四川盆地苏云金芽胞杆菌cry和cyt基因的鉴定及其新型模式cry基因研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苏云金芽胞杆菌(Bacillus thuringiensis,简称Bt)是目前世界上应用范围最广的生防微生物,它在农作物、园艺植物、森林以及卫生害虫的防治方面得到广‘泛的应用。由于Bt杀虫基因的巨大应用价值,世界许多国家都将Bt新资源的收集、鉴定与开发作为重点,开展了大规模资源采集、分析的基础性工作。深入发掘我国丰富的Bt菌株和基因资源,筛选高毒力及特异性菌株,分离克隆新型杀虫基因,其结果不但可以为生产高效的Bt菌制剂和生产菌株的轮换提供后备菌株,也可以为构建高效广谱工程微生物和培育转基因抗虫植物带来基因资源。本研究立足具有独特生态环境和丰富生物多样性的四川盆地,对其Bt资源进行更为系统的调查研究,结果如下:
     1.采集四川盆地具有代表性的生态区土壤样品3834份,利用醋酸钠-抗生素法分离Bt菌1172株,平均分离率为13.9%。菌株的伴胞晶体有长(短)菱形、大(小)菱形、方形、球形和不定形等7种形状,充分显示了四川盆地Bt资源的多样性。采用PCR-RFLP鉴定方法对1172株菌株进行了cry和cyt基因的鉴定分析,共发现了cry1、cry2、cry3、cry9、cry8、cry4/10、cry30、cry40和cyt2等9种基因型;cryl和cry2型基因最丰富,分别占64%和39.4%; cry3、cry4/10、cry9、cry30和cyt2型含量较少;cry8和cry40类基因含量最少。对未鉴定出基因型的Bt菌株杀虫晶体蛋白进行了SDS-PAGE分析,结果表明这些菌株杀虫晶体蛋白类型存在多样性,可以推测这些菌株极有可能含不同的基因及基因组合。在PCR-RFLP鉴定过程中,发现菌株JF19-2、BtMc28、Hs18-1、Ywc2-8和Bm59-2含有新型模式cry基因。另外,本研究对部分Bt菌株进行了杀虫活性的测定,发现它们具有较宽的杀虫谱,对鳞翅目及双翅目害虫具有很好的杀虫活性。以上结果表明:四川生态区蕴藏着丰富而特别的Bt资源,为害虫的防治提供了基因及菌株资源。
     2.与Cryl类蛋白相比,Cry2A和Cyt类蛋白具有独特的结构和致病机制;另外,Cry2A和Cyt分别兼具较广的杀虫谱和对Cry类蛋白的协同作用等特性。因此本节首先对含cry2类基因的菌株的杀虫晶体蛋白进行分析,同时在鉴定四川盆地cry2和cyt2类基因基础之上,进一步对其基因的分布、基因的分型、以及新型基因的克隆和表达进行研究,结果表明:1)含cry2型基因的462个菌株主要分布在农田和森林之中,它们产生不规则形、棱形、方形和球状等4种伴胞晶体;通过SDS-PAGE分析可以看出,这些菌株主要表达4种不同的蛋白质,分子量为60—130 kDa之间;这些结果充分说明了四川盆地此类Bt菌株伴胞晶体蛋白具有多样性。2)PCR-RFLP分析表明,四川盆地含有3种不同的cry2基因类型:cry2Aa、cry2Ab和一个新型的cry2A类型(JF19-2菌株之中);3)本地区仅在森林土壤之中发现11个含cyt2类基因的Bt菌,通过PCR-RFLP鉴定表明,这些基因属于cyt2Aa基因类型;4)以JF19-2及BtMc28(含cyt2Aa基因)为出发菌,采用Tail-PCR和PCR技术分别获得新型的cry2A类和cyt2Aa基因的全长序列,并被国际Bt杀虫晶体蛋白基因命名委员会正式命名为cry2Ag1和cyt2Aa3基因;5) cry2Ag1和cyt2Aa3基因在大肠杆菌中得到了表达,其中cry2Ag1基因表达产物对小菜蛾,棉铃虫及伊蚊都具有较好的杀虫活性,因此Cry2Ag1蛋白可以做为一个轮换或替代蛋白应用于双翅目、鳞翅目害虫的控制以及在转基因植物等领域;而cyt2Aa3的基因表达产物仅对伊蚊具有杀虫活性。本节研究明确了四川盆地cry2和cyt2类基因的分布、类型,同时发现了两个最有较好杀虫活性的杀虫晶蛋白,其研究成果在农业生产上具有重要意义和应用前景。
     3.含有新型的杀虫基因的BtMc28、Bm59-2、Hs18-1和Ywc2-8分别来自沐川原始森林、碧峰峡自然保护区、海螺沟冰川原始森林。本节对这4株Bt菌进行了生物学特性鉴定、新型模式基因克隆与表达研究。1)通过扫描电镜观察,这些菌株均产生球状晶体;2) SDS-PAGE分析结果显示,BtMc28主要表达3种分子量约为130、70和28 kDa的蛋白质,Ywc2-8与Hs18-1菌株均主要表达分子量为130和70 kDa的2种蛋白质,而Bm59-2只产生一种约70kDa的蛋白质;3)这4个菌株的质粒图谱在带型和大小上都存在很大差异(Hs18-1与Ywc2-8除外),这们的质粒图谱都与对照菌不一样;4)这4个菌株的鞭毛生长情况、生理生化特性和碳源利用,同所报道的Bt菌类似;H血清型鉴定结果显示,BtMc28、HS18-1和Ywc2-8菌株为新的血清型亚种,命名为:Bt serovar sichuansis, Bt serovar muchuansis, Bt serovar yaansis;Bm59-2属于血清型为H22的B.thuringiensis serovar shandongiensis亚种。5)运用SON-PCR. Tail-PCR以及PCR技术分别从BtMc28、Hs18-1、Ywc2-8和Bm59-2中克隆了11个新型基因(其中8个为新型模式基因),并获正式命名;这几个菌株在杀虫基因组成上存在差异(BtMc28含cry54Aa1、cry53Ab1、cry30Fa1、cry4Cc1、cyt2Aa3、Hs18-1含cry54Ba类,cry30Ga1、cry4Cb1;Ywc2-8含cry56Aa1、cry4Cb2、cry30Ea2、Bm59-2含cry52Ba1); 6) cry56Aa1、cry54Aa、cry52Ba1、cry30Fa1、cry30Ga1和cry4Cb1基因在大肠杆菌中得到了表达;生测结果表明,Cry56Aa1、Cry54Aa1、Cry52Ba1、Cry30Fa1和Cry30Ga1具有较宽的杀虫谱,它们对鳞翅目及双翅目害虫具有杀虫活性,其中Cry56Aa1的杀虫谱最宽,它对小菜蛾、棉铃虫和伊蚊都具很好的活性。综上所述,通过对这4个菌株的生物学特性、杀虫蛋白基因的分析和表达研究,其研究结果可以为进一步利用这几株菌,提供一定技术支持和理论依据;新菌株、新型杀虫蛋白基因的分离和克隆在降低害虫抗性风险、提升我国的害虫生物防治和转基因抗虫植物在国际上的竞争力等方面,具有重要的意义。
Bacillus thuringiensis (Bt) is the most widely used insecticidal microorganism, which has been successfully used to control the pests in the areas of crop, horticultural crop, forest, and sanitation. Therefore, many countries were interesting to dig the resources of Bt strains and insecticidal crystal proteins. To further dig abundant resource of Bt in our country, screen high toxicity and specific strains, isolate and clone novel pesticidal genes will have important meanings in developing microbial insecticides, constructing high toxicity and broad-spectrum engineering strains and breeding insect resistant transgenic plants. This study described a systematic study of Bt resources in different ecological regions in Sichuan Basin. The concrete results are as follows:
     1. Sichuan Basin situated in the west of China, the fourth-largest basin of China, is a special area with complicated geomorphology (mountain, pasture, gorge, virgin forest, highland, hurst, glacier, and plain), and contains a rich and unique biodiversity. In total,8418 aerobic sporeformers strains have been isolated from 3834 soil samples collected from different typically ecological regions in Sichuan Basin.13.9% of the isolates were identified as Bt basing on the production of parasporal crystals. A total of 1172 Bt strains have been screened from 3834 soil samples. These Bt strains produced bipyramidal, square, round, and irregular crystal inclusions observed under scanning electron microscopy, indicating the diversity of Bt strains harboured in Sichuan Basin. The analysis of the cry and cyt genes was based on the method of PCR-restriction fragment length polymorphism (PCR-RFLP). cry1, cry2, cry3, cry4/10, cry9, cry8, cry30, cry40, and cyt2-type genes were found in this basin. Strains containing cry1 genes were the most abundant in our collection (66%). Bt strains harboring cry2 genes were the second most abundant (39.4%), and the strains containing cry3, cry4/10, cry9, cry30, and cyt2 genes were found in 1.8,4.1,4.2,3.2, and 1.2%, respectively. The cry8 and cry40 were the least in our collection. Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) assay of 80 strains which did not produce any PCR products indicated that these strains may harbor potentially novel Cry proteins. Further more, several novel holotype cry genes were found in these strains (JF19-2, BtMc28, Hs18-1, Ywc2-8, and Bm59-2) by the PCR-RFLP and sequencing analysis. In addition, the results of insecticidal activity of some Bt strains showed that strains exhibited a wide range of insecticidal spectrum toxic to dipteran and lepidopteran pests. All these researches mentioned above revealed that the diversity and particularity of gene resources from Bt in Sichuan Basin.
     2. Cry2-type proteins were different from Cry 1-type not only in structure, but also in pesticidal mechanism. In addition, Cry2 and Cyt protein have the feature of wide range of insecticidal spectrum and enhancing the toxin activity of Cry protein, respectively. First of all, we studied the insecticidal crystal proteins of Bt strains which harbored cry2-type genes. Base on the results of identification of cry 2 and cyt2 gene of all collections in Sichuan Basin, we further analyzed the distribution and gene types of cry2 and cyt2. In addition, two novel pesticidal protein genes were cloned and expressed. The results are as follows:1) 462 Bt strains harbored cry2-type genes, which produced erose, spherical, bipyramidal, and square crystal. The SDS-PAGE analysis of their spore-crystal suspensions revealed that there were four different protein profiles, which had one or two major protein bands with the molecular weights ranged from about 60 to 130 kDa. All these researches mentioned above revealed the diversity and particularity of cry2-type gene resources from Bt strains in Sichuan basin.2) The result of PCR-RFLP showed that Sichuan Basin has three different cry2A-type genes, such as cry2Aa, cry2Ab, a novel cry2A-type gene:the combination of cry2Aa/cry2Ab genes was the most frequent (75.5%), followed by cry2Aa (21.2%) and cry2Ab (3.3%) alone, and one novel type of cry2 gene was cloned from one isolate (JF19-2).3) Only 11 Bt strains contained cyt genes, which was mainly distributed in the soil of forest, and the results of PCR-RFLP indicated that these cyt genes belong to cyt2Aa; 4) The full-length of this novel cry 2A-type gene from JF19-2 and cyt2Aa from BtMc28 was obtained by the method of thermal asymmetric interlaced PCR (Tail-PCR) and PCR, respectively, which were designated as cry2Agl and cyt2Aa3 by the Bt Pesticide Crystal Protein Nomenclature Committee, respectively.5) cry2Ag1 was expressed in E. coli BL21(DE3)pLysS cells, and the results of insecticidal activity assays showed that Cry2Ag1 was toxic to both Dipteran (Aedes aegypti) and Lepidopteran (Plutella xylostella and Helicoverpa armigera) pests. These results strongly suggest that the cloning of the cry2Ag1 gene is not only of interest to researchers studying insecticidal crystal genes, but may ultimately serve as a solution to the increasing resistance of pests to currently used insecticides. However, Cyt2Aa3 was only toxic to Aedes aegypti. These researches are useful for understanding the distribution of cry2-type genes, the features of Bt strains containing cry2-type genes in Sichuan basin, and the insecticidal of the two novel proteins, which may have important meanings in theories and practices.
     3. Four Bt strains (BtMc28, Bm59-2, Hs18-1 and Ywc2-8) harbored holotype cry genes were isolated from Mu Chuan virgin forest, Bi Feng Gorge natural protection area, and Hai Luo Glacier virgin forest, respectively. In this part, the biological characteristics of these four strains were identified, and the holotype cry genes from these strains were also cloned and successfully expressed in E. coli BL21 (DE3) pLysS cells. All the results are as follows:1) These four strains produced round crystal inclusions observed under scanning electron microscopy; 2) the results of SDS-PAGE analysis revealed that BtMc28 had three major proteins of about 28,70 and 130 kDa, Hsl8-1 and Ywc2-8 both had two major proteins of about 70 and 130 kDa, and Bm59-2 only had about 70 kDa protein.3) The plasmid patterns of these four strains were different from the reference Bt, and the plasmid patterns of Hs 18-1 and Ywc2-8 were similar to each other.4) the results of the identification of flagellum, the physiology and biochemistry test, and the Biolog test of these four strains conformed to the reference Bt strains, but the result of serotype test showed that H antigen of BtMc28, Hs18-1, and Ywc2-8 did not have agglutination reaction with antiserum of reference Bt strains, which indicated that BtMc28, HS18-1, and Ywc2-8 are new H serotypes. In addition, serotype test also showed that Bm59-2 was B. thuringiensis serovar shandongiensis.5) By the methods of SON-PCR, Tail-PCR, and PCR, the full length of 11 novel cry genes were obtained, which were designated as cry56Aa1, cry54Aa, cry54Ba-type, cry53Ab1, cry52Ba1, cry30Fa1, cry30Ea2, cry30Ga1, cry4Cb1, cry4Cb2, and cry4Cc1, respectively.6) cry56Aa1, cty54Aa1, cry52Ba1, cry30Fa1, cry30Ga1, and cry4Cb1 were expressed in E. coli BL21(DE3)pLysS cells. The results of insecticidal activity assays showed that Cry56Aa1, Cry54Aa, Cry52Ba1, Cry30Fa1, and Cry30Ga1 have a wide range of insecticidal spectrum toxic to dipteran and lepidopteran pests. Especially, Cry56Aa1 has the widest insecticidal spectrum, which was toxic to Aedes aegypti, Plutella xylostella, and Helicoverpa armigera. In conclusion, the studying of the biological characteristics of these strains, the analyzing of insecticidal crystal protein genes, and the expression of the holotype cry genes will have important meanings in theories and practices for further using these strains. Our results strongly suggest that the gene is not only a novel resource in the research of insecticidal crystal genes, but it may also serve as an alternative toxin for potential problems associated with insect resistance. The isolation of new Bt strains and toxins continues to benefit the further development of Cry proteins as competitive biological insecticides and breed insect resistant transgenic plants.
引文
[1]IEBC (International Entomopathogenic Bacillus Center).1998. France:Unite'des bacte'ries entomopathoge'nes, Institut Pasteur, Catalogue No.1.
    [2]Arturo, R. R., Jorge, E. Fingerprinting of Bacillus thuringiensis type strains and isolates by using Bacillus cereus group-specific repetitive extragenic palindromic sequence-based PCR analysis. Appl. Environ, Microbiol.,2005,74(1):1346-1355.
    [3]Smith, R. A., Couche, G. A. The phyllo plane as a source of Bacillus thuringiensis variants. Appl. Environ. Microbiol.,1991,57:311-315.
    [4]Schnepf, E., N. Crickmore, J. Van Rie Lereclus et al. Bacillus thuringiensis and its Pesticidal Crystal Protein. Microbiol. Mol. Biol. Rev.,1998,62:3775-3806.
    [5]Iriarte, J., Porcar, M., Lecadet, M. et al.Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr. Microbiol.,2000, 40(6):402-408.
    [6]Chen, F. C., Tsai, M. C., Peng, C. H., et al. Dissection of cry gene profiles of Bacillus thuringiensis isolates in Taiwan. Curr. Microbiol.,2004,48(4):270-275.
    [7]Jara, S., Maduell, P., Orduz, S. Diversity of Bacillus thuringiensis strains in the maize and bean phylloplane and their respective soils in Colombia. J.Appl. Microbiol., 2006,101(1):117-24.
    [8]Jouzani, G. S., Abad, A. P., Seifinejad, A., et al. Distribution and diversity of Dipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J. Ind. Microbiol. Biotechnol.,2008,35(2):83-94
    [9]Ohba, M., Shisa, N., Thaithanun, S., et al. A unique feature of Bacillus thuringiensis H-serotype flora in soils of a volcanic island of Japan. J.Gen.Appl. Microbiol.,2002,48 (4):233-235.
    [10]Maeda, M., Mizuki, E., Nakamura, Y., et al. Recovery of Bacillus thuringiensis from marine sediments of Japan. Curr. Microbiol.,2000,40(6):418-422.
    [11]Takeshi, I., Tomonori, I., Ken, S., et al. Cloning and expression of two crystal protein genes, cry30Ba1 and cry44Aa1, obtained from a highly mosquitocidal strain, Bacillus thuringiensis subsp. entomocidus INA288. Appl. Environ. Microbiol.,2006, 72(8):5673-5676.
    [12]Yu, H., Zhang, J., Huang, D. F. et al. Characterization of Bacillus thuringiensis strain Bt185 toxic to the Asian cockchafer:Holotrichia parallela. Curr. Microbiol., 2006,53:13-17.
    [13]Tan, F.R., Zhu, J., Tang, J., et al. Cloning and characterization of two novel crystal protein genes, cry54Aal and cry30Fal, from Bacillus thuringiensis strain BtMc28. Curr. Microbiol.,2009,58 (6):654-659.
    [14]Kotze, A. C, O'Grady, J., Gough, J. M., et al. Toxicity of Bacillus thuringiensis to parasitic and free-living life-stages of nematode parasites of livestock. Int. J. Parasitol.,2005,35:1013-1022
    [15]Guo, S.X., Liu, M., Peng, D.H., et al. New strategy for isolating novel nematicidal crystal protein genes from Bacillus thuringiensis strain YBT-1518. Appl. Environ. Microbiol,2008,74(22):6997-7001
    [16]Crickmore, N, Zeigler, D. R, Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev,1998,62: 807-813.
    [17]Zheng, D.S, Valdez-Cruz, N.A, Armengol, G. Co-expression of the mosquitocidal toxins Cyt1Aa and Cry11Aa from Bacillus thuringiensis Subsp. israelensis in Asticcacaulis excentricus. Curr Microbiol,2007,54:58-62.
    [18]Feitelson, J. S. The Bacillus thuringiensis family tree. In:Kim, L. (Ed.) Advanced Engineered Pesticides. Marcel Dekker. New York,1993,63-72.
    [19]Pinto, L. M, Azambuja, A. O, Diehl, E. et al. Pathogenicity of Bacillus thuringiensis isolated from two species of Acromyrmex (Hymenoptera, Formicidae). Braz. J. Biol,2003,63(2):301-306.
    [20]Baroy, F, Lecadet, M. M, Deleluse, A. Cloning and sequencing of three new putative toxin genes from Clostridium befermentans. Gene,1998,211:293-295.
    [21]Ishiwata, S. On a kind of severe flacherie (sotto disease). Dainihon Sanshi Kaiho. 1901,114:1-5.
    [22]Berliner, E. Uber die schlaffsucht der mehlmottenraupe. Zeitschrift fur das gesamte Getreidewesen,1911, (2):29-56.
    [23]Sudakin, D. L., Biopesticides. Toxicol Rev,2003,22(2):83-90.
    [24]Hannay, C. L. Crystalline inclusion in aerobic sporeforming bacteria. Nature,1953, 172:1004.
    [25]Hannay, C. L., Fitz-jame, P. C. The protein crystals of Bacillus thuringiensis Berliner. Can. J. Microbiol.,1955, (1):694-710.
    [26]喻子牛.苏云金杆菌。科学出版社,1990。
    [27]Dulmage, H. T., Insecticidal activity of HD-1, a new isolate of Bacillus thuringiensis. J. Invertebr. Pathol.,1970, (15):232-239.
    [28]Bebabov, V. Q., Azizbekyrcen, R. R., Kiebalina, O. I. et al. Isolation and preliminary characterization of extra chromosomal elements of Bacillus thuringiensis DNA. Genetika,1977, (13):496-501.
    [29]Galushka, F. P., Azizbekyrcen, R. R., Investigation of plasmids different varians of Bacillus thuringiensis. Dokl. Skad. Nauk (USSR).,1977,236:1233-1235.
    [30]Schnepf, E., and Whiteley, H. R. Cloning and expression of the Bacillus thuringiensis crystal protein gene in E. coli. Proceed. Nat. Acad. Scien.,1981,78: 2893-2897.
    [31]Hofte, H., Whiteley, H.R. Insecticidal crystal protein of Bacillus thuringiensis. Microbiol. Rev.,1989,53:242-255.
    [32]http://www.biols.susx.ac.uk/home/Neil_Crickmore/Bt/index.htm.2008.
    [33]Song, F., Zhang, J., Gu, A., et al. Identification of cry1I-type genes from Bacillus thuringiensis strains and characterization of a novel cry1I-type gene. Appl. Environ. Microbiol.,2003,69 (9):5207-5211.
    [34]谭寿湖,张文飞,叶大。苏云金芽孢杆菌基因组研究概况。基因组学与应用生物学,2009,28(1):202-208。
    [35]李荣森,陈涛。几种苏云金芽胞杆菌的毒力及形态结构。微生物学报,1981,21(3):311-317。
    [36]Donovan, W. P., GonzalezJ, M. J., Gilbert, M. P., et al. Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to Coleopteran larvae, and nucleotide sequence of the toxin gene. Mol. Gen. Genet., 1988,214(3):365-372.
    [37]Rodriguez-Padilla, C., Galan-Wong, L., de Barjac, H., et al. Bacillus thuringiensis subspecies neoleonensis serotype H-24, a new subspecies which produces a triangular crystal. J. Invertebr. Pathol.,1990,56(2):280-282.
    [38]Calabrese, D. M., Nickerson, K. W., Lane, L. C. A comparison of protein crystal subunit sizes Bacillus thuringiensis. Can. J. Microbiol.,1980,26:1006-1010.
    [39]任改信,冯喜吕,冯维熊。苏云金杆菌伴胞晶体的形态及抗原特性体。微生物学报,1983,23(1):57-62。
    [40]Anwar, H. M., Ahmed, S., Hoque, S. Abundance and distribution of Bacillus thuringiensis in the agricultural soil of Bangladesh. J. Invertebr. Pathol.,1997,70: 221-225.
    [41]Leckie, S. E., Prescott, C. E., Grayston, S. J. et al. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability. Microb. Ecol.,2004,48 (1):29-40.
    [42]Wang, J., Boets, A., Van, R. J. et al. Characterization of cry1, cry2, and cry9 genes in Bacillusthuringiensis isolates from China. J. Invertebr. Pathol.,2003,82 (1): 63-71.
    [43]Bergey, John, G.G., Noel, R.K. et al. Bergey's manual of determinative bacteriology [M].9th ed. Lippincott,1994.
    [44]Khyami H.H., Hajaij, M., Charles, J.F. Characterization of Bacillus thuringiensis ser. jordanica (serotype H71), a novel serovariety isolated in Jordan. Curr. Microbiol., 2003,47(1):26-31.
    [45]Beron, C.M., Curattil, Salerno, G.L. New strategy for identification of novel cry1 type genes from Bacillus thuringiensis strains. Appl. Environ. Microbiol.,2005, 71(2):761-765.
    [46]张文成,陈月华,任改新。我国粮食粉尘中苏芸金芽孢杆菌的分离及H血清型鉴定。武警医学院学报,2004,13(5):351-353。
    [47]黄健屏,杨婵君,唐炜臻,等。苏云金杆菌印第安变种和九州变种的酯酶分析。微生物学通报,1984,3:97-99。
    [48]戴莲韵,王学聘。苏云金芽孢杆菌研究进展[M]。北京:科学出版社,1997:15-20。
    [49]Xu, D., Cote, J.C. Sequence diversity of the Bacillus thuringiensis and B. cereus sensu lato flagellin (H Antigen) protein:Comparison with H serotype diversity. Appl. Environ. Microbiol.,2006,72 (2):4653-4662.
    [50]Crickmore, N., Zeigler, D. R., Feitelson, J. et al. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Mol. Boil. Rev.,1998,62: 807-813.
    [51]Knowles, B.H., Blatt, M.R.,Tester, M, et al. A cytolyfcd dlta-endotoxin from Bacillus thingiensis var. israelensis forms cation-selective channals in planar lipid bilayes. FEBS Lett.,1989,244:259-262.
    [52]Federici, B.A., Bauer, L.S. Cyt1 Aa protein of Bacillus thuringiensisis toxic to the coton wood leaf beetle, Chrysomela scripta, and suppresses high levels of resistance to Cry3Aa. Appl. Environ.Microbiol.,1998,64:4368-4371.
    [53]Al-yahaee, S. A. and Ellar, D. J. Cell targeting of a pore-forning toxin, Cyt d-endotoxin from Bacillus thuringiensis subspecies israelensis, by conjugating CytA with anti-Thy 1 monoclonal antibodies and insulin. Bioconjug. Chem.,1996,7: 451-460.
    [54]Goldberg, L.J., Margalit, J. A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univitattus, Aedes aegypti, and Culex pipiens. Mosq. News.,1977,37:355-358.
    [55]Guerchicoff, A., Ugalde, R.A., Rubinstein, C.P. Identification and characterization of a previously undescribed cyt gene in Bacillus thuringiensis subsp. israelensis. Appl. Environ. Microbiol,1997,63 (7):2716-2721.
    [56]Wong, H. C., Schnepf, H. E, Whiteley, H. R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J. Biol. Chem,1983,258: 1960-1967.
    [57]Baum, J. A., Malvar, T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol. Microbiol,1995,18:1-12.
    [58]Lampel, J. S., Ganter, G. L., Dimock, M. B. et al. Integrative cloning, expression, and stability of the crylA(c) gene from Bacillus thuringiensis sub. kurstaki in arecombinant strain of Clavibacterxyli subsp. cynodontis. Appl. Environ. Microbiol, 1994,60:501-508.
    [59]Agaisse, H., Lereclus, D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? Journal of Bacteriology,1995,177:6027-6032.
    [60]Liu, Z. D., Yu, Z. N. Progress in the studies on the action mechanism of Bacillus thuringiensis and insecticidal crystal protein. Acta. Entomol. Sin.,2000,43 (2): 207-213.
    [61]程萍,王清锋,喻子牛。苏云金芽胞杆菌杀虫晶体蛋白基因的启动子及其转录调控。微生物学通报,1999,26:130-134。
    [62]Agaisse, H., Lereclus, D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryⅢA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant. J. Bacteriol.,1994,176:4734-4741.
    [63]Brown, R. L., Whiteley, H. R. Isolation of a Bacillus thuringiensis RNA polymerase capable of transcribing crystal protein genes. Proc. Natl. Acad. Sci.,1988, 85:4166-4170.
    [64]Brown, K. L. Transcriptional regulation of the Bacillus thuringiensis subsp. thompsoni crystal protein gene operon. J. Bacteriol.,1993,175(24):7951-7957.
    [65]Glatron, M. F., Rapoport, G. Biosynthesis of the parasporal inclusion of half-life of its corresponding messenger RNA. Biochemistry,1972,54:1291-1301.
    [66]Nierlich, D. P., Murakawa, G. J. The decay of bacterial messenger RNA. Prog. Nucl. Acid. Res. Mol. Biol.,1996,52:153-216.
    [67]Donovan, W. P., Tan, Y. P., Slaney, C. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo Deletion of nprA on insecticidal crystal protein. Appl. Environ. Microbiol.,1997,63:2311-2317.
    [68]Park, H.W., Bideshi, D.K., Federici, B.A. Molecular genetic manipulation of truncated Cry1C protein synthesis in Bacillus thuringiensis to improve stability and yield. Appl. Environ. Microbiol.,2000,66(10):4449-4455.
    [69]Bietlot, H. P., Vishnubhatla, I., Carey, P. R. et al. Characteirzation of the cysteine residues and disulfides linkages in the protein crystal of Bacillus thuringiensis. Biochem. J.,1990,267:309-316.
    [70]Berharsd, K. Studies on the d-endotoxin of Bacillus thuringiensis Var. tenebironis. FEMS Microbiol. Lett.,1986,33:261-265.
    [71]Wu, D., Federici, B. A. Improved production of the insecticidal CryIVD protein in Bacillus thuringiensis using crylA(c) promoters to express the gene for an associated 20-kDa protein. Appl. Microbiol. Biotechnol.,1995,42:697-702.
    [72]Tan, Y. P., Donovan, W. P. Deletion of aprA and nprA genes for alkaline protease A and neutral protease A from Bacillus thuringiensis:effect on insecticidal crystal proteins. J. Biotechnol.,2000,84:67-72.
    [73]Admas, L.F., Jonathan, E.V., Whitely, H.R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp. israelensis 27-kilodalton crystal protein in Escherichia coli. J. Bacteriol.,1989,171(1):521-530.
    [74]Visick, J.E., Whitely, H.R. Effect of a 20kD protein from Bacillus thuringiensis subsp. israelensis on production of the CytA protein by Escherichia coli. J. Bacteriol., 1991,173:1748-1756.
    [75]Cheng, C, Dai, S.M. Frutos, R., et al. Properties of 72-kilodalton mosquitocidal protein from Bacillus thuringiensis subsp. morrisoni PG-14 expression in B.thuringiensis subsp.kurstaki by using the shuttle vector pHT3101. Appl. Environ. Microbiol.,1992,58:507-512.
    [76]Cheng, C, Yong-Man, Y., Shu-Mei, D., et al. High-level cryIVD and cytA gene experssion in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl. Environ. Microbiol.,1993,59 (3):815-821.
    [77]Wu, D., and Federici, B.A. A 20-kilodalton portein preserves cell viability and promotes CytA crystal formation durings porulation in Bacillus thuringiensis. J. Bacteriol.,1993,175 (16):5276-5280.
    [78]Crickmore, N., Bone, E.J., William, J.A., et al. Contribution of the individual components of the d-endotoxin crystal to the mosquitocidal activity of Bacillus thuringiensis subsp.israelensis.FEMS Microbiol. Lett.,1995,131:249-254.
    [79]Martin, J. Protein folding assisted by the GroEL/GroES chaperonin system. Biochim.,1998,63:374-381.
    [80]Sigler, P.B. Xu, Z., Rye. H.S. et al. Structure and function in GroEL-mediated protein.Annu. Rev. Biochem.,1998,67:581-608.
    [81]Kandror, O., Busconi, L., Sherman, M. et al. Rapid degradation of an abnormal protein in Escherichia coli in volves the chaperons GroEL and GroES. J. Biol. Chem., 1994,269:23575-23582.
    [82]Manasherob, R., Zaritsky, A., Ben-Dov, E. et al. Effect of accessory protein P19 and P20 on cytolytic activity of Cyt1Aa from Bacillus thuringiensis subsp.israelensis in Escherichia coli.Curr. Microbial.,2001,43:355-364.
    [83]Li, J., Koni, P.A., Ellar, D.J. Structure of the mosquitocidal d-endotoxin CytB from Bacillus thuringiensis subsp.kyushuensis and implication form embrane pore formation. J. Mol.Biol.,1996,25 (7):129-152.
    [84]闫贵欣.对金龟甲科、叶甲科害虫高毒力苏云金芽胞杆菌杀虫基因及工程菌的研究[博士论文]。北京,中国农业科学院,2009。
    [85]Brown, K.L. and Whiteley, H.R. Molecular characterization of two novel crystal protein genes from Bacillus thuringiensis subsp. thompsoni. J. Bacteriol.,1992,174 (2):549-557.
    [86]Tan F.R., Zheng, A.P., Zhu, J., et al. Rapid Cloning, Identification and Application of One Novel Crystal Protein Gene cry30Fa1 from Bacillus thuringiensis. FEMS Microbiol. Lett.,2010,32:46-51.
    [87]Zhu, J., Zheng, A.P., Wang, S.Q., et al. Cloning and characterization of two novel crystal protein genes, cry4Cbl and cry30Gal, from Bacillus thuringiensis strain HS18-1. J. Invertebr. Pathol.,2010,103:200-202.
    [88]Balasubramanian, P., Jayakumar, R., Shambharkar, P., et al. Cloning and characterization of the crystal protein-encoding gene of Bacillus thuringiensis subsp. yunnanensis. Appl. Environ. Microbiol.,2002,60(1):408-411.
    [89]Abad, A.R., Duck, N.B., Feng, X., et al. Genes encoding novel proteins with pesticidal activity againstcoleopterans Patent:WO 0234774-A 02-MAY-2002.
    [90]Zhu, J., Zheng, A.P., Tan, F.R., et al. Characterisation and expression of a novel holotype crystal protein gene, cry56Aal, from Bacillus thuringiensis strain Ywc2-8. Biotechnol. Lett.,2010,32:283-288.
    [91]Bravo, A., Sarabia, S., Lopez, L., Characterization of cry genes in a Mexican Bacillus thuringiensis strain collection. Appl. Environ. Microbiol.,1998,64(12): 4965-4972.
    [92]Chen, Y., Ren, G., Wu, W. et al. Characterization of cry gene and broad spectrum against Lepidopteran of Bacillus thuringiensis subsp. colmeri 15A3. Wei Sheng Wu XueBao,2002,42(2):169-174.
    [93]Hernandez, C. S., Andrew, R., Bel, Y. et al. Isolation and toxicity of Bacillus thuringiensis from potato-growing areas in Bolivia. J. Invertebr. Pathol.,2005,88(1): 8-16.
    [94]Zhang, J., Hodgman, T.C., Krieger, L., et al. Cloning and analysis of the first cry gene from Bacillus popilliae. J. Bacteriol.,1997,179(13):4336-4341.
    [95]Wirth, M. C, Park, H. W., Walton, W. R, et al Cyt1A of Bacillus thuringiensis delays evolution of resistance to Cry11A in the mosquito Culex quinquejasciarus. Appl. Environ. Microbiol.,2005,71(1):185-189.
    [96]Tuntitippawan, T., Boonserm, P., Katzenmeier, G., et al.Targeted mutagenesis of loop residues in the receptor-binding domain of the Bacillus thuringiensis Cry4Ba toxin affects larvicidal activity. FEMS Microbiol. Lett.,2005,242(2):325-332.
    [97]Wirth, M. C, Delecluse., Walton, W. E. Laboratory selection for resistance to Bacillus thuringiensis sabsp.jegathesan or a component toxin, Cry 11B, in Culex quinquejasciatus (Diptera:Culicidae). J. Med. Entomol.,2004,41 (3):435-441.
    [98]Zheng, A.P., Zhu, J., Tan F.R., et al. Characterisation and expression of a novel haplotype cry2A-type gene from Bacillus thuringiensis strain JF19-2. Ann. Microbiol., 2010,60(1):129-134.
    [99]Barloy, F., Delecluse, A., Nicolas, L., et al. Cloning and expression of the first anaerobic toxin gene from Clostridium bifermentans subsp. malaysia, encoding a new mosquitocidal protein with homologies to Bacillus thuringiensis d-endotoxins. J. Bacteriol.,1996,178(11):3099-3105.
    [100]Juarez-Perez, V., Porcar,M., Orduz, S., et al. Cry29A and Cry30A:two novel d-endotoxins isolated from Bacillus thuringiensis serovar Medellin. Syst.Appl. Microbiol.,2003,26 (4):502-504.
    [101]Rosso, M.L., and Delecluse, A. Contribution of the 65-kilodalton protein encoded by the cloned gene cry 19A to the mosquitocidal activity of Bacillus thuringiensis subsp. jegathesan. Appl. Environ. Microbiol.,1997,63 (11):4449-4455.
    [102]Lee, H.K., and Gill, S.S. Molecular cloning and characterization of a novel mosquitocidal protein gene from Bacillus thuringiensis subsp. fukuokaensis. Appl. Environ. Microbiol,1997,63 (12):4664-4670.
    [103]Brizzard, B.L., Whiteley, H.R. Nucleotide sequence of an additional crystal protein gene cloned from Bacillus thuringiensis subsp. thuringiensis..Nucleic Acids Res.,1998,16 (6):2723-2724.
    [104]Griffitts, J. S., Haslam, S. M., Yang, T., et al. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science,2005,307:922-925.
    [105]Ellis,R.T., Stockhoff, B.A., Stamp,L., et al. Novel Bacillus thuringiensis binary insecticidal crystal proteins active on western corn rootworm, Diabrotica virgifera virgifera LeConte.Appl. Environ. Microbiol.,2002,68 (3):1137-1145.
    [106]Payne, J., Narva, K.E., Fu, J. Bacillus thuringiensis genes encoding nematode-active toxins.Patent:US 5589382-A,1996.
    [107]Akiba, T., Abe, Y., Kitada, S., et al. Crystallization of parasporin-2, a Bacillus thuringiensis crystal protein with selective cytocidal activity against human cells. Acta Cryst,2004,60:2355-2357.
    [108]Katayama, H., Yokota, H., Akao, T., et al. Parasporin-1, a novel cytotoxic protein to human cells from non-insecticidal parasporal inclusions of Bacillus thuringiensis. J. Biochem.,2005,137:17-25.
    [109]Okumura, S., Saitoh, H., Ishikawa, T., et al. Identification of a Novel Cytotoxic Protein, Cry45Aa, from Bacillus thuringiensis A1470 and Its Selective Cytotoxic Activity against Various Mammalian Cell Lines. J. Agric. Food Chem.,2005,53: 6313-6318.
    [110]Amano, H., Yamagiwa, M., Akao, T., et al. A novel 29-kDa crystal protein from Bacillus thuringiensis induces caspase activation and cell death of Jurkat T cells. Biosci. Biotechnol. Biochem.,2005,69:2063-2072.
    [111]Saitoh, H., Okumura, S., Ishikawa, T., et al. Investigation of a novel Bacillus thuringiensis gene encoding a parasporal protein, parasporin-4, that preferentially kills leukaemic T cells. Biosci. Biotechnol. Biochem.,2006,70:2935-2941.
    [112]Okumura, S., Saitoh, H., Wasano, N., et al. Efficient Solubilization, activation and purification of recombinant Cry45Aa of Bacillus thuringiensis expressed as an Escherichia coli inclusion body. Protein Expres. Purif.,2006,47:144-151.
    [113]Kitada, S., Abe, Y., Shimada, H., et al. A. Cytocidal Actions of Parasporin-2, an Anti-tumor Crystal Toxin from Bacillus thuringiensis. J. Biol. Chem.,2006,281: 26350-26360.
    [114]Jung, Y.C., Mizuki, E., Akao, T., et al. Isolation and Characterization of a novel Bacillus thuringiensis strain expressing a novel crystal protein with cytocidal activity against human cancer cells. J. Appl. Microbiol.,2007,103:65-79.
    [115]Ichikawa, M., Uemori, A., Ohgushi, A., et al. Phenotypic and morphometric characterization of Bacillus thuringiensis parasporin-1 producers:a comparison with insecticidal Cry-protein producers. J. Fac. Agr. Kyushu Univ.,2007,52:307-313.
    [116]Hayakawa, T., Kanagawa, R., Kotani, Y., et al. Parasporin-2Ab, a newly isolated cytotoxic crystal protein from Bacillus thuringiensis. Curr. Microbiol.,2007, 55:278-283.
    [117]Uemori, A., Ohgushi, A., Yasutake, K., et al. Parasporin-1 Ab, a novel Bacillus thuringiensis cytotoxin preferentially active on human cancer cells in vitro. Anticancer Research,2008,28:91-95.
    [118]Inouye, K., Okumura, S. Mizuki, E., Parasporin-4, A novel cancer cell-killing protein produced by Bacillus thuringiensis. Food Science and Biotechnology,2008, 17,219-227.
    [119]Abe, Y., Shimada, H. Kitada, S. Raft-targeting and oligomerization of Parasporin-2, a Bacillus thuringiensis crystal protein with anti-tumour activity. J. Biochem.,143:269-275.
    [120]Okumura, S., Saitoh, H., Ishikawa, T., et al. Identification and characterization of a novel cytotoxic protein, parasporin-4, produced by Bacillus thuringiensis A1470 strain. Biotechnol. Annu. Rev.,2008,14:225-252.
    [121]Carozzi, N.B., Kramer, V.C., Warren, G.W. et al. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol.,1993,59 (5):1683-1687.
    [122]Ibarra, J.E., del Rincon, M.C., Orduz,S., et al. Diversity of Bacillus thuringiensis strains from Latin America with insecticidal activity against different mosquito species, Appl. Environ. Microbiol.,2003,69:5269-5274.
    [123]Wu,Y., Gao, M.Y., Dai, S.Y., et al. Investigation of the cyt gene in Bacillus thuringiensis and the biological activities of Bt isolates from the soil of China. Biological Control,2008,47(3):335-339.
    [124]Kuo, W. S., Chak, K. F. Identifcation of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Appl. Environ. Microbiol.,1996,62 (4):1369-1377.
    [125]Song, F. P., Huang, D., Zhang, J. et al. Identification of cry gene from Bacillus thuringiensis by PCR-RFLP system.30th Annual society for invertebrate pathology, 1997.
    [126]Sauka, D.H., Cozzi, J.G., Benintende, GB. Screening of cry2 genes in Bacillus thuringiensis isolates from Argentina. Antonie Van Leeuwenhoek,2005,88:163-165.
    [127]Shu, C.L. Cloning of novel cry genes and anlysis the plasmids from Bacillus thuringiensis Y41. Master Thesis, Beijing:Chinese Academy of Agricultural Sciences, 2008.
    [128]苏旭东。苏云金芽孢杆菌菌株的分离和cry基因的鉴定[硕士学位论文]。河北省保定市,河北农业大学,2005。
    [129]Carozzi, N. B., Kramer, V. C, Warren, G. W. et al. Prediction of insecticidal activity of Bacillus thuringiensis strains by polymerase chain reaction product profiles. Appl. Environ. Microbiol.,1993,59 (5):1683-1687.
    [130]Ceron, J., Ortiz, A., Quintero, R. et al. Specific PCR primer directed to identify cryl and cry3 genes with in a Bacillus thuringiensis strain collection. Appl. Environ. Microbiol.,1995,61(11):3826-3831.
    [131]Juarezperez, V. M., Ferrandis, M. D., Frutos, R., PCR-Based approach for detection of novel Bacillus thuringiensis cry genes. Appl. Environ. Microbiol,1997, 63(8):2997-3002.
    [132]Ben-Dov, E., Wang, Q., Zaritsky, A. et al. Multiplex PCR screening to detect cry9 genes in Bacillus thuringiensis strains. Appl. Environ. Microbiol.,1999,65 (8): 3714-3716.
    [133]Masson, L., Erlandson, M., Puzstai-Carey, M. et al. A holistic approach for determining the entomopathogenic potential of Bacillus thuringiensis strains. Appl. Environ. Microbiol.,1998,64 (2):4782-4788.
    [134]Brousseau,R Saint-Onge A., Prefontaine G, et al. Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Appl. Environ. Microbiol.,1993,59(1):114-119.
    [135]李景鹏,宣世伟。基因工程原理和方法[M]。东北农业大学,1994。
    [136]Beard, C. E., Ranasingle, C, Akhurst, R. J. Screen for novel cry genes by hybridization. Let. Appl. Microbiol.,2001,33:241-245.
    [137]刘旭光,宋福平,等。苏云金芽胞杆菌cry基因芯片检测方法的研究。 中国农业科学,2004,37(7):987-992。
    [138]Gutierrez, P., Alzate O., Orduz, S. A. Theoretical Model of the Tridimensional Structure of Bacillus thuringiensis subsp. medellin Cry HBb Toxin Deduced by Homology Modelling. Mem Inst Oswaldo Cruz, Rio de Janeiro,2001,96(3):357-364.
    [139]Xia L.Q, Zhao X.M., Ding X.Z., et al. The theoretical 3D structure of Bacillus thuringiensis Cry5Ba. Journal of Molecular Modeling,2008,14(9):843-848.
    [140]袁宇熹,张同武,陈智山,等。苏云金杆菌Ⅰ型抗癌晶体蛋白的分子模建。华侨大学学报(自然科学版)。2009,30(4):420-424。
    [141]何伟,张同武,林毅。苏云金杆菌Ⅲ型抗癌晶体蛋白的分子模建。计算机与应用化学,2009,26(3):279-282。
    [142]Li J. Carroll, J. Ellar, D. J. Crystal stucture of insecticide d-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature,1991,353:815-821.
    [143]Grochulski, P., Masson, S. Borisova, M. et al. Bacillus thuringiensis CrylA(a) insecticidal toxin:crystal sturcture and channel formation. J. Mol. Biol.,1995,254: 447-464.
    [144]Morse, R.J., Yamamoto, T., Stroud, R.M. Structure of Cry2Aa suggests an unexpected receptor binding epitope. Structure,2001,9:409-417.
    [145]Galitsky, N., Cody, V., Wojtczak, A. et al. Structure of the insecticidal bacterial d-endotoxin Cry3Bb1 of Bacillus thuringiensis. Act. Crystallogr.,2001,57: 1101-1109.
    [146]Boonserm, P., Davis, P., Ellar, D.J., et al. Crystal structure of the mosquito larvicidal toxin Cry4Ba and its biological implications. J. Mol. Biol.,2005,348: 363-382.
    [147]Boonsermp, P., Mo, M., Angsuthanasombat, C, et al. Structure of the functional form of the mosquito larvicidal Cry4Aa toxin from Bacillus thuringiensis at a 2.8-Angstrom resolution. J. Bacteriol.,2006,188:3391-3401.
    [148]Guo, S.Y., Ye, S., Liu, Y.F. Crystal structure of Bacillus thuringiensis Cry8Ea1: An insecticidal toxin toxic to underground pests, the larvae of Holotrichia parallela. J. Struct. Biol.,2009,168(2):259-266.
    [149]Toshihiko, A., Yuichi, A., Sakae, K. Crystal Structure of the Parasporin-2 Bacillus thuringiensis Toxin That Recognizes Cancer Cells. J. Mol. Boil., 2009,386(1):121-133.
    [150]Li, J., Koni, P. A., Ellar. D. J. Structure of the mosquitcidal d-endotoxin CytB from Bacillus thuringiensis subsp. Kyushuensis and implica-tions for membrane pore formation. J. Mol. Biol.,1996,257:129-152.
    [151]Derbyshire, D. J., Ellar, D. J., Li, J. Crystallization of the Bacillus thuringiensis toxin Cry 1 Ac and its complex with the receptor ligand N-acetyl-D-galactosamine. Acta Cryst.,2001,57:1938-1944.
    [152]Craig, R., Pigott, David, E.J. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev.,2007,71:255-281.
    [153]Gerber, D., Shai, Y. Insertion and organization within membranes of the delta-endotoxin pore forming domain, helix 4-loop-helix 5, and inhibition of its activity by a mutant helix 4 peptide. J. Biol. Chem.,2000,275 (31):23602-23607.
    [154]Sankaranarayanan, R., Sekar, K., Banerjee, R., et al. A novel mode of carbohydrate recognition in jacalin, a Moraceae plant lectin with a β-prism fold. Nature.Struct. Mol. Biol.,1996,3:596-603.
    [155]Chen, X. J., Lee, M. K., Dean, D. H. Site-directed mutations in a highly conserved region of Bacillus thuringiensis d-endotoxin affect inhibition of short circuit current across Bombyx Mori midguts. Proc. Natl. Acad. Sci.,1993,90: 9041-9045.
    [156]Schwartz, J. L., Juteau, M., Grochulski,et al. Restriction of intramolecular movements within the CrylAa toxin molecule of Bacillus thuringiensis through diulfide bond engineering. FEBS Lett.,1997,410:397-402.
    [157]Wolfersberger, M. G., Chen, X. J., Dean, D. H. Site-directed mutations in the third domain of Bacillus thuringiensis d-endotoxin CrylAa affect its ability to increase the permeability of Bombyx mori midgut brush border membrane vesicles. Appl. Environ. Microbiol.,1996,62:279-282.
    [158]Mclean, K. M., Whitely, H. R. Expression in Escherichia coli of a cloned crystal protein gene of Bacillust huringiensiss subsp. israelensis. J. Bacterial.,1987,169: 1017-1023.
    [159]Wirth, M. C, Federici, B. A., Walton, W. E. Cyt1A from Bacillus thuringiensis synergize activity of Bacillus sphaericus against Aedes aegypti (Diptera:Culicidae). Appl. Environ. Microbiol.,2000,66:1093-1097.
    [160]Tomas, W.E., Etlar, D.J. Bacillus thuringiensis var.israelensis crystal delta-Endotoxin:efects on insects and mammalian cells invitro and invivo. J. Cell Sci., 1983,60:181-197.
    [161]Knowles, B.H., Blat, M. R., Tester, M., et al. A cytolitic delta-endotoxin from Bacillus thingiensis var.israelensis forms cation-selective channals in planar lipid bilayes. FEBS Lett,1989,244:259-262.
    [162]Pe'rez, C., Fernandez, L.E, Sun, J, et al. Bacillus thuringiensis subsp. israelensis Cyt1Aa synergizes Cry11Aa toxin by functioning as a membrane-bound receptor. ProcNatl. Acad. Sci,2005,102:18303-18308.
    [163]Masson, L., Tabashnik, B.E, Liu, Y.B, et al. Helix 4 of the Bacillus thuringiensis CrylAa toxin lines the lumen of the ion channel. J.Biol. Chem,1999, 274:31996-32000.
    [164]Van, R.J., Jansens, S, Hofte, H., et al. Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Appl. Environ. Microbiol,1990,56:1378-1385.
    [165]Bravo, A., Gomez, I., Conde, J, et al. Oligomerization triggers binding of a Bacillus thuringiensis CrylAb pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimicaet Biophysica Acta, 2004,1667:38-46.
    [166]Gomez, I., Pardo-Lopez L., Munoz-Garay, C, et al. Role of receptor interaction in the mode of action of insecticidal Cry and Cyt toxins produced by Bacillus thuringiensis. Peptides,2007,28:169-173.
    [167]Zhang, X., Candas, M., Griko, N.B., et al. Cytotoxicity of Bacillus thuringiensis CrylAb toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death and Differentiation,2005,12:1407-1416.
    [168]Zhang, X., Candas, M., Griko, N.B., et al. A mechanism of cell death involving an adenylyl cyclase/PKA signaling pathway is induced by the CrylAb toxin of Bacillus thuringiensis. Proc. Natl. Acad. Sci.,2006,103:9897-9902.
    [169]Jurat-Fuentes, J.L., and Adang, M.J. Characterization of a Cry1 Ac receptor alkaline phosphatase in susceptible and resistant Heliothis virescens larvae. European J. Biochem.,2004,271:3127-3135.
    [170]Jurat-Fuentes, J.L., Adang, M.J. Cry toxin mode of action in susceptible and resistant Heliothis virescens larvae. J. Inver. Pathol.,2006,92 (3):166-171.
    [171]McNall, R.J., Adang, M.J. Identification of novel Bacillus thuringiensis CrylAc binding proteins in Manduca sexta midgut through proteomic analysis. Insect Biochem.Mol. Biol.,2003,33:999-1010.
    [172]Bravo, A, Soberon, M. How to cope with insect resistance to Bt toxins? Trends. Biotech.,2008,26:573-579.
    [173]Johnson, D. E., McGaughey,W.H. Crontribution of Bacillus thuringiensis spores to toxicity of purified Cry proteins towards Indianmeal moth larvae. Curr. Microbiol.,1996,33:54-59.
    [174]Vaeck M., Reynaerts A., Hofte H., et al. Transgenic plants protected from insect attack. Nature,1987,328:33-37.
    [175]Barton K.A., Whiteley H.R., Yang N.S. Bacillus thuringiensis d-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol.,1987,85:1103-1109.
    [176]Fischhoff, D.A., Bowdisch, K.S., Perlak, F.J., et al. Insect tolerant transgenic tomato plants. Biotechnol.,1987,5:807-813.
    [177]Schuler, T.H., Poppy, M.G., Kerry, B.R., et al. Insect-resistant transgenic plants. Trends in Biotechnol.,1998,16:168-175.
    [178]Perlak, F. J., Deaton, R. W. Armstrong, T. A., et al. Insect resistantcotton plants. Biotechnol.,1990,8:939-943.
    [179]Kaiser, J. Agribiotechnology:Pests overwhelm Bt cotton crop. Science,1996, 273:423.
    [180]Peferoen, M. Progress and prospects for field use of Bt genes in crops. Trends in Biotechnol.,1997,15:173-177.
    [181]郭三堆,崔洪志,夏兰芹,等。双价抗虫转基因棉花的研究。 中国农业科学。1999,32(3):1-7。
    [182]Tabashnik, B. E., McGaughey, W. H. Resistance risk assessment for single and multiple insecticides:responses of Indian meal moth to Bacillus thuringiensis. J. Econ. Entomol.,1994,87:831-834.
    [183]Arango, J. A., Romero, M., Orduz, S. Diversity of Bacillus thuringiensis strains from Colombia with insecticidal activity against Spodoptera frugiperda (Lepidoptera: Noctuidae). J. Appl. Microbiol.,2002,92 (3):466-474.
    [184]Ejiofor, A. O., Johnson, T., Physiological and molecular detection of crystalliferous Bacillus thuringiensis strains from habitats in the South Central United States. J. Ind. Microbiol. Biotechnol.,2002,28(5):284-290.
    [185]Iriarte, J., Porcar, M., Lecadet, M. et al. Isolation and characterization of Bacillus thuringiensis strains from aquatic environments in Spain. Curr. Microbiol., 2000,40(6):402-408.
    [186]Merdan, B. A., Labib, I. Soil characteristics as factors governing the existence, recycling and persistence of Bacillus thuringiensis in Egypt. J. Egypt. Soc. Parasitol., 2003,33(2):331-340.
    [187]Prabagaran, S. R., Nimal, S. J., Jayachandran, S. Phenotypic and genetic diversity of Bacillus thuringiensis strains isolated in India active against Spodoptera litura. Appl. Biochem. Biotechnol.,2002,102 (1):213-226.
    [188]Uribe, D., Martinez, W., Ceron, J. Distribution and diversity of cry genes in native strains of Bacillus thuringiensis obtained from different ecosystems from Colombia. J. Inver. Pathol.,2003,82(2):119-127.
    [189]Vilas-Boas, G. T., Franco Lemos, M. V. Diversity of cry genes and genetic characterization of Bacillus thuringiensis isolated from Brazil. Cana. J. Microbiol., 2004,50 (8):605-613.
    [190]Gholamreza S. J., Ali P.A., Ali S.W., et al. Distribution and diversity of ipteran-specific cry and cyt genes in native Bacillus thuringiensis strains obtained from different ecosystems of Iran. J. Ind. Microbiol. Biotechnol.,2008,35:83-94.
    [191]Beron, C.M., Salerno, G.L. Characterization of Bacillus thuringiensis isolates from Argentina that are potentially useful in insect pest control. BioControl,2006,51: 779-794.
    [192]曲慧东。东北地区土壤中苏云金芽孢杆菌分离及遗传多样性研究[硕士学位论文]。辽宁省沈阳,沈阳农业大学,2005。
    [193]罗兰,谢丙炎,袁忠林,等。我国土壤中苏云金芽孢杆菌的分离与基因型的鉴定。应用与环境生物学报,2005,11(6):759-763。
    [194]杨自文,吴宏文,王开梅,等。 从土壤中高效分离苏云金杆菌的方法。中国生物防治,2000,16(12):6-30。
    [195]McGaughey, W. H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science,1985,229:193-195.
    [196]Alcantara E.P., Aguda R.M., Curtiss A., et al. Bacillus thuringiensis d-endotoxin binding to brush border membrane vesicles of rice stem borers. Arch. Insect. Biochem. Physiol.,2004,55:169-177.
    [197]Grochulski P., Masson L., Borisova S., et al. Bacillus thuringiensis CrylA(a) insecticidal toxin:crystal structure and channel formation. J. Mol. Biol.,1995,254: 447-464.
    [198]Karim, S., Dean, D.H. Toxicity and receptor binding properties of Bacillus thuringiensis d-endotoxins to the midgut brush border membrane vesicles of the rice leaf folders, Cnaphalocrocis medinalis and Marasmia patnalis. Curr. Microbiol.,2000, 41:276-283.
    [199]Sims, S.R., Host activity spectrum of the CryⅡA Bacillus thuringiensis subsp. kurstaki protein:Effects on Lepidoptera, Diptera, and non-target arthropods. Southwestern Entomologist,1997,22:139-404.
    [200]Chen, H., Tang, W., Xu, C.G, et al. Transgenic indica rice plants harboring a synthetic cry2A gene of Bacillus thuringiensis exhibit enhanced resistance against lepidopteran rice pests. Theor. Appl. Genet.,2005,111:1330-1337.
    [201]Sambrook, J., Russell, D. W. Molecular Cloning:A Laboratory Manual,3rd ed. New York:Cold Spring Harbor Laboratory.2001,1217-1265.
    [202]Ben-Dov, E., Zaritsky, A., Dahan, E. et al. Extended screening by PCR for seven cry-group genes from field-collected strains of Bacillus thuringiesis. Appl. Environ. Microbiol.,1997,63:4883-4890.
    [203]Akhurst, R. J., James, W., Bird, L. J., et al. Resistance to the Cry 1 Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera:Noctuidae). J. Econ. Entomol.,2003,96 (4):1290-1299. [204]Lenin, K., Mariam, M. A., Udayasuriyan, V., Expression of a cry2Aa gene in an acrystalliferous Bacillus thuringiensis strain and toxicity of Cry2Aa against Helicoverpa armigera. World J. Microbiol. Biotechnol.,2001,17:273-278.
    [205]Cheong, H., Gill, S. S. Cloning and Characterization of a Cytolytic and Mosquitocidal d-Endotoxin from Bacillus thuringiensis subsp. Jegathesan. Appl. Environ. Microbio.,1997,63:3254-3260.
    [206]Schnepf, H. E., Wong, H. C, Whiteley, H. R., The amino acid sequence of a crystal protein from Bacillus thuringiensis deduced from the DNA base sequence. J. Biol. Chem,1985,260:6264-6272.
    [207]孙明,吴岚,刘子铎,等。苏云金芽胞杆菌杀虫晶体蛋白基因cry218的克隆和表达。农业生物技术学报,1996,4(3):293-298。
    [208]Liu, Y.G., Whittier, R. F. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics,1995,25:674-681.
    [209]Zsuzsanna, A., Christine, R. Single oligonucleotide nested PCR:a rapid method for the isolation of genes and their flanking regions from the expressed sequence tags. Curr. Genet.,2004,46:240-246.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700