苏云金芽胞杆菌帮助蛋白对杀虫晶体蛋白表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要研究了苏云金芽胞杆菌以色列亚种的20kDa帮助蛋白对库斯塔克亚种的杀虫晶体蛋白基因crylAc的表达及其伴胞晶体形成的影响,针对棉铃虫等重要农业害虫构建并向野生型菌株中转化了含20kDa帮助蛋白基因的位点专一性重组质粒,获得了三株杀虫晶体蛋白高效表达的苏云金芽胞杆菌工程菌。主要结果如下:
     在苏云金芽胞杆菌无晶体突变株中,20kDa帮助蛋白对crylAc的表达和伴胞晶体形成有明显的促进作用,毒力也有显著提高。结果表明,在该帮助蛋白的参与下CrylAc的表达量为不含帮助蛋白对照菌的3.5倍,形成的双金字塔形伴胞晶体长达1.85μm、宽0.85μm,体积为对照菌的3倍,同时对初孵棉铃虫幼虫的毒力提高了1.5倍。进一步分析表明,20kDa帮助蛋白是通过防止CrylAc新生肽免受胞内蛋白酶的降解而使得CrylAc表达量提高的。
     本试验还利用苏云金芽胞杆菌转座子Tn4430的位点专一性重组系统,构建了含有crylAc10和20kDa蛋白基因的位点专一性重组质粒pBMB1808和仅含有20kDa帮助蛋白基因的位点专一性重组质粒pBMB1820,两质粒均为大肠杆菌/苏云金芽胞杆菌穿梭质粒。导入Bt后,在Tnpl的介导下可发生位点专一性重组、丢掉质粒中的抗生素抗性基因以及其它所有非Bt基因,而获得环境安全的工程菌。
     通过电转化将pBMB1808导入到对棉铃虫、小菜蛾等鳞翅目害虫高毒力的三种天然菌株中。所得三种工程菌(BMB21882、BMB15358、BMB83383)的130kDa杀虫晶体蛋白的表达量均为各受体菌的两倍以上,各工程菌的伴胞晶体的平均体积为其受体菌的2-3倍,部分晶体长达4.0μm、宽1.4μm,大小为受体菌晶体的6倍。相反,工程菌芽胞形态由长椭圆形变为小圆球形。与受体菌相比,工程菌的杀虫晶体蛋白的表达曲线也具特点。受体菌晶体蛋白的表达量在芽胞分化开始后短时间内迅速达到最大,但随后缓慢下降,在晶体形成之前有三分之一被降解掉;而工程菌的表达量在整个芽胞形成期内呈持续的积累状态,最后获得超量表达。然而,工程菌的伴胞晶体对棉铃虫初孵幼虫的毒力不但没有上升反而下降。体外活化等试验结果表明,这可能是由伴胞晶体在昆虫体内溶解困难引起的。此外,本试验还发现位点专一性重组质粒在少部分转化子中有被修饰的现象,并导致了位点专一性重组能力的丧失。总之,本实验中将帮助蛋白基因置于位点专一性质粒用于工程菌的构建,获得了杀虫晶体蛋白的超量表达并形成了巨大的伴胞晶体。据我所知,这一结果以及帮助蛋白对CrylAc表达影响的机制皆属首此报导。但是关于如何进一步发挥工程菌巨大伴胞晶体的潜力、以及最终获得无抗性位点专一性重组子还有待于深入研究。
The effects of the 20kDa helper protein (P20) from Bacillus thuringiensis subsp. israelensis were examined on the expression and crystal formation of insecticidal crystal protein CrylAc, and towards the end to construct engineered strains to be both environment-friendly and highly efficient. The major results are described as following:
    In the presence of P20, the expression of CrylAclO was 3.5 times of the control without P20, the formed crystals were in an average size of 1.85u.m long and 0.85um wide, shown as a typical bipyramid with 3-time volume of the control crystal. Consequently, the transformant harboring P20 gene and cry 1 Ac 10 exhibited 2.5-time toxicity of the control transformant against neonate larvae of Heliothis unnigera. Further study revealed that serious degradation of CrylAc happened during the whole stage of sporulation, while the 20kDa protein could prevent neonate peptides only instead of the full protoxins from degradation
    Two plasmids with the ability of site-specific recombination were obtained, one is pBMB1808 carrying P20 gene and crylAclO between two specific resolution sites (res), the other is pBMB1820 harboring only P20 gene. Also, a Bt replicon was included between these two "res" sites. Other genes such as tnpl. antibiotic resistance genes and an E.coli replicon etc were positioned outside of the two "res" sites. Therefore, a site-specific recombination would happen between two "res" sites in B. thuringiensis, and enable the transformant to get rid of the unwanted DNA fragments. Thus, these two plasmids would be useful in the construction of an environment-friendly engineered strain with high productivity of ICPs.
    Three engineered Bt strains BMB21882, BMB83383 and BMB15358 were obtained by electro-poration of pBMB1808 into three natural isolates with a high productivity of ICPs and high toxicity against H. armigera and Plutella. xylostella. Quantification results revealed that two times of CrylA protoxin produced in the transformants relative to their receipts. And larger bipyramidal crystals were resulted in a size of 2.40 u.m long and 1.05am wide, with 2-3 time volumes of their receipts' crystals. In contrast, the transformants' spores became shorter or spherical instead of long rods. Further study showed that continuous accumulation of CrylA protoxins during the whole sporulation stage was obtained in the engineered strains, while in natural strains a serious hydrolysis of 130kDa protoxin occurred before crystal formation.
    Despite of the high expression of ICPs in these transformants, bioassay results failed to show the expected toxicity against their target insects, especially in the case of neonate larvae. However, in vitro activation of crystals in H. armigera midgut juice showed that much more toxic peptides were generated by transformants than the receipts. Further study suggested that the lowered toxicity might be resulted from the poor solubility of crystals in vivo.
    Unfortunately, the obtained transformants failed to eliminate the antibiotic resistance gene harbored in pBMB1808. due to both the prompt excision in most transformants before antibiotic selection, and DNA modification on pBMB1808 in the obtained transformants. Therefore, more efforts needed to obtain an ideal engineered strain.
引文
刘子铎,孙明,陈亚华等。苏云金芽胞杆菌以色列亚种 20kDa 蛋白质对 CytA 蛋白溶细胞作用的影响。遗传学报,1999,26(1):81-86
    刘子铎。苏云金芽胞杆菌杀虫晶体蛋白和辅助蛋白基因的克隆表达。[博士学位论文]。武汉,华中农业大学,1998
    孙明,喻子牛,戴经元等。苏云金芽孢杆菌高度力菌株 YBT-1520 及发酵工艺与产品。中国专利,1118375A。1996-03-13
    孙明。苏云金芽胞杆菌 cry218 杀虫晶体蛋白基因的克隆、序列分析和表达。[博士学位论文]。武汉,华中农业大学,1995
    吴岚,孙明,喻子牛。利用苏云金芽胞杆菌转座子 Tn4430 构建含 Cry1Ac10 基因的解离载体。待发表
    李林,杨超,刘子铎等。苏云金芽孢杆菌无晶体突变株的逐级升温筛选及其转化性能的研究。微生物学报,1999(在印刷中)
    邵宗泽,崔云龙。两种鳞翅目昆虫对苏云金芽胞杆菌敏感性差异的机理探讨。中国生物防治,1995,11:75-79
    邵宗泽,喻子牛。粘虫对苏云金芽胞杆菌伴胞晶体低度敏感的机理探讨。中国生物防治,1999,15(2):66-69
    罗曦霞,顾宝根,姜辉等。苏云金芽孢杆菌的毒力测定和产品质量标准化。见:喻子牛主编,苏云金芽孢杆菌制剂的生产和应用。北京,农业出版社,1993。167-197
    郑嵘。辅助蛋白 P19 和 P20 蛋白质对苏云金芽胞杆菌 cryⅠ基因表达的增效作用。[硕士学位论文]。武汉,华中农业大学,1998
    俞峻,马康涛,张蘅。分子伴侣的多重功能。生物化学与生物物理进展,1998,25(2):106-109
    萨姆布鲁克 J,弗里奇 E F,曼尼阿蒂斯 T 主编 (金冬雁,黎孟枫等译)。分子克隆实验指南。第二版。北京:科学出版社,1992
    喻子牛,孙明,陈亚华等.生物活性蛋白基因在动、植物病虫害防治中的应用。农业生物技术学报,1995,3(1),100-110
    喻子牛。酶。见:喻子牛主编,苏云金杆菌。北京,科学出版社,1990。76-96
    Adams L F, Visick J E, Whiteley H R. A 20-kilodalton protein is required for efficient production of the Bacillus thuringiensis subsp, israelensis 27-kilodalton crystal protein in Escherichia coli. J Bacteriol, 1989, 17(1): 521-330
    Agaisse H. Lereclus D. Expression in Bacillus subtilis of the Bacillus thuringiensis cryⅢA toxin gene is not dependent on a sporulation-specific sigma factor and is increased in a spoOA mutant, J Bacteriol, 1994b, 176:4734-4741
    Agaisse H, Lereclus D. How does Bacillus thuringiensis produce so much insecticidal crystal protein? J Bacteriol, 1995, 177(21): 6027-6032
    Agaisse H, Lereclus D. STAB-SD:a Shine-Dalgarno sequence in the 5' untranslated region is a determinant of mRNA stability. Mol Microbiol, 1996, 20:633-643
    
    
    Agaisse H, Lereclus D. Structural and functional analysis of the promoter region involved in full expression of the cryⅢA toxin gene of Bacillus thuringiensis. Mol Microbiol, 1994a, 13:97-107
    Arantes O, Lereclus D. Construction of cloning vectors for Bacillus thuringiensis. Gene, 1991, 108:115-119
    Aronson A I, Han E-S, McGaughey W et al. The solubility of inclusion proteins from Bacillus thuringiensis is dependent upon protoxin composition and is a factor in toxicity to insects. Appl Environ Microbiol, 1991, 57:981-986
    Aronson A I, Wu D, Zhang C. Mutagenesis of specificity and toxicity regions of a Bacillus thuringiensis protoxin gene. 1995, J Bacterol, 17(14): 4059-6065
    Aronson A I. The protoxin compotion of Bacillus thuringiensis insecticidal inclusions affects solubility and toxicity. Appl Environ Microbiol, 1995, 61(11):4057-4060
    Aronson A, Bechman W, Dunn P. Bacillus thuringiensis and related insect pathogens. Microbiol Rev, 1986, 50(1):1-24
    Bai C, Degheele D, Jansens S et al. Activity of insecticidal proteins and strains of Bacillus thuringiensis against Spodopera exempta(Walker). J Invertibr Pathol, 1993, 62:211-215
    Baum J A, Coyle D M, Gilbert M P et al. Novel cloning vectors for Bacillus thuringiensis. Appl. Environ. Microbiol, 1990, 56:3420-3428
    Baum J A, Kakefuda M, Gawron-Burke C. Engineering Bacillus thuringiensis bioinsecticides with an indigenous site-specific recombination system. Appl Environ Microbiol, 1996, 62:4367-4373
    Baum J A, Malvar T. Regulation of insecticidal crystal protein production in Bacillus thuringiensis. Mol Microbiol, 1995, 18:1-12
    Baum J A. Tn5401 a new ClassⅡtransposable element from Bacillus thuringiensis.J Bacteriol, 1994, 176:2835-2845
    Bernhard K. Studies on the delta-endotoxin of Bacillus thuringiensis var. tenebrionis. FEMS Microbiol. Lett. 1986,33:261-265
    Bietlot H P, Schernthaner J P, Milne R E et al. Evidence that the CryⅠA crystal protein from Bacillus thuringiensis is associated with DNA. J Biol Chem 1993, 268:8240-8245
    Bietlot H P, Vishnubhatla I, Carey P R et al. Characterization of the cysteine residues and disulfide linkages in the protein crystal of Bacillus thuringiensis. Biochem J, 1990, 267:309-316
    Bietlot H, Carey P R, Choma C, et al. Facile preparation and characterization of the toxin from Bacillus thuringiensis var. kurstaki. Biochem J, 1989, 260:87-91
    Bravo A, Agaisse H, Salamiton S, Lereclus D. Analysis of cryⅠAa expression in sigE and sigK mutants of Bacillus thuringiensis. Mol Gen Genet, 1996, 250:734-741
    Brown K L, Whiteley H R. Isolation of the second Bacillus thuringiensis RNA polymerase that transcribes from a crystal protein gene promoter. J Bacteriol, 1990, 172:6682-6688
    Brown K L. Transcriptional regulation of the Bacillus thuringiensis subsp, thompsoni crystal protein gene operon, J Bacteriol, 1993, 175:7951-7957
    
    
    Calogero S, Albertini A M, Fogher C et al. Expression of a cloned Bacillus thringiensis delta-endotoxin gene in Bacillus subtilis. Appl Environ Microbiol, 1989,55:446-453
    Carroll J, Convents D, Van Damme J et al. Intramolecular proteolytic cleavage of Bacillus thuringiensis Cry3A delta-endotoxin may facilitate its coleopteran toxicity. J Invertebr Pathol, 1997, 70:41-49
    Carroll J, Jade L, Ellar D. Proteolytic processing of a coleopteran-specitic δ-endotoxin produced by Bacillus thuringiensis var. tenebrionis. Biochem J, 1989, 261:99-105
    Chak K-F, Ellar D J.Cloning and expression in Escherichia coli of an insecticidal crystal protein gene from Bacillus thuringiensis var. aizawai HD-133. J Gen Microbiol, 1987,133:2921-2931
    Chak K-F. Tseng M-Y, Yamamoto T. Expression of the crystal protein gene under the control of the α-amylase promoter in Bacillus thuringiensis strains. Appl Environ Microbiol, 1994, 60:2304-2310
    Chang C. Yu Y M, Dai S M et al. High-level cryⅣD and cytA gene expression in Bacillus thuringiensis does not require the 20-kilodalton protein, and the coexpressed gene products are synergistic in their toxicity to mosquitoes. Appl Environ Microbiol, 1993, 59(3): 815-821
    Chen X, Curtiss A, Alcantara E et al. Mutations in domainⅠof Bacillus thuringiensis δ-endotoxin CryⅠAb reduce the irreversible binding of toxin to Manduca sexta brush border membrane vesicles. J Biol Chem, 1995,270:6412-6419
    Clairmont F R Milne R E, Pham V T et al. Role of DNA in the activation of the Cry1A insecticidal crystal protein from Bacillus thuringiensis. J Biol Chem, 1998,273:9292-9296
    Couche G A, Pfannenstiel M A, Nickson K W. Structural disulfide bonds in the Bacillus thuringiensis subsp.israelensis protein crystals. J Bacteriol, 1987,169(7):3281-3288
    Crickmore N, Ellar D J. Improvement of a possible chaperonin in the efficient expression of a cloned CryⅡA δ-endotoxin genbe in Bacillus thuringiensis. Mol Microbiol, 1992, 6(11): 1537-1537
    Crickmore N. Wheeler V C, Ellar D J. Use of an operon fusion to induce expression and crystallization of a Bacillus thuringiensis δ-endotoxin encoded by a cryptic gene. Mol Gen Genet, 1994, 242:365-368
    Crickmore N, Zeigler D R, Feitelson J, et al. Revision of the nomenclature for the Bacillus thuringiensis pesticideal crystal proteins. Microbiol Mol Biol Rev, 1998, 62(3):808-813
    Dai S M, Gill M G. In vitro and in vivo proteolysis of the Bacillus thuringiensis subsp, israelensis CryⅣD protein by Culex quinquefasciatus larval midgut proteases. Insect Biochem Mol Biol, 1993, 23:273-283
    De Maagd R A, Kwa M S G, Van der Klei H et al. Domain Ⅲ substitution in Bacillus thuringiensis delta-endotoxin CryⅠA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol, 1996, 62:1537-1543
    De Souza M T, Lecadet M-M, Lereclus D. Full expression of the cryⅢA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription. J Bacteriol, 1993, 175:2952-2960
    Delecluse A, Poncet S, Klier A et al. Expression of cryⅣA and cryⅣB genes independently or in combination, in a crystal negative strain of Bacillus thuringiensis subsp, israelensis. Appl Environ Microbil, 1993, 59:3922-3927
    
    
    Dervyn E, Poncet S, Klier A et al. Transcriptional regulation of the cryⅣD gene operon from Bacillus thuringiensis subsp, israelensis, J Bacteriol, 1995, 177:2283-2291
    Donovan W P, Dankocsik C, Gilbert M P. Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp, israelensis. J Bacteriol, 1988a, 170:4732-4738
    Donovan W P, Gonzalez J M, Jr, Gilbert M.P et al. Isolation and characterization of EG2158, a new strain of Bacillus thuringiensis toxic to coleopteran larvae and nucleotide sequence of the toxin gene. Mol Genet. 1988b, 214:365-372
    Donovan W P, Tan Y, Slaney A C. Cloning of the nprA gene for neutral protease A of Bacillus thuringiensis and effect of in vivo deletion of nprA on insecticidal crystal protein. Appl Environ Microbiol, 1997, 63:2311-2317
    Donovan, W P, Rupar M J, Slaney A C et al. Characterization of two genes encoding Bacillus thuringiensis insecticidal crystal proteins toxic to Coleoptera species. Appl Environ Microbiol, 1992, 58:3921-3927
    Du C P, Martin A W, Nickerson K W. Comparison of disulfide contents and solubility at alkaline pH of insecticidal and noninsecticidal Bacillus thuringiensis protein crystals. 1994, Appl Environ Microbiol, 60:3847-3853
    Enfors S-O. Control of in vivo proteolysis in the production of recombinant proteins. Trends Biotechnol, 1992,10:310-315
    Feitelson J S, Payne J, Kim L. Bacillus thuringiensis:insects and beyond. Bio/Technology, 1992, 10:271-275
    Fenton W A, Kashi Y, Furtak K et al. Residues in chaperonin GroEL reguired for polypeptide binding and release. Nature, 1994, 371(13):614-619
    Ferré J, Real M D, Van Rie J, et al. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl Acad Sci USA, 1991, 88:5119-5123.
    Forcada C, Encarna A, Garcera M D et al. Differences in the midgut proteolytic activity of two Heliothis virescens strains,one susceptible and one resistant to Bacillus thuringiensis toxins. Arch Insect Biochem Physiol, 1996, 31:257-272.
    Gazit E, Bach D, Kerr L D et al. The α5 segment of Bacillus thuringiensis δ-endotoxins: in vitro activity, ion channel formation and molecular modeling. Biochem J, 1994, 304(3):895-902
    Gazit E, Burshtein N, Ellar D J et al. Bacillus thuringiensis cytolytic toxin associates specifically with its synthetic helics A and C in the membrane bound state: Implication for the assembly of oligomeric transmembrane pores. Biochem, 1997,36(49): 15546-15554
    Gazit E, Shai Y. The assembly and organization of the α5 and α7 helices from the pore-forming domain of Bacillus thuringiensis δ-endotoxin. J Biol Chem, 1995, 270:2571-2578
    Ge A Z, Rivers D, Milne R et al. Functional domains of Bacillus thuringiensis insecticidal crystal proteins-Refinement of Heliothis viroscens and Trichoplusia ni in specificity domains on CryⅠAc. J. Biochem, 1991, 266:17954-17458
    
    
    Ge A Z, Shivarova N I, Dean D H..Location of the Bombyx mori specifity domain on a Bacillus thuringiensis δ-endotoxin. Proc Natl Acad Sci USA, 1989, 86:4037-4041
    Ge B X, Bideshi D, Moar W J et al. Differential effects of helper proteins encoded by the cry2A and cry11A operons on the formation of Cry2A inclusions in Bacillus thuringiensis. FEMS Microbiol Letts, 1998, 165:35-41
    Gething M J, Sambrook J. Protein folding in the cell. Nature, 1992, 355(6355):33-45
    Gill S S. Cowles E A, Pietrantonio P V. The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomal, 1992, 37:615-636
    Glatron M F, Rapoport G. Biosynthesis of the parasporal inclusion of Bacillus thuringiensis: half-life of its corresponding messenger RNA. Biochimie, 1972, 54:1291-1301
    Gould F. Martinez-Ramirez A, Anderson A et al. Broad-spectrum resistance to Bacillus thuringiensis toxins in Heliothis virescens. Proc Natl Acad Sci USA, 1992, 89:7986-7990
    Green B D, Battisti L, Thorne C B. Involvement of Tn4430 in transfer of Bacillus anthracis plasmids mediated by Bacillus thuringiensis plasmid pXO12. J Bacteriol, 1989, 171:104-113
    Grochuski P, Masson L, Borisova S et al. Bacillus thuringiensis CryⅠAa insecticidal toxin: crystal structure and channel formation, J Mol Biol, 1995,254(3):447-464
    Haider M Z, Knowles B H, Ellar D J. Specificity of Bacillus thuringiensis var. colmeri insecticidal delta-endotoxin is determined by differential proteolytic processing of the protoxin by larval gut proteases. Eur J. Biochem, 1986, 156:531-540
    Hartl F U. Molecular chaperones in cellular protein folding. Nature, 1996, 318(13): 571-580
    Hofte H. Whiteley H R. Insecticidal crystal proteins of Bacillus thuringiensis. Microbiol. Rev, 1989, 53(2): 242-255
    Inagaki S. Miyasono M, Ishiguro T et al. Proteolitic processing of δ-endotoxin of Bacillus thuringiensis var. kurstaki HD-1 in insensitive insect, Spodoptera litura:unusual proteolysis in the presence of sodium dodecyl sulfate, J Invertebr Pathol, 1992, 60:64-68
    Keller J A, Simon L D. Divergent effects of a dnak mutation on abnormal protein degradation in Escherichia coli. Mol Microbial, 1988, 2:31-41
    Keller M. Sneh B, Strizhov N et al. Digestion of δ-endotoxin by gut proteases may explain reduced sensitivity of advanced instar larvae of Spodoptera littoralis to CryⅠC. Insect Biochem Biol, 1996, 26:365-373
    Knowels B M. Mechanism of Bacillus thuringiensis δ-endotoxins. Adv insect Physiol, 1994, 214:275-308
    Knowles B. Francis P, Ellar D. Structurally related Bacillus thuringiensis δ-endotoxins display major differences in insecticidal activity in vivo and in vitro, J cell Sci, 1986, 84:221-236
    Koni P A. Ellar D J. Cloning and Characterization of a novel Bacillus thuringiensis crytolytic Delta-endotoxin, J Mol Biol, 1993, 229:319-327
    Kronstad J W, Whiteley H R. Three classes of homologous Bacillus thuringiensis crystal-protein genes. Gene, 1986, 43:29-40
    
    
    Lambert B, Buysse L, Decock C et al A Bacillus thuringiensis insecticidal protein with a high activity against members of the family Noctuidae. Appl Environ Microbiol, 1996,62:80-86
    Lambert B, Peferoen M. Insecticidal promise of Bacillus thuringiensis Facts and mysteries about a successful Biopesticide. BioScience, 1992, 42:112-122
    Lambert B, Theunis W, Agouda R et al. Nucleotide sequence of gene cryⅢD encoding a novel coleopteran-active crystal protein from strain BT1109P of Bacillus thuringiensis subsp, kurstaki. Gene. 1992, 110:131-132
    Landry S J, Jordan R.,McMacken R.,Gierasch L M. Different confirmations for the same polypeptide bound to chaperones Dnak and GroEL. Nature, 1992,355(30):455-475
    Langer T, Lu Chi, Echols H. et al. Successive action of Dnak, DnaJ and GroEL along the pathway of chaperone-mediated protein folding. Nature,1992, 356(23):683-689
    Leammli L K. Cleavage of structural proteins during the assembly of the head of bacteriophage T_4, Nature, 1970, 680-685
    Lecadet M-M, Chaufaux J, Ribier J et al. Construction of novel Bacillus thuringiensis strains with different insecticidal specificities by transduction and by transformation. Appl Environ Microbiol, 1992, 58:840-849
    Lecadet M-M. Action comparee de I'uree et thioglycolate sur la toxine fiuree de Bacillus thuringiensis. C R Acad Sci Ser D,1967,264:2874-2850
    Lee M K, Curtiss A, Alcantara E et al. Synergistic effect of the Bacillus thuringiensis toxins CryⅠAa and CryⅠAc on the gypsy moth, Lymantria dispar. Appl Environ Microbiol, 1996, 62:583-586
    Lereclus D, Agaisse H, Gominet M et al. Overproduction of encapsulated insecticidal crystal proteins in a Bacillus thuringiensis spOA mutant. Bio/Technology, 1995, 13:67-71
    Lereclus D, Arantes O. spbA locus ensures the segregational stability of pHT1030, a novel type of gram-positive replicon. Mol Microbiol, 1992, 7:35-46
    Lereclus D, Mahillon J, Menou G et al. Identification of Tn4430, a transposon of Bacillus thuringiensis functional in Escherichia coli. Mol Gen Genet, 1986, 204:52-57
    Lereclus D, Menou G, Lecadet M-M. Isolation of a DNA sequence related to several plasmids from Bacillus thuringiensis after a mating involving the Streptococcus faecalis plasmid pAMβ1. Mol Gen Genet, 1983,191:307-313
    Lereclus D, Ribier J, Klier A, Menou G et al. A transposon-like structure related to the δ-endotoxin gene of Bacillus thuringiensis. EMBO J, 1984, 3:2561-2567
    Lereclus D, Vallade M, Chaufaux J et al. Expansion of the insecticidal host range of Bacillus thuringiensis by in vivo genetic recombination. Bio/Technology, 1992, 10:418-421
    Lesieur C, Vecsey-Semjen B, Abrami L, et al. Membrane insertion: the strategies of toxins (Review). Mol Membrane Biol, 1997,14, 45-64
    Li J D, Carroll J, Ellar D J. Crystal structure of insecticidal δ-endotoxin from Bacillus thuringiensis at 2.5 A resolution. Nature, 1991, 353(31):815-821
    
    
    Li J D, Koni P A, Ellar D J. Structure of the mosquitocidal δ-endotoxin CytB from Bacillus thuringiensis SP. kyushuensis and implications for membrane pore formation. J Mol Biol, 1996, 257(1):129-152
    Lu I I. Rajamohan F, Dean D H. Identification of amino acid residues of Bacillus thuringiensis δ-endotoxin CryⅠAa associated with membrane binding and toxicity to Bombix mori. J Bacteriol, 1994, 176(17): 5554-5559
    MacIntosh S C, Stone T B, Jokerst R S et al. Binding of Bacillus thuringiensis proteins to a laboratory-selected line of Heliothis virescens. Proc of NatI Acad Sci USA. 1991, 88, 8930-8933.
    MacIntosh S C, Stone T B, Sims S R, et al. Specificity and efficacy of purified Bacillus thuringiensis proteins against agronomically important insects, J Invertebr Pathol, 1990, 56:258-266
    Maggd R A De, Kwa M S G, Rlei H, Yamamoto T. Domain Ⅲ substitution in Bacillus thuringiensis δ-endotoxin CryⅠA(b) results in superior toxicity for Spodoptera exigua and altered membrane protein recognition. Appl Environ Microbiol, 1996, 62(5):1537-1543
    Mahillon J. Lereclus D. Structural and functional analysis of Tn4430: identification of an integrase-like protein involved in the co-integrate-resolution process. EMBO J, 1988, 7:1515-1526
    Mahillon J, Rezsohazy R, Hallet B et al. IS231 and other Bacillus thuringiensis transposable elements: a review. Genetica, 1994, 93:13-26
    Malvar T, Baum J A, Tn5401 disruption of the spoOF gene, identified by direct chromosomal sequencing, results in CryⅢA overproduction in Bacillus thuringiensis. J Bacteriol, 1994, 176:4750-4753
    Malvar T. Gawron-Burke C and Baum J A. Overexpression of Bacillus thuringiensis HknA, a histidine protein kinase homolog, bypasses early Spo mutations that result in CryⅢA overproduction. J Bacteriol, 1994, 176:4742-4749
    McGaughey W H. Insect resistance to the biological insecticide Bacillus thuringiensis. Sci, 1985, 229:193-195
    Mclean K,.Whiteley H R. Expression in Escherichia coli of a cloned crystal protein gene of Bacillus thuringiensis subsp, israelensis, J Bacteriol, 1987, 169:1017-1023
    Minnich S A, Aronson A I. Regulation of protoxin synthesis in Bacillus thuringiensis. J Bacteriol, 1984, 158:447-454.
    Morse R J, Powell G, Ramalingam V et al. Crystal structure of Cry2Aa from Bacillus thuringiensis at 2.2 Angstroms: structural basis of dual specificity. 1998, in "Proceedings of Ⅶth International Colloquium on Invertebrate Pathology and Microbioil Control & Ⅳth International Conference on Bacillus thuringiensis",Sapparo, Jappan
    Nierlich D P, Murakawa G J. The decay of bacterial messenger RNA. Frog Nucl Acid Res Mol Biol, 1996. 52:153-216
    Oeda K, Oshie K, Shimizu M et al. Nucleotide sequence of the insecticidal protein gene of Bacillus thuringiensis strain aizawai IPL7 and its high-level expression in Escherichia coli. Gene, 1987, 53:113-119
    Ogiwara K. Indrasith L, Asano A et al. Prosesssing of δ-endotoxin from Bacillus thuringiensis subsp. kurtaki HD-1 and HD-73 by gut juices of various insect larvae. J Invertebr Pathol, 1992,60:121-126
    
    
    Ohtsu K, Hori H, Maruyama T et al. Establishment of Plutella xylostella resistant to Cry1Ac toxin of Bacillus thuringiensis and comparative analysis of midgut fluids 1998, in "Proceedings of Ⅶth International Colloquium on Invertebrate Pathology and Microbioil Control & Ⅳth International Conference on Bacillus thuringiensis",Sapparo, Jappan
    Padidam M. The insecticidal protein CryⅠA(c) from Bacillus thuringiensis is highly toxic for Heliothis armigera, J Invertebr Pathol, 1992, 59:109-111
    Panjaisee S, Charoenpornwatana S, Pantuwatana S et al. High production of CryⅣB protein does not lead to formation of crystalline inclusions in Bacillus thuringiensis subsp israelensis. World J Microbiol. & Biotech, 1997, 13:319-327
    Park H W, Ge B-X, Bauer L S et al. Optimization of Cry3A yields in Bacillus thuringiensis by use of sporulation-dependent promoters in combination with the STAB-SD mRNA sequence. Appl Environ Microbiol, 1998, 64(10):3932-3938
    Powell G.K, Charlton C.A, Yamamoto T. Recent advances in structure and function research on Bacillus thuringiensis crystal proteins. In "Bacillus thuringiensis Biotechnology and Environinenlal Benefils", T-Y Feng et al (eds). Hua Shiang Yuan Publishing Co. Vol.Ⅰ, 1995, 1-20
    Rajamohan F, Alcantara E, Lee M et al. Single amino acid change in domain Ⅱ of Bacillus thuringiensis CryⅠAb δ-endotoxin affect irreversible binding Manduca sexta and Heliothis viescens. J Bacteriol, 1995, 177(9): 2276-2282
    Rajamohan F, Alcantara E, Lee M K et al. Role of domain Ⅱ, loop 2 residues of Bacillus thuringiensis CryⅠAb δ-endotoxin in reversible and irreversible binding to Maduca sexta and Heliothis virescens. J Biol Chem, 1996, 271:2390-2396
    Rang C, Bes M, Lullien-Pellerin V et al. Influence of the 20kDa protein from Bacillus thuringiensis ssp. israelensis on the rate of production of trunctated Cry1C proteins. FEMS Microbiol Letts, 1996, 141: 261-264
    Sakai H, Yamagiwa M, Yoshisue H et al. Gene expression and processing dynamics of dipteran-specific insecticidal proteins Cry4A and Cry4B. 1998, in "Proceedings of Ⅶth International Colloquium on Invertebrate Pathology and Microbial Control & Ⅳth International Conference on Bacillus thuringiensis",Sapparo, Jappan
    Salamitou S, Agaisse H, Bravo A et al. Genetic analysis of cryⅢA gene expression in Bacillus thuringiensis. Microbiology, 1996, 142:2049-2055
    Sanchis V, Agaisse H, Chaufaux J et al. A recombinase-mediated system for elimination of antibiotic resistance gene markers from genetically engineered Bacillus thuringiensis strains. Appl Environ Microiol, 1997, 63:779-784
    Sanchis V, Agaisse H, Chaufaux J et al. Construction of new insecticidal Bacillus thuringiensis recombinant strains by using the sporulation non-dependent expression system of cryⅢA and a site specific recombination vector. J Biotechnol, 1996, 48:81-96
    Sanchis V, Lereclus D, Menou G et al. Multiplicity of δ-endotoxin genes with different insecticidal specificities in Bacillus thuringiensis aizawai 7.29. Mol Microbiol, 1988, 2:393-404
    
    
    Schnepf E, Crickmore N, van Ran J, et al. Bacillus thuringiensis and its pesticidal proteins. Microbiol Mol Biol Rev, 1998, 62(3): 775-806
    Schnepf E. Crickmore N, van Ran J, et al. Bacillus thuringiensis and its pesticidal proteins. Microbiol Mol Biol Rev, 1998, 62(3):775-806
    Schwartz J-L, Garneau L, Savaria D et al. Lepidopteran-specific crystal toxins from Bacillus thuringiensis form cation-and anion-selective channels in planar lipid bilayers. J Membr Biol, 1993, 132:53-62
    Schwartz J-L, Potvin L, Chen X J et al. Single-site mutations in the conserved alternating-arginine region affect ionic channels formed by CryⅠAa, a Bacillus thuringiensis toxin. Appl Environ Microbiol. 1997, 63:3978-3984
    Shao Z-Z. Cui Y-L, Liu X-L et al. The processing of δ-endotoxin of Bacillus thuringiensis subsp.kurstaki HD-1 in Heliothis armigera midgut juice and the effects of protease inhibitors, J Invertibr Pathol, 1998, 72:73-81
    Shivakumar A G, Gundling G J, Benson T A et al Vegetative expression of the endotoxin genes of Bacillus thuringiensis subsp, kurstaki in Bacillus subtilis, J Bacteriol, 1986, 166:194-204
    Smith G P. Ellar D J. Mutagenesis of two surface-exposed loops of the Bacillus thuringiensis CryⅠC δ-endotoxin affects insecticidal specificity. Biochem J, 1994, 302:611-616
    Sneh B, Schuster S, Broza M. Insecticidal activity of Bacillus thuringiensis strains against the Egyptian leafworm, Spodoptera littoralis Boisd.(Lep. Noctuidae). Entomophga, 1981,26:179-190
    Tabashnik B E, Cushing N L, Finson N et al. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: plutellidae), J Econom Entomol, 1990, 83: 1671-1676.
    Tabashnik B E, Malvar T, Liu Y B et al. Cross-resistance of the diamondback moth indicates altered interactions with domainⅡof Bacillus thuringiensis toxins. Appl Environ Microbiol, 1996, 62:2839-2844
    Tofte H, Van Rie J, Jansens S et al. Monoclonal antibody analysis and insecticidal spectrum of three types of lepidopteran-specific insecticidal rystal proteins of Bacillus thuringiensis. Appl Enviorn Microbiol. 1988, 54:2010-2017
    Van Frankenhuyzen K, Gringorten J L, Milne R E et al. Specificity of activated CryⅠA proteins from Bacillus thuringiensis subsp.kurstaki HD-1 for defoliating forest Lepidoptera. Appl Environ Microbiol, 1991, 57:1378-1385
    Van Frankenhuyzen K, Gringorten J L, Milne R E et al. Toxicity of activated CryⅠ proteins from Bacillus thuringiensis to six forest Lepidoptera and Bombyx mori. J Invertebr Pathol, 1993, 62:295-301
    Van Rie J. McGaughey W H, Johnson D E et al. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Sci, 1990, 247:72-74
    Von Tersch M A, Robbins H L, Jany C S et al. Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: gene cloning and characterization and comparison with B. thuringiensis subsp, kurstaki CryⅠA(c) toxins. Appl Environ Microbiol, 1991, 57:349-358.
    Winder W R, Whiteley H R. Two highly related insecticidal crystal proteins of Bacillus thuringiensis subspecies kurstaki possess different host range specificities, J Bacteriol, 1989, 171: 965-974
    
    
    Wirth M C, Georghiou G P, Federici B A. CytA enables CryⅣ endotoxins of Bacillus thuringiensis to overcome high levels of CryⅣ resistance in the mosquito, Culex quinquefasciatus. Proc Natl Acad Sci USA, 1997, 94:10536-10540
    Wong H C, Chang S. Identification of a positive retroregulator that stabilizes mRNAs in bacteria. Proc Nail,Acad Sci USA, 1986, 83:3233-3237
    Wong H C, Schnepf H E, Whiteley H R. Transcriptional and translational start sites for the Bacillus thuringiensis crystal protein gene. J Biol Chem, 1983,258:1960-1967
    Wu D, Aronson A I. Localized mutagennesis defines regions of the Bacillus thuringiensis δ-endotoxin involved in toxicity and specificity, J Biol Chem, 1992, 267(4): 2311-17
    Wu D, Cao X L, Aronson A J. Sequence of an operon containing a novel δ-endotoxin gene from Bacillus thuringiensis. FEMS Microbiol Letts, 1991, 81: 31-36
    Wu D, Federici B A. A 20-kilodalton protein preserves cell viablility and promotes CytA crystal formation during sporulation in Bacillus thuringiensis, J Bacteriol, 1993, 175:5276-5280
    Wu D, Federici B A. Improved production of the insecticidal CryⅣD protein in Bacillus thuringiensis using cryⅠA(c) promotors to express the gene for an associated 20-kDa protein. Appl Microbiol Biotechnol, 1995, 42:697-702
    Wu D, Johnson J J, Federici B A. Synergism of mosquitocidal toxicity between CytA and CryⅣD proteins using inclusions produced from cloned genes of Bacillus thuringiensis. Mol Microbiol, 1994, 13(16):965-972
    Wu S J, Dean D J. Functional significance of loops in the receptor binding domain of Bacillus thuringiensis CryⅢA δ-endotoxin. J Mol Biol, 1996, 255:625-640
    Xu Z H, Horwich A L, Sigler P B, The crystal structure of the asymmetric GroEL-GroES-(ADP)7 chapperonin complex. Nature, 1997, 388(21):741-749
    Yamamoto T, lizuka T. Two types of entomocidal toxins in the parasporal crystals of Bacillus thuringiensis kurstaki. Arch Prochern Biophys, 1983,227:233-241
    Yamamotot, lizuka T. Two types of entomocidal toxins in the parasporal crystals of Bacillus thuringiensis kurstaki. Arch priochem Biophys, 1983,227:233-241
    Yoshisue H Nishimoto T, Sakai H et al. Identification of a promoter for the crystal protein-encoding gene cryⅣB from Bacillus thuringiensis subsp, israelensis. Gene, 1993, 137:247-251
    Yoshisue H, Ihara K, Nishimoto T et al. Expression of the genes for insecticidal crystal proteins in Bacillus thuringiensis: cryⅣA, not cryⅣB, is transcribed by RNA polymerase containing Sigma H and that containing Sigma E. FEMS Microbiol Lett, 1995, 127:65-72
    Yoshisue H, Nishimoto T, Sakai H et al. Identification of a promoter for the crystal protein-encoding gene cryⅣB from Bacillus thuringiensis subsp, israelensis. Gene, 1993, 137:247-251
    Yoshisue H, Yoshida K, Sen K, Sakai H, Komano T. Effects of Bacillus thuringiensis 20-kDa protein on production of the Bti 130-kDa crystal protein in Escherichia coli. Biosci Biotech Biochem, 1992, 56:1429-1433
    
    
    Zhang J. Hodgman T C, Krieger L, Schnetter W et al. Cloning and analysis of the first cry gene from Bacillus popilliae. J Bacteriol, 1997, 179:4336-4341

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700