翼手目维生素C合成系统进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
维生素C是脊椎动物体一种不可或缺的营养成分,它能够保护机体免除氧化损伤,缺乏维生素C能够导致机体坏血病。大部分的动物能够以葡萄糖为原料经由一系列的酶催化反应合成自身所需的维生素C。在爬行动物和低等鸟类中,维生素C的合成是在肾脏中进行的;而在高等的鸟类和哺乳动物中,维生素C的合成发生在肝脏中。
     动物丧失维生素C合成能力的现象是很罕见的。灵长类的类人猿亚目,如人类和大猩猩,是不能够合成维生素C的,而较原始的原猴亚目,如懒猴和狐猴,仍然保留这种合成能力;豚鼠同样也不能合成维生素C,然而其它啮齿目动物如大鼠、小鼠等式能够正常合成的;另外鸟类中比较高等的雀形目也出现了维生素C合成能力丧失的现象。这些物种之所以不能合成维生素C,是因为它们的体内都缺乏一种负责维生素C合成最后一步的关键酶——古洛糖酸内酯氧化酶(GULO)。在人和豚鼠中,编码该酶的基因——GULO积累了很多有害突变,发生了假基因化。
     前人的研究表明,所有蝙蝠,无论是食虫的还是食果的,由于体内缺乏GULO,无法自身合成维生素C。这些文章的研究对象主要针对新大陆蝙蝠物种,并且缺乏相关基因信息的研究。因此我们设计了一系列的包括从分子克隆、蛋白质表达、酶活性鉴定以及GULO基因进化分析的实验来系统的研究蝙蝠该基因的丧失情况。研究对象包括旧大陆蝙蝠中的两种食果蝙蝠(棕果蝠和犬蝠)以及两种食虫蝙蝠(大蹄蝠和马铁菊头蝠)。结果确出乎我们的意料。我们克隆到了棕果蝠和大蹄蝠全长GULO编码基因,并且该基因在两个物种中都有正常的mRNA表达。另随后进行的蛋白质表达检测发现棕果蝠和大蹄蝠能够正常表达GULO蛋白,而犬蝠和马铁菊头蝠同样也有蛋白水平表达,但是表达量较弱。(GULO活性检测实验表明棕果蝠和大蹄蝠表达的GULO蛋白具有酶活性,而犬蝠和马铁菊头蝠却丧失了酶活性。基因进化分析显示,棕果蝠和大蹄蝠的GULO基因处于强烈的纯化选择,与其基因仍然保留功能相一致,而对于丧失GULO活性的马来大狐蝠,该基因却处于松弛选择的状态,符合其基因丧失功能的特性。
     接下来的大规模的蝙蝠GULO基因测序以及进化分析显示,该基因的功能丧失在蝙蝠中是以一种阶段性的加速进化方式进行的。蝙蝠的总体基因选择压力高于劳亚大陆祖先12至54倍之多。狐蝠属的基因选择压力最高,接近于中性进化,表明其基因丧失功能开始与较早的时间(可能在3百万年左右的祖先状态就已经开始了),其它蝙蝠的基因选择压力相对较低(纯化选择),表明其基因功能丧失是最近才发生的。
     综上所述,我们的研究结果推翻了50年来人们对于蝙蝠不能合成维生素C的错误认识,更重要的是,我们揭示了一种基因(GULO)及其功能丧失的过程,并在此基础上首次提出了一个新的概念——假基因的过程化,并且揭示了蝙蝠GULO基因的功能丧失模式——阶段性的加速进化。因此,我们的研究结果无论对于研究维生素C生物化学途径的科研工作者,还是对于研究假基因化的进化学家而言都具有重大意义。
Vitamin C (Vc) (or L-ascorbic acid) is an essential nutrient for all vertebrates, which protects the body against oxidative stress. Lack of vitamin causes the disease scurvy in organism. The vast majority of animals are able to synthesize their own Vc de novo, through a sequence of enzyme-driven steps, which convert glucose to Vc. In reptiles and birds in lower orders the biosynthesis is carried out in the kidneys; in birds in higher orders and mammals it is synthesized in the livers.
     Loss of Vc synthesis ability is rare in animals. Among the primates that have lost the ability to synthesize Vc are humans and chimpanzees etc., which together make up one of two major primate suborders, the anthropoidea, also called haplorrhini, and the other more primitive primates (strepsirrhini) i.e. lorises and lemurs have maintained the ability to make Vc. Synthesis also does not occur in guinea pigs in the rodent family caviidae, but occurs in other rodents (rats and mice, for example). And a number of species of passerine birds also do not synthesize, but not all of the birds. For the species that do not synthesize Vc de novo, they all lack the L-gulonolactone oxidase (GULO) enzyme, which is required in the last step of Vc synthesis. A non-functional GULO gene which accumulates many harmful mutations leading to pseudogenization is present in the genomes of the guinea pigs and humans.
     Previous researches suggested that all bats including insect and fruit-eating species have been reported to lose Vc synthesis for lack of GULO in their bodies. However, these studies were focused on New World species and there is a lack of GULO gene information in bats. To verify the loss-of-function of GULO in bats, we designed a series of experiments covering molecular, protein, enzyme and evolutionary rate levels. Our experimental targets include four Old World species:two frugivorous bats [the Leschenault's Rousette(Rousettus leschenaultii) and the Greater Short-nosed Fruit bat(Cynopterus sphinx)] and two insectivorous bats [the Great Roundleaf bat(Hipposideros armiger) and the Greater Horseshoe bat(Rhinolophus ferrumequinum)]. To our surprise, the GULO genes of R. leschenaultii and H. armiger are intact and have regular mRNA expressions. Western blotting ascertains that all four bat species have GULO expression, in which R. leschenaultii and H. armiger have normal expressions however C. sphinx and R. ferrumequinum have weak expressions. Interestingly, Vc activity assay verifies that R. leschenaultii and H. armiger have normal GULO activities but C. sphinx and R. ferrumequinum have no functions. Our evolutionary analysis suggests that GULO genes of R. leschenaultii and H. armiger are under strong purifying selection, correlarating with their gene function, but for the Large Flying Fox(Pteropus vampyrus) (which loses Vc synthesis ability) its gene has been subjected to relaxed selection, which correlates with its loss-of-function.
     The following large-scale sequencing of bat GULO genes and the evolutionary analyses suggest that loss-of-function of GULO in bats follows the pattern of step-wise accelerated evolution. The whole evolutionary rates of bats are 12 to 54-fold higher than the ancestor of Laurasiatheria species. The GULO of Pteropus bats have the highest evolutionar rate and is close to be neutral evolution, which suggests an early time for their loss-of-function (probably started at around 3 million years ago). Other bat genes exhibit relative low evolutionary rates, suggesting their loss occurred recently.
     In summary, our results change a 50 year long-hold concept that bats cannot synthesize Vc and most importantly uncover the process of gene pseudogenization and come up with an new concept in evolutionary biology-progressive pseudogenization and uncover the pattern of loss-of-function-step-wise accelerated evolution, which will be of interest not only to scientists working on the biochemical pathways associated with Vc synthesis but also to evolutionary biologist in general who are interested in how adaptations may be lost over time.
引文
Altekar, G., Dwarkadas, S., Huelsenbeck, J. P., and Ronquist, F.2004. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 20: 407-415.
    Altringham, J. D.1996. Bats:Biology and Behaviour. Oxford University Press, Oxford.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D. J.1997. Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Res 25: 3389-402.
    Ames, B. N., Cathcart, R., Schwiers, E., and Hochstein, P.1981. Uric acid provides an antioxidant defense in humans against oxidant-and radical-caused aging and cancer:a hypothesis. Proc Natl Acad Sci USA 78: 6858-62.
    Anisimova, M., Bielawski, J. P., and Yang, Z.2001. Accuracy and power of the likelihood ratio test in detecting adaptive molecular evolution. Mol Biol Evol 18:1585-92.
    Banhegyi, G., Braun, L., Csala, M., Puskas, F., and Mandl, J.1997. Ascorbate metabolism and its regulation in animals. Free Radic Biol Med 23:793-803.
    Birney, E. C., Jenness, R., and Ayaz, K. M.1976. Inability of bats to synthesise L-ascorbic acid. Nature 260: 626-8.
    Bremus, C., Herrmann, U., Bringer-Meyer, S., and Sahm, H.2006. The use of microorganisms in L-ascorbic acid production. JBiotechnol 124:196-205.
    Burns, J. J.1957. Missing step in man, monkey and guinea pig required for the biosynthesis of L-ascorbic acid. Nature 180:553.
    Burns, J. J.1967. Ascorbic acid. In D. M. Greenberg (ed.):Metabolic pathways, pp. 394-411, Academic Press, New York.
    Calisher, C. H., Childs, J. E., Field, H. E., Holmes, K. V., and Schountz, T.2006. Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19: 531-45.
    Challem, J. J.1997. Did the loss of endogenous ascorbate propel the evolution of Anthropoidea and Homo sapiens. Med Hypotheses 48: 387-392.
    Challem, J. J. and Taylor, E. W.1998. Retroviruses, ascorbate, and mutations, in the evolution of Homo sapiens. Free Radic Biol Med 25: 130-2.
    Chatterjee, I. B.1973. Evolution and the biosynthesis of ascorbic acid. Science 182: 1271-2.
    Chatterjee, I. B., Chatterjee, G. C., Ghosh, N. C., Ghosh, J. J., and Guha, B. C.1960a. Biological synthesis of L-ascorbic acid in animal tissues:conversion of D-glucuronolactone and L-gulonolactone into L-ascorbic acid. Biochem J 76: 279-92.
    Chatterjee, I. B., Chatterjee, G. C., Ghosh, N. C., Ghosh, J. J., and Guha, B. C.1960b. Biological synthesis of L-ascorbic acid in animal tissues:conversion of L-gulonolactone into L-ascorbic acid. Biochem J 74:193-203.
    Chatterjee, I. B., Kar, N. C., Ghosh, N. C., and Guha, B. C.1961a. Aspects of ascorbic acid biosynthesis in animals. Ann N Y Acad Sci 92:36-56.
    Chatterjee, I. B., Kar, N. C., Ghosh, N. C., and Guha, B. C.1961b. Biosynthesis of L-ascorbic acid:missing steps in animals incapable of synthesizing the vitamin. Nature 192:163-4.
    Chaudhuri, C. R. and Chatterjee, I. B.1969. L-ascorbic acid synthesis in birds: phylogenetic trend. Science 164:435-6.
    Coyne, J. A.2009. Why evoluiton is true. Viking Adult, New York.
    Cui, J., Counor, D., Shen, D., Sun, G., He, H., Deubel, V., and Zhang, S.2008. Detection of Japanese encephalitis virus antibodies in bats in Southern China. Am J Trop Med Hyg 78:1007-11.
    Cui, J., Pan, Y. H., Zhang, Y., Jones, G., and Zhang, S.2011. Progressive pseudogenization:vitamin C synthesis and its loss in bats. Mol Biol Evol 28: 1025-31.
    Deacon, T. W.2010. Colloquium paper:a role for relaxed selection in the evolution of the language capacity. Proc Natl Acad Sci U S A 107 Suppl 2:9000-6.
    Eick, G. N., Jacobs, D. S., and Matthee, C. A.2005. A nuclear DNA phylogenetic perspective on the evolution of echolocation and historical biogeography of extant bats (chiroptera). Mol Biol Evol 22:1869-86.
    Enserink, M.2000. Emerging diseases. Malaysian researchers trace Nipah virus outbreak to bats. Science 289: 518-9.
    Espinos, C., Pineda, M., Martinez-Rubio, D., Lupo, V., Ormazabal, A., Vilaseca, M. A., Spaapen, L. J., Palau, F., and Artuch, R.2009. Mutations in the urocanase gene UROC1 are associated with urocanic aciduria. JMed Genet 46:407-11.
    Fracalossi, D. M. and Allen, M.2001. Ascorbic acid biosynthesis in Amazonian fishes. Aquaculture 192:321-32.
    Frei, B., England, L., and Ames, B. N.1989. Ascorbate is an outstanding antioxidant in human blood plasma. Proc Natl Acad Sci USA 86:6377-81.
    Goodman, M., Porter, C. A., Czelusniak, J., Page, S. L., Schneider, H., Shoshani, J., Gunnell, G., and Groves, C. P.1998. Toward a phylogenetic classification of Primates based on DNA evidence complemented by fossil evidence. Mol Phylogenet Evol 9:585-98.
    Halpin, K., Young, P. L., Field, H. E., and Mackenzie, J. S.2000. Isolation of Hendra virus from pteropid bats:a natural reservoir of Hendra virus. J Gen Virol 81: 1927-32.
    Hancock, R. D., Galpin, J. R., and Viola, R.2000. Biosynthesis of L-ascorbic acid (vitamin C) by Saccharomyces cerevisiae. FEMS Microbiol Lett 186:245-50.
    Hasan, L., Vogeli, P., Stoll, P., Kramer, S. S., Stranzinger, G., and Neuenschwander, S.2004. Intragenic deletion in the gene encoding L-gulonolactone oxidase causes vitamin C deficiency in pigs. Mamm Genome 15: 323-33.
    Hastings, W. K.1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57: 97-109.
    Hollar, L. J. and Springer, M. S.1997. Old World fruitbat phylogeny:evidence for convergent evolution and an endemic African clade. Proc Natl Acad Sci USA 94:5716-21.
    Hoofer, S. R. and Van den Bussche, R. A.2001. Phylogenetic relationships of plecotine bats and allies based on mitochondrial ribosomal sequences. J Mammal 82:131-7.
    Huelsenbeck, J. P. and Ronquist, F.2001. MRBAYES:Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-5.
    Hutcheon, J. M., Kirsch, J. A., and Pettigrew, J. D.1998. Base-compositional biases and the bat problem. Ⅲ. The questions of microchiropteran monophyly. Philos Trans R Soc Lond B Biol Sci 353:607-17.
    Isherwood, F. A. and Mapson, L. W.1961. Biosynthesis of L-ascorbic acid in animals and plants. Ann N YAcad Sci 92:6-20.
    Johnson, R. J., Gaucher, E. A., Sautin, Y. Y., Henderson, G. N., Angerhofer, A. J., and Benner, S. A.2008. The planetary biology of ascorbate and uric acid and their relationship with the epidemic of obesity and cardiovascular disease. Med Hypotheses 71:22-31.
    Jones, G. and Holderied, M. W.2007. Bat echolocation calls:adaptation and convergent evolution. Proc Biol Sci 274:905-12.
    Jones, G. and Teeling, E. C.2006. The evolution of echolocation in bats. Trends Ecol Evol 21:149-56.
    Jukes, T. H.1975. Further comments on the ascorbic acid requirement. Proc Natl Acad Sci USA 72:4151-2.
    Jukes, T. H. and King, J. L.1975. Evolutionary loss of ascorbic acid synthesizing ability. J Hum Evol 4:85-8.
    Kent, W. J.2002. BLAT--the BLAST-like alignment tool. Genome Res 12:656-64.
    Koshi, J. M. and Goldstein, R. A.1996. Probabilistic reconstruction of ancestral protein sequences. J Mol Evol 42:313-20.
    Kunz, T. H. and Fenton, M. B.2003. Bat Ecology. University of Chicago Press, Chicago, IL, USA.
    Lachapelle, M. Y. and Drouin, G.2010. Inactivation dates of the human and guinea pig vitamin C genes. Genetica 139: 199-207.
    Lahti, D. C., Johnson, N. A., Ajie, B. C., Otto, S. P., Hendry, A. P., Blumstein, D. T. Coss, R. G., Donohue, K., and Foster, S. A.2009. Relaxed selection in the wild. Trends Ecol Evol 24: 487-96.
    Lau, S. K., Woo, P. C., Li, K. S., Huang, Y., Tsoi, H. W., Wong, B. H., Wong, S. S., Leung, S. Y., Chan, K. H., and Yuen, K. Y.2005. Severe acute respiratory syndrome coronavirus-like virus in Chinese horseshoe bats. Proc Natl Acad Sci USA 102:14040-5.
    Leroy, E. M., Kumulungui, B., Pourrut, X., Rouquet, P., Hassanin, A., Yaba, P., Delicat, A., Paweska, J. T., Gonzalez, J. P., and Swanepoel, R.2005. Fruit bats as reservoirs of Ebola virus. Nature 438: 575-6.
    Li, G., Wang, J., Rossiter, S. J., Jones, G., Cotton, J. A., and Zhang, S.2008. The hearing gene Prestin reunites echolocating bats. Proc Natl Acad Sci USA 105: 13959-64.
    Li, G., Wang, J., Rossiter, S. J., Jones, G., and Zhang, S.2007. Accelerated FoxP2 evolution in echolocating bats. PLoS One 2: e900.
    Li, W., Shi, Z., Yu, M., Ren, W., Smith, C., Epstein, J. H., Wang, H., Crameri, G., Hu, Z., Zhang, H., Zhang, J., McEachern, J., Field, H., Daszak, P., Eaton, B. T. Zhang, S., and Wang, L. F.2005. Bats are natural reservoirs of SARS-like coronaviruses. Science 310: 676-9.
    Li, Y., Liu, Z., Shi, P., and Zhang, J.2010. The hearing gene Prestin unites echolocating bats and whales. Curr Biol 20: R55-6.
    Liberles, D.2007. Ancestral Sequnce Reconstruuction. Oxford University Press, New York.
    Linster, C. L. and Van Schaftingen, E.2007. Vitamin C. Biosynthesis, recycling and degradation in mammals. FEBS J 274:1-22.
    Liu, Y., Cotton, J. A., Shen, B., Han, X., Rossiter, S. J., and Zhang, S.2010. Convergent sequence evolution between echolocating bats and dolphins. Curr Biol 20: R53-4.
    Martinez del Rio, C.1997. Can passerines synthesize vitamin C. Auk 114:513-6.
    Meister, A.1994. Glutathione-ascorbic acid antioxidant system in animals. J Biol Chem 269: 9397-400.
    Milton, K. and Jenness, R.1987. Ascorbic acid content of neotropical plant parts available to wild monkeys and bats. Experientia 43:339-42.
    Montel-Hagen, A., Kinet, S., Manel, N., Mongellaz, C., Prohaska, R., Battini, J. L. Delaunay, J., Sitbon, M., and Taylor, N.2008. Erythrocyte Glutl triggers dehydroascorbic acid uptake in mammals unable to synthesize vitamin C. Cell 132:1039-48.
    Moreau, R. and Dabrowski, K.1998. Body pool and synthesis of ascorbic acid in adult sea lamprey (Petromyzon marinus):an agnathan fish with gulonolactone oxidase activity. Proc Natl Acad Sci U S A 95:10279-82.
    Moss, C. F. and Sinha, S. R.2003. Neurobiology of echolocation in bats. Curr Opin Neurobiol 73:751-8.
    Murphy, W. J., Eizirik, E., Johnson, W. E., Zhang, Y. P., Ryder, O. A., and O'Brien, S. J.2001. Molecular phylogenetics and the origins of placental mammals. Nature 409:614-8.
    Murphy, W. J., Pevzner, P. A., and O'Brien, S. J.2004. Mammalian phylogenomics comes of age. Trends Genet 20:631-9.
    Nakajima, Y., Shantha, T. R., and Bourne, G. H.1969. Histochemical detection of L-gulonolactone:phenazine methosulfate oxidoreductase activity in several mammals with special reference to synthesis of vimin C in primates. Histochemie 18:293-301.
    Nandi, A., Mukhopadhyay, C. K., Ghosh, M. K., Chattopadhyay, D. J., and Chatterjee, I. B.1997. Evolutionary significance of vitamin C biosynthesis in terrestrial vertebrates. Free Radic Biol Med 22:1047-54.
    Nei, M. and Kumar, S.2000. Molecular Evolution and Phylogenetics. Oxford University Press, Oxford.
    Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., and Yagi, K.1994. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. JBiol Chem 269:13685-8.
    Nishikimi, M., Kawai, T., and Yagi, K.1992. Guinea pigs possess a highly mutated gene for L-gulono-gamma-lactone oxidase, the key enzyme for L-ascorbic acid biosynthesis missing in this species. J Biol Chem 267:21967-72.
    Nylander, J. A. A.2004. MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Sweden.
    Pan, Y. H., Liao, C. C., Kuo, C. C., Duan, K. J., Liang, P. H., Yuan, H. S., Hu, S. T., and Chak, K. F.2006. The critical roles of polyamines in regulating ColE7 production and restricting ColE7 uptake of the colicin-producing Escherichia coli. JBiol Chem 281:13083-91.
    Pauling, L.1970. Evolution and the need for ascorbic acid. Proc Natl Acad Sci U S A 67:1643-8.
    Pauling, L.1971a. Ascorbic acid and the common cold. Am J Clin Nutr 24:1294-9.
    Pauling, L.1971b. The significance of the evidence about ascorbic acid and the common cold. Proc Natl Acad Sci U S A 68:2678-81.
    Pauling, L.1973. Ascorbic acid and the common cold. Scott Med J 18:1-2.
    Pollak, G. D. and Casseday, J. H.1989. The Neural Basis of Echolocation in Bats. Springer-Verlag, Berlin.
    Pollock, J. I. and Mullin, R. J.1987. Vitamin C biosynthesis in prosimians:evidence for the anthropoid affinity of Tarsius. Am J Phys Anthropol 73:65-70.
    Poux, C. and Douzery, E. J.2004. Primate phylogeny, evolutionary rate variations, and divergence times:a contribution from the nuclear gene IRBP. Am J Phys Anthropol 124:1-16.
    Proctor, P.1970. Similar functions of uric acid and ascorbate in man? Nature 228: 868.
    Ronquist, F. and Huelsenbeck, J. P.2003. MrBayes 3:Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-4.
    Roy, R. N. and Guha, B. C.1958a. Production of experimental scurvy in a bird species. Nature 182:1689-90.
    Roy, R. N. and Guha, B. C.1958b. Species difference in regard to the biosynthesis of ascorbic acid. Nature 182:319-20.
    Saitou, N. and Nei, M.1987. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406-25.
    Schnitzler, H. U., Moss, C. F., and Denzinger, A.2003. From spatial orientation to food acquisition in echolocating bats. Trends Ecol Evol 18: 386-94.
    Simmons, N. B.2005. Mammal species of the world:a taonomic and geographic references. Johns Hopkins University Press, Baltimore, MD.
    Springer, M. S., Teeling, E. C., Madsen, O., Stanhope, M. J., and de Jong, W. W. 2001. Integrated fossil and molecular data reconstruct bat echolocation. Proc Natl Acad Sci USA 98:6241-6.
    Stone, I.1979. Homo sapiens ascorbicus, a biochemically corrected robust human mutant. Med Hypotheses 5:711-21.
    Swofford, D. L.2003. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S.2007. MEGA4:Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596-9.
    Tamura, K., Nei, M., and Kumar, S.2004. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030-5.
    Tang, Z., Sheng, L., Cao, M., Liang, B., and Zhang, S.2005. Diet of Cynopterus sphinx and Rousettus leschenaultii in Xishuangbanna. Acta Theriologica Sinica 25:367-72.
    Teeling, E. C.2009. Hear, hear: the convergent evolution of echolocation in bats? Trends Ecol Evol 24:351-4.
    Teeling, E. C., Madsen, O., Van den Bussche, R. A., de Jong, W. W., Stanhope, M. J., and Springer, M. S.2002. Microbat paraphyly and the convergent evolution of a key innovation in Old World rhinolophoid microbats. Proc Natl Acad Sci U S A 99:1431-6.
    Teeling, E. C., Scally, M., Kao, D. J., Romagnoli, M. L., Springer, M. S., and Stanhope, M. J.2000. Molecular evidence regarding the origin of echo location and flight in bats. Nature 403:188-92.
    Teeling, E. C., Springer, M. S., Madsen, O., Bates, P., O'Brien S, J., and Murphy, W. J.2005. A molecular phylogeny for bats illuminates biogeography and the fossil record. Science 307:580-4.
    Thomas, J. A., Moss, C. F., and Vater, M.2003. Echolocation in Bats and Dolphins. University of Chicago Press, Chicago.
    Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. 1997. The CLUSTAL_X windows interface:flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25: 4876-82.
    Touhata, H., Toyohara, T., Mitani, M., Kinoshita, M., Satou, M., and Sakaguhi, M. 1995. Distribution of 1-gulono-1,4-lactone oxidase among fishes. Fish Sci 61: 729-730.
    Troadec, M. B. and Kaplan, J.2008. Some vertebrates go with the GLO. Cell 132: 921-2.
    Venturi, S., Donati, F. M., Venturi, A., and Venturi, M.2000. Environmental iodine deficiency:A challenge to the evolution of terrestrial life? Thyroid 10:727-9.
    Venturi, S. and Venturi, M.1999. Iodide, thyroid and stomach carcinogenesis: evolutionary story of a primitive antioxidant? Eur J Endocrinol 140:371-2.
    Wang, X., Grus, W. E., and Zhang, J.2006. Gene losses during human origins. PLoS Biol 4:e52.
    Wheeler, G. L., Jones, M. A., and Smirnoff, N.1998. The biosynthetic pathway of vitamin C in higher plants. Nature 393:365-9.
    Wu, X. W., Lee, C. C., Muzny, D. M., and Caskey, C. T.1989. Urate oxidase: primary structure and evolutionary implications. Proc Natl Acad Sci USA 86: 9412-6.
    Yang, Z.1997. PAML:a program package for phylogenetic analysis by maximum likelihood. Comput Appl Biosci 13:555-6.
    Yang, Z.1998. Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol 15:568-73.
    Yang, Z.2006. Computational Molecular Evolution. Oxford University Press, Oxford, England.
    Yang, Z.2007. PAML 4:phylogenetic analysis by maximum likelihood. Mol Biol Evol 24: 1586-91.
    Yang, Z. and Bielawski, J. P.2000. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 15: 496-503.
    Yang, Z., Kumar, S., and Nei, M.1995. A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141:1641-50.
    Yang, Z. and Nielsen, R.1998. Synonymous and nonsynonymous rate variation in nuclear genes of mammals. J Mol Evol 46:409-18.
    Yang, Z. and Nielsen, R.2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol Biol Evol 19: 908-17.
    Yess, N. J. and Hegste, D. M.1967. Biosynthesis of ascorbic acid in the acouchi and agouti. J Nutr 92:331-3.
    崔杰.2008.关于蝙蝠携带冠状病毒以及乙脑病毒的研究.河北师范大学硕士论文.
    韩颖达.2007.新型壳聚糖/抗坏血酸复合物的制备与应用性能研究.天津大学硕士论文.
    冯文亮.2008.维生素C发酵中混菌机制及新型伴生菌系的研究.河北科技大学硕士论文.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700