基于生化策略与组学技术的维生素C生产菌株间生理关系解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以能在胞外大量积累2-酮基-L-古龙酸(2-KLG)的工业生产菌株酮古龙酸菌(Ketogulonicigenium vulgare)和巨大芽胞杆菌(Bacillus megaterium)组成的混菌体系为研究对象,在充分理解B. megaterium在维生素C混菌发酵体系中重要生理作用的基础上,借助两菌全基因组测序和蛋白质组学解析方法,就混菌发酵培养中B. megaterium如何促进K. vulgare生长和2-KLG高效合成的生理机制开展研究。主要研究结果如下:
     1.采用可定向破坏细胞壁中N-乙酰胞壁酸和N-乙酰氨基葡糖之间β-1,4糖苷键的溶菌酶以研究混菌发酵体系中调控B. megaterium生长状态对K. vulgare生长和2-KLG合成的影响。添加溶菌酶显著降低了B. megaterium的细胞存活率,但不影响K. vulgare细胞的正常生长。在B. megaterium对数末期(12 h)添加10,000 U/mL溶菌酶导致B. megaterium迅速裂解快速释放胞内活性物质,显著促进了K. vulgare生长。与对照组相比,K. vulgare最大细胞浓度和2-KLG生产强度分别提高了27.4%和28.2%,发酵周期缩短12 h;
     2.利用Sanger shotgun法与454高通量基因组测序(GS FLX Titanium System)相结合的测序策略,对K. vulgare WSH-001进行全基因组测序。K. vulgare WSH-001基因组全长为3.28 Mb (染色体+质粒),包括一条长度为2,766,400 bp的染色体和长度分别为267,986 bp和242,715 bp的两个质粒。进化关系分析表明,K. vulgare WSH-001比其亲缘关系最相近的P. denitrificans PD1222和R. sphaeroides KD131均少了一个1 Mb以上的小染色体,推测K. vulgare单菌生长较弱的原因在于其与伴生菌B. megaterium长期共存过程中进行了基因组缩减,丢掉了其单独生长所必需的部分基因,导致其DNA复制系统、氨基酸代谢系统、能量代谢系统、辅因子代谢系统等大量相关基因在基因组中未找到。基因组信息显示,K. vulgare WSH-001基因组中含有从D-山梨醇到2-KLG转化所需要的全部蛋白所需的基因;
     3.混菌培养过程中,K. vulgare细胞生长和2-KLG合成强烈依赖于B. megaterium。对B. megaterium WSH-002进行全基因组测序,得到由一条长度为4,047,912 bp的染色体和长度分别为74,613 bp、9,699 bp和7,006 bp的三个质粒组成的全长4.14 Mb基因组。对基因组进行注释发现,除了DNA修复系统中未发现编码DNA聚合酶III中θ、χ、ψ亚基的基因和Dam甲基化酶编码基因外,B. megaterium WSH-002的其他代谢途径基本完整;B. megaterium WSH-002与已经测序的B. megaterium QM B1551的亲缘关系最近,两者的16S rDNA序列的相似性为100%,核酸序列的相似性为95-97%。从进化树来看,B. megaterium WSH-002与B.cereus组群亲缘关系较近,有40%的保守基因;
     4.为了阐明B. megaterium对K. vulgare的伴生机制,研究了产酸稳定期K. vulgare在B. megaterium伴生与否时胞内蛋白表达差异情况。对质谱鉴定得到的419种蛋白点进行COG注释发现:(1)约有20%蛋白点与氨基酸转运与代谢相关;(2)与蛋白质翻译、核糖体结构、生物合成、能量产生与转化相关的蛋白占总鉴定蛋白的10.5%和8.6%。当B. megaterium和K. vulgare共同培养时, K. vulgare胞内总蛋白点(已表达)比K. vulgare单独培养时增加了约30%。进一步进行差异表达谱分析发现,151种蛋白在B. megaterium伴生时表达量显著升高,其中氨基酸代谢、蛋白质翻译、能量代谢等相关蛋白约占41%。此外,B. megaterum还明显促进了K. vulgare的辅因子代谢、细胞壁和细胞膜合成等;
     5.为了获得一种K. vulgare和B. megaterium生长和高效产酸的全合成培养基,以满足两菌基因组规模代谢网络构建与验证和定量模拟的需求。作者详尽分析了18批次玉米浆组分(约为40种,其中17种为氨基酸、9种为维生素和14种为金属元素)的含量,其中氨基酸约占30%,金属元素占10%左右,此外还含有8种水溶性维生素。玉米浆组分浓度变化高度线性关联2-KLG发酵参数的变化:丝氨酸、甘氨酸、苏氨酸、脯氨酸、烟酸和生物素这6种组分对2-KLG生产效率产生显著影响。基于上述定量测定与定性分析,结合正交实验得到影响2-KLG生产效率的关键玉米浆组分的最佳组合为:丝氨酸0.28 g/L、甘氨酸0.36 g/L、苏氨酸0.18 g/L、脯氨酸0.56 g/L、烟酸0.19 g/L、生物素0.62 mg/L。采用这一最佳营养组合,经28 h培养,K. vulgare最大细胞浓度、2-KLG产量、生产强度和转化率分别达到4.14×109 cfu/mL、58 g/L、2.07 g/(L·h)和0.76 g/g。实现了K. vulgare和B. megaterium混菌体系在全合成培养基上的快速生长和2-KLG的高效生产。
This dissertation chose Ketogulonicigenium vulgare and Bacillus megaterium, the industrial strains for production of vitamin C, as a model system to study the reciprocal physiological dependence in the mixed culture fermentation. The promotion role of B. megaterium on the growth of K. vulgare and 2-KLG production was firstly demonstrated in this dissertation, then the completed genome of K.vulgare and B.megaterium were sequenced and annotated, and the proteomic response in this co-culture system was investigated in detailed. The main results were described as follows:
     1. In order to increase K. vulgare cell growth and 2-KLG efficiency, B. megaterium growth status in the co-culture was manipulated by lysozyme, a enzyme catalyzes the degradation of bacterial peptidoglycan (PG) by hydrolyzing the glycosidic bond between the C-1 of N-acetylmuramic acid and the C-4 of N-acetylglucosame. Lysozyme is specific to damage B. megaterium cell wall structure and subsequently inhibits its cell growth. However, the growth of K. vulgare was not affected even 10,000 U/mL lysozyme was presented in the broth. The addition of 10,000 U/mL lysozyme at 12 h increased the biomass of K. vulgare, the L-sorbose consumption rate and 2-KLG productivity by 27.4%, 37.1%, and 28.2%, respectively, compared to the control (no lysozyme addition). As a result, the fermentation time decreased to 56 h, 20.6% shorter the control.
     2. The whole genome sequence of K. vulgare WSH-001 was released by a strategy combing Sanger shotgun approach with 454 single-end sequencing technology. The genomic feature was provided in this dissertation. The complete K. vulgare WSH-001 genome contains a single circular chromosome of 2,766,400 bp and two circular plasmids pKVU_100 and pKVU_200 267,986 bp and 242,715 bp, respectively. The overall G+C content of the chromosome is 61.69%, whereas the values of the plasmids are 61.33% and 62.58%, respectively. The chromosome contains 2604 protein-encoding genes, 51 tRNA-encoding genes, and 3 rRNA-encoding gene operons. Plasmids pKVU_100 and pKVU_200 contain 246 and 215 protein-encoding genes, respectively. According to the phylogenetic analysis of the house keeping genes, K. vulgare WSH-001 is most related to P. denitrificans PD1222 (5.24Mbp) and Rhodobacter sphaeroides ATCC 17025 (4.56 Mbp). However, the K. vulgare WSH-001 genome size is 1 Mbp smaller, this result implied that K. vulgare WSH-001 has undergone large-scale gene loss during the evolution process. A detailed inspection of the genome sequence revealed that many pathway are incomplete, such as glycolysis, amino acids and fatty acids metabolism, and biosynthesis of cofactors like folate, NAD, and biotin . The genome feature will facilitate the development of further strain engineering strategies and the better understanding of 2-KLG production machinery. Genes for 2-KLG production from D-sorbitol were identified, including genes encoding D-sorbitol dehydrogenase, L-sorbosone dehydrogenase (SNDH) and L-sorbose/L-sorbosone dehydrogenase (SSD). Among them, the sndh gene is located at pKVU_200, the ssda1 gene at pKVU_100. This result showed a great divergence from other four chromosomal ssd genes.
     3. K. vulgare cell growth and 2-KLG production were strongly dependent on B. megaterium in the co-culture fermentation. The complete B. megaterium WSH-002 genome contains a single circular chromosome of 4,047,912 bp and three circular plasmids pBME_100, pBME_200 and pBME_300 of 74,613 bp, 9,699 bp and 7,006 bp, respectively. The total G+C content of the chromosome is 39.1%, whereas the values of the plasmids are 36.0% (pBME_100), 32.2% (pBME_200) and 33.2% (pBME_300). The chromosome contains 5186 protein-encoding genes, 99 tRNA-encoding genes, and 10 rRNA-encoding gene operons. Plasmids pBME_100, pBME_200 and pBME_300 contain 69, 11 and 14 protein-encoding genes, respectively. Except for the lack of the genes encodingθ,χ,ψsubunit gene of DNA polymerase III and the gene encoding Dam methyltransferase in DNA repair system, B. megaterium WSH-002 contains relatively completed metabolic pathways for amino acid transport and metabolism, carbohydrate transport and metabolism, transcription, translation, ribosomal structure and biogenesis, replication and recombination, signal transduction mechanisms and coenzyme transport and metabolism. Some gaps were found in the DNA repair system.
     4. Through using of the 2-DE electrophoresis and flight mass spectrometry technology, the proteome of K. vulgare under the conditions of single culture or co-culture with B. megaterium were carefully studied, and the effect of B. megaterium on K. vulgare physiological status were investigated in detailed. It was found that the expression level of K. vulgare intracellular protein can be promoted 30% with the presence of B. megaterium. Only 19 proteins existed in the single culture case, while 119 proteins were expressed in the co-culture case. Of the identified proteins on 2-D eletrophoresis gel pI 4-7 in K. vulgare in the co-culture, amino acid transport and metabolism was the highest proportion (about 20% of the total protein), followed by translation, ribosomal structure (about 10.5% of the total protein) and biogenesis, energy production and conversion(about 8.6% of the total protein). The 151 proteins were found to be up-regulated in K. vulgare when co-culture with B. megaterium, among of those up-regulated protein, about 41% are regarding of amino acid transport and metabolism, translation, ribosomal structure and biogenesis and energy production and conversion. Furthermore, B. megaterium also enhanced cofactor metabolism, cell wall and cell membrane synthesis in K. vulgare;
     5. With the purpose of developing a synthetic medium for 2-KLG production by K. vulgare and B. megaterium, to meet the demand of reconstruction and simulation of the genome-scale metabolic model of those two strains. The actual amounts of CSLP (corn steep liquor powder) components in 18 different batches CSLP were determined. It was found that amino acids were the crucial components in CSLP, account for about 30% of dry CSLP. Metal elements accounted for 10%. In addition, seven kinds of water-soluble vitamins were also detected in CSLP. The results suggested that glycine and threonine play key role on the growth of the two strains in the co-culture system. but serine, glycine, proline, nicotinic acid and biotin were the key components that affected 2-KLG production. The L-sorbose consumption rate was determined by proline. Based on the above quantitative and qualitative analysis, an synthetic medium with the combination of CSLP components was developed by the orthogonal method, and listed as follows: 0.28 g/L serine, 0.36 g/L glycine, 0.18 g/L threonine, 0.28 g/L proline, 0.19 g/L nicotinic acid and 0.62 m g/L biotin. With this chemical synthetic medium, a higher titer (58 g/L) and yield (0.76 g/g) of 2-KLG were achieved in a 7-L jar fermentor after 28 h culture. The chemical synthetic medium will facilitate the qualitative investigation of the metabolic functions and further developing of strain engineering strategies. Especial for the progress in the elucidation of physiological relationship between of K. vulgare and B. megaterium.
引文
[1] Bremus C, Herrmann U, Bringer-Meyer S, et al. The use of microorganisms in L-ascorbic acid production [J]. J Biotechnol, 2006, 124(1):196-205.
    [2] Ji AG, Gao PJ. Synthesis of 2-keto-L-gulonic acid from gluconic acid by co-immobilized Gluconobacter oxydans and Corynebacterium sp [J]. Biotechnol Lett, 1998, 20(10):939-942.
    [3] Sugisawa T, Hoshino T, Masuda S, et al. Microbial-Production of 2-Keto-L-Gulonic Acid from L-Sorbose and D-Sorbitol by Gluconobacter melanogenus [J]. Agric Biol Chem, 1990, 54(5):1201-1209.
    [4] Saito Y, Ishii Y, Hayashi H, et al. Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-keto-L-gulonate, a precursor of L-ascorbic acid, in a recombinant G. oxydans strain [J]. Appl Environ Microbiol, 1997, 63(2):454-460.
    [5] Xu A, Yao J, Yu L, et al. Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of L-ascorbic acid manufacture by ion beam [J]. J Appl Microbiol, 2004, 96(6):1317-1323.
    [6]尹光琳,何建明,任双喜,等.新组合菌系SCB329—SCB933利用L—山梨糖发酵产生维生素C前体——2-酮基-L-古龙酸的研究I.新组合菌系SCB329-SCB933的生物学特性[J].工业微生物, 1997, 27(001):1-7.
    [7] Shinjoh M, Tomiyama N, Asakura A, et al. Cloning and Nucleotide Sequencing of the Membrane-Bound L-Sorbosone Dehydrogenase Gene of Acetobacter Liquefaciens Ifo-12258 and Its Expression in Gluconobacter Oxydans [J]. Appl Environ Microbiol, 1995, 61(5):2069-2069.
    [8] Sonoyama T, Tani H, Matsuda K, et al. Production of 2-keto-L-gulonic acid from D-glucose by two-stage fermentation [J]. Appl Environ Microbiol, 1982, 43(5):1064-1069.
    [9] Rao YM, Sureshkumar GK. Direct biosynthesis of ascorbic acid from glucose by Xanthomonas campestris through induced free-radicals [J]. Biotechnol Lett, 2000, 22(5):407-411.
    [10] Sugisawa T, Miyazaki T, Hoshino T. Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025 [J]. Biosci Biotechnol Biochem, 2005, 69(3):659-662.
    [11] Petrescu S, Hulea SA, Stan R, et al. A Yeast-Strain That Uses D-Galacturonic Acid as a Substrate for L-Ascorbic-Acid Biosynthesis [J]. Biotechnol Lett, 1992, 14(1):1-6.
    [12] Sauer M, Branduardi P, Valli M, et al. Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii [J]. Appl Environ Microbiol, 2004, 70(10):6086-6091.
    [13]周彬,李义,刘耀平,等. Vc二步发酵中的微生物生态调控[J].应用生态学报,2002, 13(11):1452-1454.
    [14]李强刁向曹.山梨糖发酵产生2-酮基-L-古龙酸氮源代谢规律[J].微生物学报, 1996, (01)
    [15] Leduc S, de Troostembergh JC, Lebeault JM. Folate requirements of the 2-keto-l-gulonic acid-producing strain Ketogulonigenium vulgare LMP P-20356 in L-sorbose/CSL medium [J]. Appl Microbiol Biotechnol, 2004, 65(2):163-167.
    [16] Giridhar R, Srivastava AK. Productivity enhancement in L-sorbose fermentation using oxygen vector [J]. Enzyme Microb Technol, 2000, 27(7):537-541.
    [17]仲崇斌,张忠泽,刘延吉,等.环境因子对新组合菌系产生Vc前体KGA的影响[J].生物技术, 2003, 13(5):27-28.
    [18] Giridhar RN, Srivastava AK. Productivity improvement in L-sorbose biosynthesis by fedbatch cultivation of Gluconobacter oxydans [J]. J Biosci Bioeng, 2002, 94(1):34-38.
    [19] Giridhar R, Srivastava AK. Fed-batch cultivation of Acetobacter suboxydans for the microbial oxidation of D-sorbitol to L-sorbose [J]. Bioprocess Eng, 2000, 23(6):575-577.
    [20] Giridhar R, Srivastava AK. Computer coupled substrate feeding strategies for efficient conversion of D-sorbitol to L-sorbose in fed-batch culture [J]. Process Biochemistry, 2001, 36(8-9):829-834.
    [21] Srivastava AK, Lasrado PR. Fed-batch sorbitol to sorbose fermentation by A. suboxydans [J]. Bioprocess Biosyst Eng, 1998, 18(6):457-461.
    [22] Yan B, Xu A, Zhang W, et al. Accumulation of 2-keto-L-gulonate at 33 oC by a thermotolerant Gluconobacter oxydans mutant obtained by ion beam implantation [J]. Plasma Sci Technol, 2006, 8(2):237-241.
    [23] Moonmangmee D, Adachi O, Ano Y, et al. Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures [J]. Biosci Biotechnol Biochem, 2000, 64(11):2306-2315.
    [24] Yang FC, Lim YH. Kinetic study of the bioconversion of D-sorbitol to L-sorbose by Acetobacter pasteurianus [J]. Process Biochemistry, 1997, 32(3):233-236.
    [25] Yang F, Jia Q, Xiong Z, et al. Complete genome analysis of Ketogulonigenium sp. WB0104 [J]. Chin Sci Bull, 2006, 51(8):941-945.
    [26]陈芳,陈策实,李越,等.欧文氏菌2-酮基醛糖还原酶基因敲除的研究[J].微生物学报, 2000, 40(5):475-481.
    [27] Sugisawa T, Hoshino T, Nomura S, et al. Isolation and Characterization of Membrane-Bound L-Sorbose Dehydrogenase from Gluconobacter Melanogenus Uv10 [J]. Agric Biol Chem, 1991, 55(2):363-370.
    [28]王虹.维生素C两步发酵中关键步骤的分子生物学研究[D]: [硕士学位论文].北京:中国人民解放军军事医学科学院, 2005.
    [29] Anderson S, Marks CB, Lazarus R, et al. Production of 2-Keto-L-Gulonate, an Intermediate in L-Ascorbate Synthesis, by a Genetically Modffied Erwinia herbicola [J]. Science, 1985, 230(4722):144-149.
    [30]蒋雨杨,郭振勇,张成刚. 2-酮-L-古龙酸还原酶分离纯化及其理化、酶学性质的研究[J].生物工程学报, 1997, 13(4):400-405.
    [31] Banta S, Anderson S. Verification of a novel NADH-binding motif: combinatorial mutagenesis of three amino acids in the cofactor-binding pocket of Corynebacterium 2,5-diketo-D-gluconic acid reductase [J]. J Mol Evol, 2002, 55(6):623-631.
    [32] Banta S, Swanson BA, Wu S, et al. Optimizing an artificial metabolic pathway: Engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis [J]. Biochem, 2002, 41(20):6226-6236.
    [33]焦迎晖,张惟材,谢莉,等.维生素C发酵中伴生菌对氧化葡糖杆菌的影响[J].微生物学通报, 2002, 29(5):35-38.
    [34]仲崇斌,张忠泽,张文革,等.以掷孢酵母作为伴生菌生产VC前体KGA的研究[J].生物技术, 2004, 14(1):45-47.
    [35]冯树,张舟,张成刚,等.混合培养中巨大芽孢杆菌对氧化葡萄糖酸杆菌的作用[J].应用生态学报, 2000, 11(1):119-122.
    [36]吕淑霞,冯树,张忠泽,等. Vc二步发酵中伴生菌的作用机制[J].微生物学通报, 2001, 28(5):10-13.
    [37] Saito Y, Ishii Y, Hayashi H, et al. Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans [J]. Biotechnol Bioeng, 1998, 58(2-3):309-315.
    [38]林红雨陈尹.欧文氏菌和棒杆菌的属间融合研究[J].微生物学通报, 1999, 26(1):3-6.
    [39] Aebersold R, Mann M. Mass spectrometry-based proteomics [J]. Nature, 2003, 422(6928):198-207.
    [40] Cui B, Lu H, Chen HQ, et al. Study on sorbose adding technology of vitamin C two-step fermentation [J]. Food Ferment ind, 2006, 32(7):63-64.
    [41] Ren SX, He JM, Song Q, et al. Production of vitamin C precursor-2-keto-L-gulonic acid from L-sorbose by a novel bacterial component system of SCB329-SCB933.Ⅱ.High sorbose fermentation by installment-batch method [J]. Ind Microbiol, 1997, 27(2):5-9.
    [42] Zhang YJ, Liang BC, Li HT. Studies on a fed-batch technology of high concentration L-sorbose in vc two-step fermentation [J]. Hebei Chem Eng Ind, 2006, 29(8):37-39.
    [43] Takagi Y, Sugisawa T, Hoshino T. Continuous 2-Keto-L-gulonic acid fermentation by mixed culture of Ketogulonicigenium vulgare DSM 4025 and Bacillus megaterium or Xanthomonas maltophilia [J]. Appl Microbiol Biotechnol, 2010, 86(2):469-480.
    [44]杨丽宁,赵士豪,刘冲.间歇流加L-山梨糖发酵生产2-酮基-L-古龙酸研究[J].河北化工, 2008, 31(6):33-35.
    [45] Lin WC, Ye Q, Qiao CH, et al. Study on the fermentation condition producing 2-keto-L-gulonic acid by using mixed culture of microorganism [J]. Microbiol, 2002, 29(4):37-41.
    [46] Zhong CB, Zhang ZZ, Liu YJ, et al. Effect of Environmental Factor on Production of Vitamin C Procusor KGA in New Component of Bacteria [J]. Biotechnology, 2003, 13(5):27-28.
    [47]纪凯.维生素C发酵营养与环境条件优化[D]: [硕士学位论文].无锡:江南大学生物工程学院, 2009.
    [48] Zhou B, LI Y, Liu YP, et al. Microbiological eco-regulation in Vc two-step fermentation [J]. Chin J Appl Ecol, 2002, 13(11):1452-1454.
    [49] Ye Q, Yin GL. Cultivation and preservation of Gluconobacter oxydans SCB329 [J]. Ind Microbiol, 2001, 31(1):27-29
    [50] Takagi Y, Sugisawa T, Hoshino T. Continuous 2-keto-L-gulonic acid fermentation from L-sorbose by Ketogulonigenium vulgare DSM 4025 [J]. Appl Microbiol Biotechnol, 2009, 82(6):1049-1056.
    [51] Feng S, Zhang Z, Zhang CG, et al. Effect of Bacillus megaterium on Gluconobacter oxydans in mixed culture [J]. Chin J Appl Ecol, 2000, 11(1):119-122.
    [52]姜泽慧,熊向华,张惟材,等.酮古龙酸菌醇醛脱氢酶基因的克隆及表达[J].生物技术通讯, 2009, 20(05):629-631.
    [53]郝爱鱼,贾茜,吴洪涛,等.酮古龙酸菌WB0104中L-山梨糖脱氢酶的分离和性质研究[J].工业微生物, 2008, 38(1):10-14.
    [54] Lu SJ, Jun W, Yao JM, et al. Study on the effect of mutated Bacillus megaterium in two-stage fermentation of vitamin C [J]. Plasma Sci Technol, 2003, 5(5):2011-2016.
    [55] Zhao SG, Yao LM, Su CX, et al. Purification and properties of a new L-sorbose dehydrogenase accelerative protein from Bacillus megaterium bred by ion-beam implantation [J]. Plasma Sci Technol, 2008, 10(3):398-402.
    [56] Urbance JW, Bratina BJ, Stoddard SF, et al. Taxonomic characterization of Ketogulonigenium vulgare gen. nov., sp. nov. and Ketogulonigenium robustum sp. nov., which oxidize L-sorbose to 2-keto-L-gulonic acid [J]. Int J Syst Evol Microbiol, 2001, 51:1059-1070.
    [57] Huang KC, Mukhopadhyay R, Wen B, et al. Cell shape and cell-wall organization in Gram-negative bacteria [J]. Proc Natl Acad Sci USA, 2008, 105(49):19282-19287.
    [58] Murphey ED, Sherwood ER. Pretreatment with the Gram-positive bacterial cell wall molecule peptidoglycan improves bacterial clearance and decreases inflammation and mortality in mice challenged with Pseudomonas aeruginosa [J]. Microbes Infect, 2008, 10(12-13):1244-1250.
    [59] Su CK, Chiang BH. Partitioning and purification of lysozyme from chicken egg white using aqueous two-phase system [J]. Process Biochem, 2006, 41(2):257-263.
    [60] Prager EM, Jolles P. Animal lysozymes c and g: an overview [J]. EXS, 1996, 75:9-31.
    [61] Yum S, Kim MJ, Xu Y, et al. Structural basis for the recognition of lysozyme by MliC, a periplasmic lysozyme inhibitor in Gram-negative bacteria [J]. Biochem Riophys Res Commun, 2009, 378(2):244-248.
    [62] Masschalck B, Van Houdt R, Van Haver EG, et al. Inactivation of Gram-negative bacteria by lysozyme, denatured lysozyme, and lysozyme-derived peptides under high hydrostatic pressure [J]. Appl Environ Microbiol, 2001, 67(1):339-344.
    [63] Ibrahim HR, Aoki T, Pellegrini A. Strategies for new antimicrobial proteins and peptides: lysozyme and aprotinin as model molecules [J]. Curr Pharm Des, 2002, 8(9):671-693.
    [64] Ho CW, Chew TK, Ling TC, et al. Efficient mechanical cell disruption of Escherichia coli by an ultrasonicator and recovery of intracellular hepatitis B core antigen [J]. Process Biochem, 2006, 41(8):1829-1834.
    [65] Limonet M, Saffroy S, Maujean F, et al. A comparison of disruption procedures for the analysis of phospholipids from Streptomyces pristinaespiralis [J]. Process Biochem, 2007, 42(4):700-703.
    [66] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem, 1976, 72:248-254.
    [67] Beller HR, Chain PS, Letain TE, et al. The genome sequence of the obligately chemolithoautotrophic, facultatively anaerobic bacterium Thiobacillus denitrificans [J]. J Bacteriol, 2006, 188(4):1473-1488.
    [68] Chistoserdova L, Lapidus A, Han C, et al. Genome of Methylobacillus flagellatus, molecular basis for obligate methylotrophy, and polyphyletic origin of methylotrophy [J]. J Bacteriol, 2007, 189(11):4020-4027.
    [69] Campbell BJ, Smith JL, Hanson TE, et al. Adaptations to submarine hydrothermal environments exemplified by the genome of Nautilia profundicola [J]. PLoS Genet, 2009, 5(2):e1000362.
    [70] Rabus R, Kube M, Heider J, et al. The genome sequence of an anaerobic aromatic-degrading denitrifying bacterium, strain EbN1 [J]. Arch Microbiol, 2005, 183(1):27-36.
    [71] Kuhner S, Wohlbrand L, Fritz I, et al. Substrate-dependent regulation of anaerobic degradation pathways for toluene and ethylbenzene in a denitrifying bacterium, strain EbN1 [J]. J Bacteriol, 2005, 187(4):1493-1503.
    [72] Rendulic S, Jagtap P, Rosinus A, et al. A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective [J]. Science, 2004, 303(5658):689-692.
    [73] Miller WG, Wang G, Binnewies TT, et al. The complete genome sequence and analysis of the human pathogen Campylobacter lari [J]. Foodborne Pathog Dis, 2008, 5(4):371-386.
    [74] Lim SK, Kim SJ, Cha SH, et al. Complete genome sequence of Rhodobactersphaeroides KD131 [J]. J Bacteriol, 2009, 191(3):1118-1119.
    [75] Moran MA, Belas R, Schell MA, et al. Ecological genomics of marine Roseobacters [J]. Appl Environ Microbiol, 2007, 73(14):4559-4569.
    [76] Moran MA, Buchan A, Gonzalez JM, et al. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment [J]. Nature, 2004, 432(7019):910-913.
    [77] Swingley WD, Sadekar S, Mastrian SD, et al. The complete genome sequence of Roseobacter denitrificans reveals a mixotrophic rather than photosynthetic metabolism [J]. J Bacteriol, 2007, 189(3):683-690.
    [78] Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors [J]. Proc Natl Acad Sci U S A, 1977, 74(12):5463-5467.
    [79] Shendure J, Ji H. Next-generation DNA sequencing [J]. Nat Biotechnol, 2008, 26(10):1135-1145.
    [80] Olivier M. A haplotype map of the human genome [J]. Physiol Genomics, 2003, 13(1):3-9.
    [81] Futreal PA, Wooster R, Stratton MR. Somatic mutations in human cancer: insights from resequencing the protein kinase gene family [J]. Cold Spring Harb Symp Quant Biol, 2005, 70:43-49.
    [82] Goldberg SM, Johnson J, Busam D, et al. A Sanger/pyrosequencing hybrid approach for the generation of high-quality draft assemblies of marine microbial genomes [J]. Proc Natl Acad Sci U S A, 2006, 103(30):11240-11245.
    [83] Gordon D, Abajian C, Green P. Consed: a graphical tool for sequence finishing [J]. Genome Res, 1998, 8(3):195-202.
    [84] Tatusov RL, Natale DA, Garkavtsev IV, et al. The COG database: new developments in phylogenetic classification of proteins from complete genomes [J]. Nucleic Acids Res, 2001, 29(1):22-28.
    [85] Apweiler R, Attwood TK, Bairoch A, et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites [J]. Nucleic Acids Res, 2001, 29(1):37-40.
    [86] Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence [J]. Nucleic Acids Res, 1997, 25(5):955-964.
    [87] Griffiths-Jones S, Bateman A, Marshall M, et al. Rfam: an RNA family database [J]. Nucleic Acids Res, 2003, 31(1):439-441.
    [88] Pinotti LM, Ribeiro de Souza V, de Campos Giordano R, et al. The penicillin G acylase production by B. megaterium is amino acid consumption dependent [J]. Biotechnol Bioeng, 2007, 97(2):346-353.
    [89] Lee JS, Wittchen KD, Stahl C, et al. Cloning, expression, and carbon catabolite repression of the bamM gene encoding beta-amylase of Bacillus megaterium DSM319 [J]. Appl Microbiol Biotechnol, 2001, 56(1-2):205-211.
    [90] Ray RR. Purification and characterization of extracellular beta-amylase of Bacillus megaterium B(6) [J]. Acta Microbiol Immunol Hung, 2000, 47(1):29-40.
    [91] Jana M, Chattopadhyay DJ, Pati BR. Thermostable, high salt-tolerant amylase from Bacillus megaterium VUMB-109 [J]. Acta Microbiol Immunol Hung, 1997, 44(3):281-289.
    [92] Ray RR, Jana SC, Nanda G. Induction and carbon catabolite repression in the biosynthesis of beta-amylase by Bacillus megaterium B6 [J]. Biochem Mol Biol Int, 1996, 38(2):223-230.
    [93] Baik SH, Michel F, Aghajari N, et al. Cooperative effect of two surface amino acid mutations (Q252L and E170K) in glucose dehydrogenase from Bacillus megaterium IWG3 on stabilization of its oligomeric state [J]. Appl Environ Microbiol, 2005, 71(6):3285-3293.
    [94] Yamamoto K, Kusunoki M, Urabe I, et al. Crystallization and preliminary X-ray analysis of glucose dehydrogenase from Bacillus megaterium IWG3 [J]. Acta Crystallogr D Biol Crystallogr, 2000, 56(Pt 11):1443-1445.
    [95] Kataoka M, Sri Rohani LP, Wada M, et al. Escherichia coli transformant expressing the glucose dehydrogenase gene from Bacillus megaterium as a cofactor regenerator in a chiral alcohol production system [J]. Biosci Biotechnol Biochem, 1998, 62(1):167-169.
    [96] Baron M, Fontana JD, Guimaraes MF, et al. Stabilization and reutilization of Bacillus megaterium glucose dehydrogenase by immobilization [J]. Appl Biochem Biotechnol, 1997, 63-65:257-268.
    [97] Furuya T, Shibata D, Kino K. Phylogenetic analysis of Bacillus P450 monooxygenases and evaluation of their activity towards steroids [J]. Steroids, 2009, 74(12):906-912.
    [98] Branco RJ, Seifert A, Budde M, et al. Anchoring effects in a wide binding pocket: the molecular basis of regioselectivity in engineered cytochrome P450 monooxygenase from B. megaterium [J]. Proteins, 2008, 73(3):597-607.
    [99] Hollmann R, Deckwer WD. Pyruvate formation and suppression in recombinant Bacillus megaterium cultivation [J]. J Biotechnol, 2004, 111(1):89-96.
    [100] Raux E, Lanois A, Warren MJ, et al. Cobalamin (vitamin B12) biosynthesis: identification and characterization of a Bacillus megaterium cobI operon [J]. Biochem J, 1998, 335 ( Pt 1):159-166.
    [101] Raux E, Schubert HL, Woodcock SC, et al. Cobalamin (vitamin B12) biosynthesis--cloning, expression and crystallisation of the Bacillus megaterium S-adenosyl-L-methionine-dependent cobalt-precorrin-4 transmethylase CbiF [J]. Eur J Biochem, 1998, 254(2):341-346.
    [102] Yang G, Zhou B, Wang J, et al. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium [J]. BMC Microbiol, 2008, 8:192.
    [103] Morita M, Tomita K, Ishizawa M, et al. Cloning of oxetanocin A biosynthetic and resistance genes that reside on a plasmid of Bacillus megaterium strain NK84-0128 [J]. Biosci Biotechnol Biochem, 1999, 63(3):563-566.
    [104] Shiota H, Nitta K, Naito T, et al. Clinical evaluation of carbocyclic oxetanocin G eyedrops in the treatment of herpes simplex corneal ulcers [J]. Br J Ophthalmol, 1996, 80(5):413-415.
    [105] Vary PS. Prime time for Bacillus megaterium [J]. Microbiol, 1994, 140 ( Pt 5):1001-1013.
    [106] Gamer M, Frode D, Biedendieck R, et al. A T7 RNA polymerase-dependent gene expression system for Bacillus megaterium [J]. Appl Microbiol Biotechnol, 2009, 82(6):1195-1203.
    [107] Radha S, Gunasekaran P. Sustained expression of keratinase gene under PxylA and PamyL promoters in the recombinant Bacillus megaterium MS941 [J]. Bioresour Technol, 2008, 99(13):5528-5537.
    [108]冯树,孙传宝,张忠泽,等.维生素C二步发酵中巨大芽孢杆菌对氧化葡萄糖酸杆菌生长和产酸的影响[J].微生物学杂志, 1998, 18(1):6-9.
    [109] Xiong Z, Jiang Y, Qi D, et al. Complete genome sequence of the extremophilic Bacillus cereus strain Q1 with industrial applications [J]. J Bacteriol, 2009, 191(3):1120-1121.
    [110] Han CS, Xie G, Challacombe JF, et al. Pathogenomic sequence analysis of Bacillus cereus and Bacillus thuringiensis isolates closely related to Bacillus anthracis [J]. J Bacteriol, 2006, 188(9):3382-3390.
    [111] Rasko DA, Ravel J, Okstad OA, et al. The genome sequence of Bacillus cereus ATCC 10987 reveals metabolic adaptations and a large plasmid related to Bacillus anthracis pXO1 [J]. Nucleic Acids Res, 2004, 32(3):977-988.
    [112] Ivanova N, Sorokin A, Anderson I, et al. Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis [J]. Nature, 2003, 423(6935):87-91.
    [113] Challacombe JF, Altherr MR, Xie G, et al. The complete genome sequence of Bacillus thuringiensis Al Hakam [J]. J Bacteriol, 2007, 189(9):3680-3681.
    [114] Ravel J, Jiang L, Stanley ST, et al. The complete genome sequence of Bacillus anthracis Ames "Ancestor" [J]. J Bacteriol, 2009, 191(1):445-446.
    [115] Read TD, Peterson SN, Tourasse N, et al. The genome sequence of Bacillus anthracis Ames and comparison to closely related bacteria [J]. Nature, 2003, 423(6935):81-86.
    [116] Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the gram-positive bacterium Bacillus subtilis [J]. Nature, 1997, 390(6657):249-256.
    [117] Barbe V, Cruveiller S, Kunst F, et al. From a consortium sequence to a unified sequence: the Bacillus subtilis 168 reference genome a decade later [J]. Microbiol, 2009, 155(Pt 6):1758-1775.
    [118] Srivatsan A, Han Y, Peng J, et al. High-precision, whole-genome sequencing of laboratory strains facilitates genetic studies [J]. PLoS Genet, 2008, 4(8):e1000139.
    [119] Gioia J, Yerrapragada S, Qin X, et al. Paradoxical DNA repair and peroxide resistance gene conservation in Bacillus pumilus SAFR-032 [J]. PLoS One, 2007, 2(9):e928.
    [120] Veith B, Herzberg C, Steckel S, et al. The complete genome sequence of Bacillus licheniformis DSM13, an organism with great industrial potential [J]. J Mol Microbiol Biotechnol, 2004, 7(4):204-211.
    [121] Rey MW, Ramaiya P, Nelson BA, et al. Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species [J]. Genome Biol, 2004, 5(10):R77.
    [122] Kageyama Y, Takaki Y, Shimamura S, et al. Intragenomic diversity of the V1 regions of 16S rRNA genes in high-alkaline protease-producing Bacillus clausii spp [J]. Extremophiles, 2007, 11(4):597-603.
    [123] Alcaraz LD, Olmedo G, Bonilla G, et al. The genome of Bacillus coahuilensis reveals adaptations essential for survival in the relic of an ancient marine environment [J]. Proc Natl Acad Sci U S A, 2008, 105(15):5803-5808.
    [124] Chen XH, Koumoutsi A, Scholz R, et al. Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42 [J]. Nat Biotechnol, 2007, 25(9):1007-1014.
    [125]盛勤,冯瑞山,陈建华,等.氧化葡萄糖酸杆菌及其伴生菌软化芽孢杆菌原生质体融合的研究[J].中国药科大学学报, 1996, 27(10):618-620.
    [126]陈建华,冯瑞山,郗丽萍,等. 2-酮基-L-古龙酸产生菌原生质体的属间融合[J].中国医药工业杂志, 2002, 33(1):9-11.
    [127] Zhang J, Liu J, Shi ZP, et al. Manipulation of B. megaterium growth for efficient 2-KLG production by K. vulgare [J]. Process Biochem, 2010, 45(4):602-606.
    [128] Hoshino T, Sugisawa T, Fujiwara A. Isolation and characterization of Nad(P)-dependent L-sorbosone dehydrogenase from Gluconobacter melanogenus Uv10 [J]. Agric Biol Chem, 1991, 55(3):665-670.
    [129] Lee HW, Pan JG. Screening for L-sorbose and L-sorbosone dehydrogenase producing microbes for 2-keto-L-gulonic acid production [J]. J Ind Microbiol Biotechnol, 1999, 23(2):106-111.
    [130] Sugisawa T, Hoshino T. Purification and properties of membrane-bound D-sorbitol dehydrogenase from Gluconobacter suboxydans IFO 3255 [J]. Biosci Biotechnol Biochem, 2002, 66(1):57-64.
    [131] Yang XP, Wei LJ, Ye JB, et al. A pyrroloquinoline quinine-dependent membrane-bound d-sorbitol dehydrogenase from Gluconobacter oxydans exhibits an ordered Bi Bi reaction mechanism [J]. Arch Biochem Biophys, 2008, 477(2):206-210.
    [132] Miyazaki T, Sugisawa T, Hoshino T. Pyrroloquinoline quinone-dependent dehydrogenases from Ketogulonicigenium vulgare catalyze the direct conversion of L-sorbosone to L-ascorbic acid [J]. Appl Environ Microbiol, 2006, 72(2):1487-1495.
    [133] German JB, Bauman DE, Burrin DG, et al. Metabolomics in the opening decade of the 21st century: building the roads to individualized health [J]. J Nutr, 2004, 134(10):2729-2732.
    [134] Cardinal EV, Hedrick LR. Microbiological assay of corn steep liquor for amino acidcontent [J]. J Biol Chem, 1948, 172(2):609-612.
    [135] Liggett RW, Koffler H. Corn steep liquor in microbiology [J]. Bacteriol Rev, 1948, 12(4):297-311.
    [136] Qureshi N, Karcher P, Cotta M, et al. High-productivity continuous biofilm reactor for butanol production: effect of acetate, butyrate, and corn steep liquor on bioreactor performance [J]. Appl Biochem Biotechnol, 2004, 113-116:713-721.
    [137] Liu S, Bischoff KM, Hughes SR, et al. Conversion of biomass hydrolysates and other substrates to ethanol and other chemicals by Lactobacillus buchneri [J]. Lett Appl Microbiol, 2009, 48(3):337-342.
    [138] Zou X, Hang HF, Chu J, et al. Oxygen uptake rate optimization with nitrogen regulation for erythromycin production and scale-up from 50 L to 372 m3 scale [J]. Bioresour Technol, 2009, 100(3):1406-1412.
    [139] Li KT, Liu DH, Li YL, et al. Improved large-scale production of vitamin B12 by Pseudomonas denitrificans with betaine feeding [J]. Bioresour Technol, 2008, 99(17):8516-8520.
    [140] Ikeda M, Ohnishi J, Hayashi M, et al. A genome-based approach to create a minimally mutated Corynebacterium glutamicum strain for efficient L-lysine production [J]. J Ind Microbiol Biotechnol, 2006, 33(7):610-615.
    [141] De Azeredo LA, De Lima MB, Coelho RR, et al. A low-cost fermentation medium for thermophilic protease production by Streptomyces sp. 594 using feather meal and corn steep liquor [J]. Curr Microbiol, 2006, 53(4):335-339.
    [142] Lawford HG, Rousseau JD. Corn steep liquor as a cost-effective nutrition adjunct in high-performance Zymomonas ethanol fermentations [J]. Appl Biochem Biotechnol, 1997, 63-65:287-304.
    [143] Li Z, Ding S, Tan T. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal [J]. Biotechnol J, 2006, 1(12):1453-1458.
    [144] Silveira MM, Wisbeck E, Hoch I, et al. Production of glucose-fructose oxidoreductase and ethanol by Zymomonas mobilis ATCC 29191 in medium containing corn steep liquor as a source of vitamins [J]. Appl Microbiol Biotechnol, 2001, 55(4):442-445.
    [145] Lalloo R, Maharajh D, Gorgens J, et al. High-density spore production of a B. cereus aquaculture biological agent by nutrient supplementation [J]. Appl Microbiol Biotechnol, 2009, 83(1):59-66.
    [146] Lotfy WA. Production of a thermostable uricase by a novel Bacillus thermocatenulatus strain [J]. Bioresour Technol, 2008, 99(4):699-702.
    [147] Lotfy WA, Ghanem KM, El-Helow ER. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs [J]. Bioresour Technol, 2007, 98(18):3470-3477.
    [148] Chen DW, Zhang M, Shrestha S. Compositional characteristics and nutritional quality of Chinese mitten crab (Eriocheir sinensis) [J]. Food Chem, 2007, 103(4):1343-1349.
    [149] Heudi O, Kilinc T, Fontannaz P. Separation of water-soluble vitamins by reversed-phase high performance liquid chromatography with ultra-violet detection: application to polyvitaminated premixes [J]. J Chromatogr A, 2005, 1070(1-2):49-56.
    [150] Hallen IP, Jorhem L, Lagerkvist BJ, et al. Lead and cadmium levels in human milk and blood [J]. Sci Total Environ, 1995, 166:149-155.
    [151] Lin TW, Huang SD. Direct and simultaneous determination of copper, chromium, aluminum, and manganese in urine with a multielement graphite furnace atomic absorption spectrometer [J]. Anal Chem, 2001, 73(17):4319-4325.
    [152] Matusiewicz H, Krawczyk M. On-line hyphenation of hydride generation with in situ trapping flame atomic absorption spectrometry for arsenic and selenium determination [J]. Anal Sci, 2006, 22(2):249-253.
    [153] Bermejo-Barrera P, Muniz-Naveiro O, Moreda-Pineiro A, et al. Experimental designs in the optimisation of ultrasonic bath-acid-leaching procedures for the determination of trace elements in human hair samples by atomic absorption spectrometry [J]. Forensic Sci Int, 2000, 107(1-3):105-120.
    [154] Nikiforov MA, Chandriani S, O'Connell B, et al. A functional screen for Myc-responsive genes reveals serine hydroxymethyltransferase, a major source of the one-carbon unit for cell metabolism [J]. Mol Cell Biol, 2002, 22(16):5793-5800.
    [155] Wang J, Alexander P, Wu L, et al. Dependence of mouse embryonic stem cells on threonine catabolism [J]. Science, 2009, 325(5939):435-439.
    [156] Fox JT, Stover PJ. Folate-mediated one-carbon metabolism [J]. Vitam Horm, 2008, 79:1-44.
    [157] Yang J, Moyana T, MacKenzie S, et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-alpha) from Escherichia coli caused by the synergistic effects of glycine and triton X-100 [J]. Appl Environ Microbiol, 1998, 64(8):2869-2874.
    [158] Molinari HBC, Marur CJ, Daros E, et al. Evaluation of the stress-inducible production of proline in transgenic sugarcane (Saccharum spp.): osmotic adjustment, chlorophyll fluorescence and oxidative stress [J]. Physiologia Plantarum, 2007, 130(2):218-229.
    [159] Ambard-Bretteville F, Sorin C, Rebeille F, et al. Repression of formate dehydrogenase in Solanum tuberosum increases steady-state levels of formate and accelerates the accumulation of proline in response to osmotic stress [J]. Plant Mol Biol, 2003, 52(6):1153-1168.
    [160] Trovato M, Mattioli R, Costantino P. Multiple roles of proline in plant stress tolerance and development [J]. Rend Lincei Sci Fis Nat, 2008, 19(4):325-346.
    [161] Takagi H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications [J]. Appl Microbiol Biotechnol, 2008, 81(2):211-223.
    [162] Takagi H, Sakai K, Morida K, et al. Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae [J]. FEMS Microbiol Lett, 2000, 184(1):103-108.
    [163] Takagi H, Takaoka M, Kawaguchi A, et al. Effect of L-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae [J]. Appl Environ Microbiol, 2005, 71(12):8656-8662.
    [164] Morita Y, Nakamori S, Takagi H. Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae [J]. J Biosci Bioeng, 2002, 94(5):390-394.
    [165] Morita Y, Nakamori S, Takagi H. L-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding gamma-glutamyl kinase [J]. Appl Environ Microbiol, 2003, 69(1):212-219.
    [166] Graham JE, Wilkinson BJ. Staphylococcus aureus osmoregulation: roles for choline, glycine betaine, proline, and taurine [J]. J Bacteriol, 1992, 174(8):2711-2716.
    [167] Csonka LN, Gelvin SB, Goodner BW, et al. Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress [J]. Gene, 1988, 64(2):199-205.
    [168] Rizzi M, Schindelin H. Structural biology of enzymes involved in NAD and molybdenum cofactor biosynthesis [J]. Curr Opin Struct Biol, 2002, 12(6):709-720.
    [169] Birnbaum J. Repression of acetyl-coenzyme A carboxylase by unsaturated fatty acids: relationship to coenzyme repression [J]. J Bacteriol, 1970, 104(1):171-176.
    [170] Healy S, Perez-Cadahia B, Jia D, et al. Biotin is not a natural histone modification [J]. Biochim Biophys Acta 2009, 1789(11-12):719-733.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700