerlund, U.H.M., Eales, J.G., McBride, J.R., 1982. Application of thyroid and steroid hormones as anabolic agents in fish culture. Comp. Biochem. Physiol. B73, 143-176.
    Hightower, L.H., Renfro, J.L., 1988. Recent applications of fish cell culture to biomedical research. L Exp Zool, 1988, 248: 290-302.
    Higuera, M.A., Garzon, M, C., Hidalgo., 1998. Influence of temperature and dietary protein supplementation either with free or coated lysine on the fractional protein-turnover rates in the white muscle of carp. Fish Physiology and Biochemistry 18, 85-95.
    Hoffmann, E.M., Muetzel, S., Becker, K., 2003. The fermentation of soybean meal by rumen microbes in vitro reveals different kinetic features for the inactivation and the degradation of trypsin inhibitor protein. Animal Feed Science and Technology 106, 189-197.
    Hossain, M.A., Jauncey, K., 1993. The effects of varying dietary phytic acid, calcium and magnesium levels on the nutrition of common carp, Cyprinus carpio. In: Fish Nutrition in Practice. IVth International Symposium on Fish Nutrition and Feeding , (INRA ed.), INRA, Paris, France,705–715.
    Hossain, M.A., Nahar, N., Kamal, M., 1997. Nutrient digestibility coefficients of some plant and animal proteins for rohu (Labeo rohita). Aquaculture 151, 37–45.
    Hossain, M.A., Focken, U., Becker, K., 2001. Effect of soaking and soaking followed by autoclaving of Sesbania seeds on growth and feed utilisation in common carp, Cyprinus carpio L. Aquaculture 203, 133–148.
    Houdijk, J.G.M., Bosch, M.W., Verstegen, M.W.A., Berenpas, H.J., 1998. Effects of dietary oligosaccharides on the growth performance and faecal characteristics of young growing pigs. Anim Feed Sci Technol. 71, 35–48.
    Houdijk, J.G.M., Verstegen, M.W.A., Bosch, M.W., van Laere, K.J.M., 2002. Dietary fructooligosaccharides and transgalactooligosaccharides can affect fermentation characteristics in gut contents and portal plasma of growing pigs. Livestock Production Science 73, 175–184.
    Humbel, B.M., de Jong, M.D., Muller, W.H., Verkleij, A.J., 1998. Preembedding immunolabeling for electron microscopy: an evaluation of permeabilization methods and markers. Microsc. Res. Tech. 42, 43– 58.
    Hung, S.S.O. 1991. Carbohydrate utilization by white sturgeon as assessed by oral administration tests. J. Nutr. 121: 1600–1605.
    Ireland, P.A., Dziedzic, S.Z., Kearsley, M.W., 1986. Saponin content of soya and some commercial soya products by means of high performance liquid chromatography of the sapogenins. J. Sci. Food Agric. 34, 694–698.
    Jackson, A.J., Capper, B.S., Matty, A.J.,1982. Evaluation of some plant proteins in complete diets for the tilapia Sarotherodon mossambicus. Aquaculture 27, 97–109.
    Jean-Michel F., Daniel G., Gérard G., 2001. Is there avoidance of the force feeding procedure in ducks and geese? Anim. Res. 50, 157–164.
    Ji, S., Willis, G.M., Frank, G.R., Cornelius, S.G., Spurlock, M.E., 1999. Soybean isoflavones, genistein and genistin, inhibit rat myoblast proliferation, fusion and myotube protein synthesis. Nutr. 129(7), 1291-1297.
    Jiang, X.J., Zhang, Z.J., Cai, H.N., Hara, K., Su, W.J., Cao. M.J., 2006. The effect of soybean trypsin inhibitor on the degradation of myofibrillar proteins by an endogenous serine proteinase of crucian carp. Food Chemistry 94, 498–503.
    Kaeffer, B., 2002. Mammalian intestinal epithelial cells in primary culture: a mini-review. In Vitro Cell Dev. Biol. Anim. 38, 123–134.
    Kaeffer, B., Briollais, S., 1998. Primary culture of colonocytes in rotating bioreactor. In Vitro Cell Dev. Biol. Anim. 34, 622–625.
    Kaushik, S. J., Cravedi, J. P., Lalles, J. P., 1995. Partial or total replacement of fish meal by soybean protein on growth, protein utilization, potential estrogenic of antigenic effects, cholesterolemia and flesh quality in rainbow trout, Oncorhynchus mykiss. Aquaculture 133, 257–274.
    Kaushik, S.J., Covès, D., Dutto, G., Blanc, D., 2004. Almost total replacement of fish meal by plant protein sources in the diet of a marine teleost, the European seabass, Dicentrarchus labrax. Aquaculture 230, 391–404.
    Kikuchi, K., 1999. Use of defatted soybean meal as a substitute for fish meal in diets of Japaneseflounder (Paralichthys olivaceus). Aquaculture 179, 3-11.
    Kim, J.D., Kim, K.S., Song, J.S., Lee, J.Y., Jeong, K.S., 1998. Optimum level of dietary monocalcium phosphate based on growth and phosphorus excretion of mirror carp, Cyprinus carpio. Aquaculture 161, 337–344.
    Kim, J., Lall, S.P., 2000. Amino acid composition of whole body tissue of Atlantic halibut (Hippoglossus hippoglossus), yellowtail flounder (Pleuronectes ferrugineaand), Japanese flounder (Paralichthys olivaceus). Aquaculture 187, 367–373.
    Kissil, G.W., Lupatsch, I., Higgs, D.A., Hardy, R.W., 2000. Dietary substitution of soy and rapeseed protein concentrates for fish meal, and their effects on growth and nutrient utilization in gilthead seabream Sparus aurata L. Aquacult. Res. 31, 595–601.
    Knudsen, D., Uran, P., Arnous, A., Koppe, W., Frφkiaer, H., 2007. Saponin-containing subfractions of soybean molasses induce enteritis in the distal intestine of Atlantic salmon. J.Agric. Food Chem. 55, 2261–2267.
    Konjevic, G., Jurisic, V., Spuzic, I., 1997. Corrections to the original lactate dehydrogenase (LDH) release assay for the evaluation of NK cell cytotoxicity. Journal of Immunological Methods 200: 199–201
    Krogdahl, A., Lea, T.B., Olli, J.J., 1994. Soybean proteinase inhibitors affect intestinal trypsin activities and amino acid digestibilities in rainbow trout Oncorhynchus mykiss. Comp. Biochem. Physiol. 107A, 215–219.
    Krogdahl, A., Roem, A., Baeverfjord, G., 1995. Effects of soybean saponin, raffinose and soybean alcohol extract on nutrient digestibilities, growth and intestinal morphology in Atlantic salmon. In: Svennevig, N., Krogdahl, A. (Eds.), Quality in aquaculture. Proc. Intl. Conf. Aquaculture’95 and the satellite meeting Nutrition and Feeding of Cold Water Species, Trondheim, Norway, August 9–12. Eur. Aquacult. Soc. Spec. Publ. No. 23, Gent, Belgium, 118–119.
    Krogdahl, A., Bakke-McKellep, A.M., Rbed, K.H., Baeverfjord, G., 2000. Feeding atlantic salmon Salmo salar L. soybean products: effects on disease resistance (furunculosis), and lysozyme and IgM levels in the intestinal mucosa. Aquac Nutr. 6, 77-84.
    Krogdahl, A., Bakke-mckellep, A.M., Baeverfjord, G., 2003. Effects of graded levels of standard soybean meal on intestinal structure, mucosal enzyme activities, and pancreatic response in Atlantic salmon (Salmo salar L.). Aqua. Nutr. 9, 361–371.
    Kudou, S., Fleury, Y., Welti, D., Magnolato, D., Uchida, T., Kitamura, K., Okubo, K., 1991. Malonyl isoflavone glycosides in soybean seeds (Glycine max Merrill). Agric. Biol. Chem. 55, 2227–2233.
    Kurzer, M.S., Xu, X., 1997. Dietary phytoestrogens. Annu Rev Nutr. 17: 353–381.
    Lalles, J.P., Deval, E., Poneet, C., 1991. Mean retention time of dietary residues within the gastrointestinal tract of the young ruminant: a comparison of non-compartmental (algebraic) and compartmental (modelling) estimation methods. Animal feed science and technology 35(2), 139–159.
    Lanari, D., Agaro, E.D., Turri,C., 1998. Use of nonlinear regression to evaluate the effects of phytase enzyme treatment of plant protein diets for rainbow trout Oncorhynchus mykiss. Aquaculture 161, 345-356.
    Leopold, A.S., Erwin, M., Oh, J., Browning, B., 1976. Phytoestrogens: adverse effects on reproduction in California quail. Science 191, 98–100.
    Levavi-Sivan, B., Hedvat, R., Kanias, T., Francis, G., Becker, K., Kerem, Z., 2005. Exposure of tilapia pituitary cells to saponins: Insight into their mechanism of action. Comp. Biochem. Physiol. C 140, 79–86.
    Levy, J.R., Faber, K.A., Ayyash, L., Hughs, C.L., 1995. The effect of prenatal exposure to the phytoestrogen genistein on sexual differentiation in rats. Proc Soc Exp Biol Med. 208, 60-66.
    Li, D.F., et al., 1991. Interrelationship Between Hypersensitivity to Soybean Proteins and Growth Performance in Early-weaned Pigs. Anim Sci. 69(10), 4061-4069.
    Liebert, F., Portz, L., 2005. Nutrient utilization of Nile tilapia Oreochromis niloticus fed plant based low phosphorus diets supplemented with graded levels of different sources of microbial phytase. Aquaculture 248, 111-119.
    Lilleeng, E., Fr?ystad, M. K., Vekterud, K., Valen, E.C., Krogdahl, ?., 2007. Comparison of intestinal gene expression in Atlantic cod (Gadus morhua) fed standard fish meal or soybean meal by means of suppression subtractive hybridization and real-time PCR. Aquaculture 267, 269–283.
    Lim, S.J., Lee, K.J., 2008. Supplemental iron and phosphorus increase dietary inclusion of cottonseed and soybean meal in olive flounder (Paralichthys olivaceus). Aquac. Nutr. 14, 423–430.
    Lindsay, R.C., 1994. Flavour of fish. In: F.Shahidi and J.R.Botta (Editors), Seafoods Chemistry, Processing Technoogy and Quaity. Backie Academic and Professional, Glasgow, 75-84.
    Macartney, K.K., Baumgart, D.C., Carding, S.R., Brubaker, J.O., Offit, P.A., 2000. Primary murine small intestinal epithelial cells, maintained in long term culture, are susceptible to rotavirus infection. J. Virol. 74, 5597–5603.
    Mahgoub, S.E.O., Elhag, S.A., 1998. Effect of milling, soaking, malting, heat-treatment and fermentation on phytate level of four Sudanese sorghum cultivars. Food Chemistry 61, 77-80.
    Mambrini, M., Kaushik,S., 1993. Indispensible amino acid requirements of fish: correspondence between quantitative data and amino acid profiles of tissue proteins. Proc, EIFAC Workshop on Methodology for Determination of Nutrient Requirement in Fish, D-8031Eichenau, Germany 11.
    Mambrini, M., Roem, A.J., Cravedi, J.P., Lalles, J.P., Kaushik, S.J., 1999. Effects of replacing fishmeal with soy protein concentrate and of DL-methionine supplementation in high-energy, extruded diets on the growth and nutrient utilization of rainbow trout, Oncorhynchus mykiss. J. Anim. Sci. 77, 2990–2999.
    McGoogan, B.B., Gatlin, D.M., 1997. III. Effects replacing fish meal with soybean meal in diets for red drum Sciaenops ocellatus and potential for palatability enhancement. J. World Aquacult. Soc. 28, 374–385.
    Médale, F., Boujard, T., Vallée, F., Blanc, D., Mambrini, M., Roem, A., Kaushik, S., 1998. Voluntary feed intake, nitrogen and phosphorus losses in rainbow trout Oncorhynchus mykiss fed increasing dietary levels of soy protein concentrate. Aquat. Living Resour. 11, 239–246.
    Mikkelsen, L.L., Jakobsen, M., Jensen, B.B., 2003. Effects of dietary oligosaccharides on microbial diversity and fructo-oligosaccharide degrading bacteria in faeces of piglets post-weaning. Anim Feed Sci Technol. 109, 133–150.
    Mohsen, A.A., Lovell, R.T., 1990. Partial substitution of soybean meal with animal protein sources in diets for channel catfish. Aquaculture 90, 303–311.
    Morales, A.E., Cardenete, G., Higuera, D.L., San, A., 1994. Effects of dietary protein source on growth, feed conversion and energy utilization in rainbow trout, Oncoyhynchus mykiss. Aquaculture 124,117-126.
    Morz, Z., Krasuki, W., Grela, E., 1995. Physiological responses of lactating sows to feeding rapeseed ‘00’and microbial phytase. In: Manipulating Pig Production (Hennessy D P, Cranwell P D eds.) Werribee, Australasian Pig Science Association 5, 185.
    Mosmanan, T., 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J. Immunol. Meth. 1/2 55-63
    Mukhopadhyay, N., Ray, A.K., 1999. Effect of fermentation on the nutritive value of sesame seed meal in the diets for rohu, Labeo rohita (Hamilton), fingerlings. Aquac Nutr. 5, 229-236.
    Mulimani, V.H., Thippeswamy, S., Ramalingam, 1997. Enzymatic degradation of oligosaccharides insoybean flours. Food Chemistry 59, 279-282.
    Murai, T., Ogata, H., Kosutarak, P., et al., 1986. Effects of amino acid supplementation and methanol treatment on utilization of soy flour by fingerling carp. Aquaculture 56, 97–206.
    Murai, T., Ogata, H., Hirasawa, Y., Akiyama, T. and Nose, T. 1987. Portal absorption and hepatic uptake of amino acids in rainbow trout force-fed complete diets containing casein or crystalline amino acids. Nipp. Suis. Gakkaishi 53: 1847–1857.
    National Research Council (NRC)., 1993. Nutrient Requirements of Fish. National Academy Press, Washington, DC. 1993.
    Newbold, R.R., Banks, E.P., Bullock, B., Jefferson, W.N., 2001. Uterine adenocarcinoma in mice treated neonatally with genistein. Cancer Res. 61(11), 4325-4328.
    Ng, W.K., Hung, S.S.O. and Herold, M.A. 1996. Poor utilization of dietary free amino acids by white sturgeon. Fish Physiol. Biochem. 15: 131–142.
    Norton, G., 1991. Proteinase inhibitors. In: D’Mello, F.J.P., Duffus, C.M., Duffus, J.H. Eds., Toxic Substances in Crop Plants. The Royal Society of Chemistry, Thomas Graham House, Science Park, Cambridge CB4 4WF, Cambridge 68–106.
    Odunfa, S.A., 1985. Biochemical changes in fermenting African locust bean (Parkia biglobosa) during 'iru' fermentation. Food Technol 20, 295-303.
    Oleszek, W.A., 2002. Chromatographic determination of plant saponins. J. Chromatogr. A 967, 147– 162.
    Oliva-Teles, A., Pereira, J., Gouveia, A., Gomes, E., 1998. Utilisation of diets supplemented with microbial phytase by seabass (Dicentrarchus labrax) juveniles. Aquat Living Resow 11, 255-259.
    Olli, J.J., Hjelmeland, K., Krogdahl, ?., 1994. Soybean trypsin inhibitors in diets for Atlantic salmon Salmo. salar, L: effects on nutrient digestibilities and trypsin in pyloric caeca homogenate and intestinal content. Comp. Biochem. Physiol. 109A, 923–928.
    Olli, J.J., Krogdahl, ?., 1995. Alcohol soluble components of soybeans seem to reduce fat digestibility in fish meal based diets for Atlantic salmon, Salmo salar L. Aquac. Res. 26, 831–835.
    Olsen, R.E., Hansen, A.C., Rosenlund, G., Hemre, G.I., Mayhew, T.M., Knudsen, D.L., Eroldo?an, O.T., Myklebust, R., Karlsen, ?., 2007. Total replacement of fish meal with plant proteins in diets Atlantic cod (Gadus morhua L.) II—Health aspects. Aquaculture 272, 612–624.
    Omafuvbe, B.O., Shonukan, O.O., Abiose, S.H., 2000. Microbiological and biochemical changes in the traditional fermentation of soybeans for soy-daddawat - Nigerian food condiment. FoodMicrobiol 17, 469-474.
    Opstvedt, J., Aksnes, A., Hope, B., 2003. Efficiency of feed utilization in Atlantic salmon (Salmo salar L.) fed diets with increasing substitution of fish meal with vegetable proteins. Aquaculture 221, 365–379.
    Panja, A., 2000. A novel method for the establishment of a pure population of nontransformed human intestinal primary epithelial cell (HIPEC) lines in long term culture. Lab. Invest. 80, 1473–1475.
    Parsons, C.M., Yhang, Y., Araba, M., 2000. Nutritional evaluation of soybean meals varying in oligosaccharide content. Poult Sci. 79, 1127–1131.
    Pelissero, C., Le, Menn, F., Kaushik, S., 1991. Estrogenic effect of dietary soybean meal on vitellogenesis in cultured Siberian sturgeon Acipenser baeri. Gen Comp Endocrinol. 83, 447–457.
    Pereira, O., Rosa, E., Pires, M.A., Fontainhas-Fernandes,A., 2002. Brassica by-products in diets of rainbow trout (Oncorhynchus mykiss) and their effects on performance, body composition, thyroid status and liver histology. Animal Feed Science and Technology 101, 171-182.
    Peres H, Lim C, Klesius P H., 2003. Nutritional value of heat-treated soybean meal for channel catfish (Ictalurus punctatus). Aquaculture 225, 67–82.
    Perreault, N., Beaulieu, J.F., 1998. Primary cultures of fully differentiated and pure human intestinal epithelial cells. Exp. Cell. Res. 245, 34–42.
    Perreault, N., Jean-Francois, B., 1996. Use of the dissociating enzyme thermolysin to generate viable human normal intestinal epithelial cell cultures. Exp. Cell. Res. 224, 354–364.
    Pham, M.A., Lee, K.J., Dang, T.M., Lim, S.J., Ko, G.Y., Eo, J., Oh, D.H., 2008. Improved apparent digestibility coefficient of protein and phosphorus by supplementation of microbial phytase in diets containing cottonseed and soybean meal for juvenile olive flounder (Paralichthys olivaceus). Asian-Australas. J. Anim. Sci. 21, 1367–1375.
    Pongmaneerat, J., Watanabe, T., 1992. Utilization of soybean meal as protein source in diets for rainbow trout. Nippon Suisan Gakkaishi 58, 1983-1990.
    Price, K.R., Fenwick, G.R., 1984. Soyasaponin I, a compound possessing undesirable taste characteristics isolated from the dried pea (Pisum sativum L.). J. Sci. Food Agric. 35, 887–892.
    Refstie, S., Storebakken, T., Roem, A.J., 1998. Feed consumption and conversion in Altantic salmon (Salmo salar) fed diets with fish meal, extracted soybean meal or soybean meal with reduced content of oligosaccharides, trypsin inhibitors, lectins and soya antigenes. Aquaculture 162, 301-312.
    Refstie, S., Svihus, B., Shearer, K., Storebakken, T., 1999. Nutrient digestibility in Atlantic salmon and broiler chickens related to viscosity and non–starch polysaccharide content in different soyabean products. Anim. Feed Sci. Tech. 79, 331–345.
    Refstie, S., Kors?en, ?. J., Storebakken, T., Baeverfjord, G., Lein, I., Roem, A.J., 2000. Differing nutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190, 49–63.
    Refstie, S., Storebakken, T., Baeverfjord, G., Roem, A.J., 2001. Long-term protein and lipid growth of Atlantic salmon (Salmo salar) fed diets with partial replacement of fish meal by soy protein products at medium or high lipid level. Aquaculture 193, 91-106.
    Refstie, S., Kors?en, ?. J., Storebakken, T., Baeverfjord, G., Lein, I., Roem, A.J.,2004. Differingnutritional responses to dietary soybean meal in rainbow trout (Oncorhynchus mykiss) and Atlantic salmon (Salmo salar). Aquaculture 190, 49–63.
    Refstie, S., Sahlstrom,S., Brathen, E., Baeverfjorda, G., Krogedal, P., 2005. Lactic acid fermentation eliminates indigestible carbohydrates and antinutritional factors in soybean meal for Atlantic salmon (Salmo salar). Aquaculture 246, 331-345.
    Refstie, S., Glencross, B., Landsverk, T., S?rensen, M., Lilleeng, E., Hawkins, W., Krogdahl, A., 2006. Digestive function and intestinal integrity in Atlantic salmon (Salmo salar) fed kernel meals and protein concentrates made from yellow or narrow-leafed lupins. Aquaculture 261, 1382–1395.
    Regost, C., Arzel, J., Kaushik, S.J., 1999. Partial or total replacement of fish meal by corn gluten meal in diets for turbot (Psetta maxima). Aquaculture 180, 99-117.
    Rerat, A., et al., 1992. Splanehnic flues of amino acid after duodenal infusion of carbohydrate solutions containing free amino acids or oligopeptides in the nananaesthetized pig. Brit J Nutr. 68, 111~138
    Richardson, N.L., Higgs, D.A., Beames, R.M., 1985. Influence of dietary calcium, phosphorus, zinc and sodium phytate level on cataract incidence, growth and histopathology in juvenile chinook salmon (Oncorhynchus tshawytscha). Nutr. 115, 553–567.
    Riche, M., Brown, P.B., 1996. Availability of phosphorus from feedstuffs fed to rainbow trout, Oncorhynchus mykiss. Aquaculture 142, 269-282.
    Richter, N., Siddhuraju, P., Becker, K., 2003. Evaluation of nutritional quality of moringa (Moringa oleifera Lam.) leaves as an alternative protein source for Nile tilapia (Oreochromis niloticus L.). Aquaculture 217, 599-611.
    Ringφ, E., Sperstad, S., Myklebust, R., Refstie, St?le., Krogdahl, A., 2006. Characterisation of the microbiota associated with intestine of Atlantic cod (Gadus morhua L.) The effect of fish meal, standard soybean meal and a bioprocessed soybean meal. Aquaculture 261, 829–841.
    Robinson, E.H., Li, M.H., 1994. Use of plant proteins in catfish feeds: replacement of soybean meal with cottonseed meal and replacement of fish meal with soybean meal and cottonseed meal. J. World Aquaculture Soc. 25, 271–276.
    Rumsey, G.L., Hughes, S.G., Winfree, R.A., 1993. Chemical and nutritional evaluation of soy protein preparations as primary nitrogen sources of rainbow trout Oncorhynchus mykiss. Anim. Feed Sci. Technol. 40, 135–151.
    Rumsey, G.L., Siwicki, A.K., Anderson, D.P., Bowser, P.R., 1994. Effect of soybean protein on serological response, non–specific defence mechanisms, growth, and protein utilization in rainbow trout. Vet. Immunol. Immunopathol. 41, 323–339.
    Rust, M.B., Hardy, R.W., Stickney, R.R., 1993. A new method for force-feeding larval fish. Aquaculture 116, 341–352.
    Sajjadi, M., Carter, C.G., 2004. Dietary phytase supplementation and the utilization of phosphorus by Atlantic salmon (Salmo salar L.) fed a canola-meal-based diet. Aquacul Nutr. 240, 417–431.
    Sanderson, H., Johnson, D.J., Wilson, C.J., Brain, R.A., Solomon, K.R., 2003. Probabilistic hazard assessment of environmentally occurring pharmaceuticals toxicity to fish, daphnids and algae by ECOSAR screening. Toxicol. Lett. 144, 383–395.
    Santell, R.C., Chang, Y.C., Nair, M.G., Helferich, W.G., 1997. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland, and the hypothalamicypituitary axis in rats. Nutr. 127, 263–269.
    Satoh, S., Poe, W.E., Wilson, R.P., 1989. Effect of supplemental phytate and/or tricalcium phosphate on weight gain, feed efficiency and zinc content in vertebrae of channel catfish. Aquaculture 80, 155–161.
    Satoh, S., Hernandez, A., Tokoro, T., Morishita, Y., Kiron, V., Watanabe, T., 2003. Comparison of phosphorus retention efficiency between rainbow trout (Oncorhynchus mykiss) fed a commercial diet and a low fish meal based diet. Aquaculture 224, 271-282.
    Schuhmacher, A., Wax, C. and Gropp, J.M. 1997. Plasma amino acids in rainbow trout (Oncorhynchus mykiss) fed intact protein or a crystalline amino acid diet. Aquaculture 151, 15–28.
    Setchell, K.D.R., 1998. Phytoestrogens: the biochemistry, physiology and implications for human health of soy isoflavones. Am. J. Clin Nutr. 68, 1333–1346.
    Sheng, H.Q., He, X.Q., 1994. Effects of dietary animal and plant protein ratios and energy on growth and body composition of bream (Megalobrama skolkovii Dybowski). Aquaculture 127, 189–196.
    Shimeno, S., Hosokawa, H., Yamane, R., Masumoto, T., Ueno, S., 1992. Change in nutrition value of defatted soybean meal with duration of heating time for young yellowtail. Nippon Suisan Gakkaishi 58, 1351–1359.
    Shimoyamada, M., Ikedo, S., Ootsubo, R., Watanabe, K., 1998. Effects of soybean saponins on chymotryptic hydrolyses of soybean proteins. J. Agric. Food Chem. 46, 4793–4797.
    Silva, L.G.d., Trugo, L.C., Costa Terzi, S.d., Couri, S., 2005. Low phytate lupin flour based biomass obtained by fermentation with a mutant of Aspergillus niger. Process Biochemistry 40, 951-954.
    Singh, K., Garg, S.K., Kalla, A., Bhatnagar, A., 2003. Oilcakes as protein sources in supplementary diets for the growth of Cirrhinus mrigala (Ham.) fingerlings: laboratory and field studies. Bioresource Technology 86, 283-291.
    Sissons, J.W., Effects of soyabean products on digestive processes in the gastro intestinal tract of preruminant calves. Proceedings of the Nutrition Society 41, 53-61.
    Skrede, G., Stroebakken, T., Skrede, A., Sahlstrom, S., Sorensen, M., Shearer, K.D., Slinde, E., 2002. Lactic acid fermentation of wheat and barley whole meal flours improves digestibility of nutrients and energy in Atlantic salmon (Salmo salar L.) diets. Aquaculture 210, 305-321.
    Smiricky-Tjardes, M.R, Grieshop, C.M., Albin, D.M., Wubben, J.E., Gabert, V.M., Fahey, J.G.C., 2002. The influence of soy oligosaccharides on apparent and true ileal amino acid digestibilities and fecal consistency in growing pigs. Anim Sci. 80, 2433–2441.
    Smiricky-Tjardes, M.R., Grieshop, C.M., Flickinger, E.A., Bauer, L.L., Fahey, J.G.C., 2003. Dietary galactooligosaccharides affect ileal and total-tract nutrient digestibility, ileal and fecal bacterial concentrations, and ileal fermentative characteristics of growing pigs. Anim Sc. 81, 2535–2545.
    Sparg S.G., Light M.E., van, S.J., 2004. Biological activities and distribution of plant saponins. J. Ethnopharmacol 94, 219–43.
    Spinelli, J., Houle, C.R., Wekell, J.C., 1983. The effect of phytates on the growth of rainbow trout (Salmo gairdneri) fed purified diets containing varying quantities of calcium and magnesium. Aquaculture 30, 71–83.
    Storebakken, T., 1985. Binders in fish feeds: I. Effect of alginate and guar gum on growth, digestibility, feed intake and passage through the gastrointestinal tract of rainbow trout. Aquaculture 47, 11–26.
    Storebakken, T., Austreng, E., 1987. Binders in fish feeds: II. Effect of different alginates on the digestibility of macronutrients in rainbow trout. Aquaculture 60, 121–131.
    Storebakken, T., Kvien, I.S., Shearer, K.D., Grisdale-Helland, B., Helland, S.J., Berge, G.M., 1998. The apparent digestibility of diets containing fish meal, soybean meal or bacterial meal fed to Atlantic salmon (Salmo salar): evaluation of different faecal collection methods. Aquaculture 169, 195–210.
    Storebakken, T., Kvien, I. S., Shearer, K. D., Grisdale-Helland, B., Helland, S. J., 1999. Estimation of gastrointestinal evacuation rate in Atlantic salmon (Salmo salar) using inert markers and collection of faeces by sieving: evacuation of diets with fish meal, soybean meal or bacterial meal. Aquaculture 172, 291-299.
    Sugiura, S.H., Dong, F.M., Rathbone, C.K., Hardy, R.W., 1998. Apparent protein digestibility and mineral availabilities in various feed ingredients for salmonid feeds. Aquaculture 159, 177–202.
    Sugiura, S.H., Raboy, V., Young, K.A., Dong, F.M., Hardy, R.W., 1999. Availability of phosphorus and trace elements in low-phytate varieties of barley and corn for rainbow trout (Oncorhynchus mykiss). Aquaculture 170, 285–296.
    Sung, M.K., Kendall, C.W.C., Rao, A.V., 1995. Effect of Soybean Saponins and Gypsophila Saponin on Morphology of Colon Carcinoma Cells in Culture. Fd Chem. Toxic. 55(5), 357-366.
    Synder, H.E., Kwon, T.W., 1987. Soybean Utilization. Van Nostrand Reinhold, New York. Tarade, K.M., Singhal, R.S., Jayram, R.V., Pandit, A.B., 2006. Kinetics of degradation of saponins in soybean flour (Glycine max.) during food processing. J. Food Eng. 76, 440–445.
    Tacon, A.G.J., 1998. Global trends in aquaculture production with particular reference to low income food deficit countries. FAO Technical Paper, 1998, 12. Rome, Italy.
    Twibell, R.G., Wilson, R.P., 2004. Preliminary evidence that cholesterol improves growth and feed intake of soybean meal-based diets in aquaria studies with juvenile channel catfish, Ictalurus punctatus. Aquaculture 236, 539-546.
    Wadstrom, T., 1988. Adherence traits and mechanisms of microbial adhesion in the gut. Bailliers Clinical Tropical Medicine and Communicable Disease 3, 417-433.
    Watanabe, T., Viyakarn, K.H., 1992. Utilization of soybean meal as a protein source in a newly developed soft-dry pellet for yellowtail. Nippon Suisan Gakkaishi 58, 1761–1773.
    Waterlow, J.C., Golden, M.H.N., Garlick, P.J., 1978. Protein turnover in man measured with15N: compaison of end products and close regions. Am. J. Physiol. 235 E, 165-174.
    Webb, K.E., 1990. Intestinal absorption of protein hydrolysis products: A review. J. Anim. Sci. 68, 3011–3022.
    Webb, K.E., Mattthews, J.C., Dirienzo, D.B., 1992. Peptide absoprtion: A review of concepts and future perspectives. J. Anim. Sci. 70(3), 248–257.
    Webster, C.D., Tidwell, J.H., Tiu, L.S., Yancey, D.H., 1995. Use of soybean meal as partial or total substitute of fish meal in diets for blue catfish (Ictalurus furcatus). Aquat. Living Resour. 8, 379–384.
    Wee, K.L., Shu, S-W., 1989. The nutritive value of boiled full-fat soybean in pelleted feed for Nile tilapia. Aquaculture 81, 303–314.
    Weisburger, J.H., Dolan, L., Pittman, B., 1998. Inhibition of PhIP mutagenicity by caffeine, lycopene, daidzein and genistein. Mutation Research 416, 125–128.
    Weiser, M.M., 1973. Intestinal epithelial cell surface membrane glycoprotein synthesis–an indicator of cellular differentiation. Journal of Biological Chemistry 248, 2536–2541.
    Whitehead, R.H., Demmler, K., Rockman, S.P.,Watson, N.K., 1999. Clonogenic growth of epithelial cells from normal colonic mucosa from both mice and humans. Gastroenterology 117, 858–865.
    Wilson, R.P., Poe, W.E., 1985. Relationship of whole body and egg essential amino acid patterns to amino acid requirement patterns in channel catfish, Ictalures punctatus. Comp. Biochem. Physiol. 80B, 385-388.
    Wilson, R.P. and Poe, W.E. 1987. Apparent inability of channel catfish to utilize dietary mono- and disaccharides as energy sources. J. Nutr. 117: 280–285.
    Upreti, R.K., Kannan, A., Pant, A.B., 2007. Experimental exposure of arsenic in cultured rat intestinal epithelial cells and cell line: Toxicological consequences. Toxicology in Vitro 21, 32–40.
    Van den Ingh, T.S.G.A.M., Krogdahl, A., Olli, J.J., Hendriks, H.G.C.J.M., Koninkx, J.G.J.F., 1991. Effects of soybean-containing diets on the proximal and distal intestine in Atlantic salmon Salmo salar: a morphological study. Aquaculture 94, 297–305.
    Van den Ingh, T.S.G.A.M., Olli, J.J., Krogdahl, A., 1996. Alcoholsoluble components in soybeans cause morphological changes in the distal intestine of Atlantic salmon, Salmo salar L. J. Fish Dis. 19, 47–53.
    Van den Ingh., T.S.G.A.M., Olli, J., Krogdahl, A., 1997. Alcohol-soluble components in soybeans cause morphogical study. Aquaculture 94, 297-305.
    Vidrich, A., Ravindranath, R., Farsi, K., Targan, S., 1988. Amethod for the rapid establishment of normal adult mammalian colonic epithelial cell cultures. In Vitro Cell. Dev. Biol. 24, 188–194.
    Vielma, J., Maekinen, T., Ekholm, P., Koskela, J., 2000. Influence of dietary soy and phytase levels on performance and body composition of large rainbow trout Oncorhynchus mykiss and algal availability of phosphorus load. Aquaculture 183, 349–362.
    Vielma, J., Ruohonen, K., Peisker, M., 2002. Dephytinization of two soy proteins increases phosphorus and protein utilization by rainbow trout, Oncorhynchus mykiss. Aquaculture 204, 145-156.
    Vincken, J., Heng, L., Groot , A., Gruppen, H., 2007. Saponins, classification and occurrence in the plant kingdom. Phytochemistry 68, 275–297.
    Viola, S., Mokady, S., Arieli, Y., 1983. Effects of soybean processing methods on the growth of carp (Cyprinus carpio). Aquaculture 32, 27–38.
    Viyakarn, V., Watanabe, T., Aoki, H., Tsuda, H., Sakamoto, H., Okamoto, N., Iso, N., Satoh, S., Takeuchi, T., 1992. Use of soybean meal as a substitute for fish meal in a newly developed soft-dry pellet for yellow tail. Nippon Suisan Gakkaishi. 58 1991-2000.
    Xie, S., Jokumsen, A., 1998. Effects of dietary incorporation of potato protein concentrate and supplementation of methionine on growth and feed utilization of rainbow trout. Aquacult. Nutr. 4, 183–186.
    Yamada, S., Simpson, K.L., Tanaka, Y., 1981. Plasma amino acid changes in rainbow trout, Salmo gairdneri, forced-fed casein and a corresponding amino acid mixture. Bull Jap Soc Sci Fish. 47, 1035–1040.
    Zarate, D.D., Lovell, R.T., 1997. Free lysine (L-lysine HCl) is utilized for growth less efficiently than protein-bound lysine (soybean meal) in practical diets by young channel catfish (Ictalurus punctatus). Aquaculture 159, 87–100.
    Zhang, L.L., Khan, I.A., Foran, C.M., 2002. Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes) . Comparative Biochemistry and Physiology Part C 132, 203–211.
    艾庆辉,谢小军.南方鲇的营养学研究:饲料中大豆蛋白水平对摄食率和消化率的影响.水生生物学报, 2002, 26(3): 215-220.
    艾庆辉,谢小军.南方鲇的营养学研究:饲料中大豆蛋白水平对生长的影响.水生生物学报,2002, 26(1): 57-65.
    艾庆辉,谢小军.水生动物对植物蛋白源利用的研究进展.中国海洋大学学报,2005, 35(6): 929–935.
    蔡英华.几种大豆抗营养因子牙鲆生长和消化生理的影响:[硕士学位论文].中国海洋大学, 2006.
    陈晓亚.植物次生代谢研究.世界科技研究与发展, 2006(10), 1-4.
    陈京华.微生物发酵、外源酶制剂和促摄食物质对牙鲆利用豆粕的影响:[博士学位论文].中国海洋大学, 2006.
    邓君明.动植物蛋白源对牙鲆摄食、生长和蛋白质及脂肪代谢的影响:[博士学位论文].中国海洋大学, 2006.
    刁恩杰,丁晓雯.大豆抗营养因子的研究概况.粮油加工与食品机械, 2003, 8: 40-42.
    高菊芳,陶黎明.抗营养性植物次级代谢产物的潜在治疗性应用.世界农药, 2004, 26: 1-13.
    郭林英.大豆β-伴球蛋白提取物对鲤鱼肠上皮细胞增殖及其功能的影响:[硕士学位论文].四川农业大学, 2006.
    韩建林.饲料中抗营养因子的分类作用机理及应用措施.当代畜牧, 1999, (2): 1-2.
    黄鹤忠,丁磊,宋学宏,王永玲,杨彩根.青鱼和草鱼葡萄糖耐量的比较研究.中国水产科学, 2005, 12 (4): 498-500.
    江兴龙,关瑞章,刘爱原.论我国水产养殖业的发展方向.中国水产, 2008, 1: 19-20.
    刘芳宁,张彦明.哺乳动物肠上皮细胞的原代培养.动物医学进展, 2007, 28(4): 53-57.
    林浩然.鱼类生理学.广东高等教育出版社, 1999.
    林晓明,李勇.高级营养学.北京大学医学出版社, 2004.
    聂国兴,李春喜.鱼用谷物饲料中抗营养因子及其降解方法.水利渔业,2000, 20(6): 9~10.
    王吉桥,包鹏云,李文宽.鱼饲料中植物原料抗营养因子的研究.大连水产学院学报, 2004, 19: 208-217.
    汪儆.饲料酶制剂应用和饲料抗营养因子.河南畜牧兽医, 1998, 19(3): 39-42.
    杨薇.大豆植物性雌激素的构效关系及药理作用.中国新药杂志, 2001, 10(12): 892.
    于守洋.中国保健食品的进展.北京:人民卫生出版社, 2001.
    张荣庆,韩正康,陈杰,张崇理.大豆黄酮促进妊娠大鼠乳腺发育和泌乳的实验研究.动物学报, 1995, 41(4), 414-419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700