西藏定日—岗巴盆地西部构造变形特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
定日-岗巴盆地位于西藏西南部,是著名的特提斯-喜马拉雅构造带重要组成部分,也是青藏地区具有勘探前景的含油气盆地之一。同时,作为大陆碰撞与造山作用研究的典型地区,定日-岗巴盆地由于受造山作用的影响,使盆地遭受强烈地改造、变形复杂,因此盆地构造变形与改造是定日-岗巴盆地需要深入研究的重大构造问题,也是盆地油气远景评价的关键问题。
     针对定日-岗巴盆地研究中存在的构造问题,论文选择定日-岗巴盆地西部为研究对象,在充分收集及利用前人研究成果基础之上,以精细的路线地质调查为基础,以构造变形分析和石油地质新理论为指导,以详细的构造解析为手段,从盆地现今结构、构造的几何学入手并结合已有的地球物理资料,分析盆地基底构造基本特点、盆地盖层构造格架。同时,以几何学、运动学和动力学全面构造解析为基本方法,查明各种规模构造变形形迹(褶皱、断裂、节理、面理和线理等)的产状、性质、规模、分布和组合规律,开展变形期次、物质组成、几何样式和力学性质等研究,对盆地构造单元进行划分。在此基础上,全面考虑收缩、伸展、走滑构造体制在盆地构造变形过程中的作用和演化规律;区分不同构造层次的构造样式和变形机制,分析不同期次构造变形的叠加、置换及其复何效应,建立构造变形序列和构造模式。进而运用构造应力场分析的方法,恢复确定盆地褶皱构造的变形应力场。最终,结合盆地构造变形强度、岩浆—火山作用、盆地地层分布与出露特征对盆地构造改造强度进行划分,对盆地西部的油气有利构造保存单元进行了预测,从构造变形与改造的角度为定日-岗巴盆地油气资源潜力评价和勘探区块的选取提供依据。
     论文主要得出以下几点进展与认识:
     1.以构造变形为基础,对定日-岗巴盆地西部构造单元进行了划分,将研究区划分为北部断褶带、中部复式褶皱带、南部拆离构造带三个一级构造单元,又将北部断褶带进一步划分为北部复向斜带和南部复背斜带、中部复式褶皱带划分为北部复向斜带和南部复背斜带。
     2.通过对研究区详细的构造解析,建立了盆地西部构造变形序列。提出自中生代晚期—新生代以来盆地经历了4期构造变形:第一期变形为中深层次顺层剪切机制下产生的紧闭同斜褶皱;第二期为中层次挤压体制下产生的逆冲断裂与褶皱构造;第三期变形为沿盆地内不同时代地层界面或同一地层不同岩性界面发育的伸展拆离构造;第四期变形为新生代晚期东西向伸展机制下产生的南北向地堑构造。其中第二期变形为盆地主导构造样式,且褶皱构造形态好、规模大,为盆地有利圈闭构造。
     3.通过盆地褶皱构造应力场初步分析结果表明,盆地变形以NNE-近SN向水平挤压为主,SN向发生收缩应变,EW向伸长,褶皱运动轴直立向上,为纵弯褶皱。
     4.通过构造改造强度分析,认为盆地西部那加-雄如-帕尔瓦-强木果地区和吉隆-沃马-恶拉-博尔杰拉加地区构造变形较弱,为油气有利构造保存单元。
The Dingri-Gamba basin, an important component of the world-famous Tethys-Himalayan tectonic zone, is located in the southwest part of Tibet. As a representative area of the international studies on continental collision and orogenesis, one of the best explorative prospect petroliferous basins in Tibet, it had experienced complicated deformation extremely. With the intense orogenesis influence, the basin suffered from intense reforming, which is related to the valuation of oil and gas resources directly. The structural deformation and reform of basin is the significant tectonic problem about petroleum geology and the oil-gas appraises in the Qinghai-Tibetan Plateau.
     In order to solve the tectonic problems existed in the Dingri-Gamba basin research, the thesis takes western part of the basin as priority study area on the basis of collecting and making use of prevenient research results, as well as accurate routes of geological investigation. Taking structural deformation analysis and new theories about petroleum geology as guide, detailed tectonic deformation analyses as method, the thesis begins with the geometry about present structures and tectonics, make use of the prevenient geophysical data, analyse the fundamental characteristics about base structure and the structure of overlying strata of the basin. Meanwhile, by taking the comprehensive tectonic analysis method concerning the geometry , kinematics and dynamics, this paper finds out various scale structural deformation pattern(fold, fault, joint, foliation and lineation etc.), and their current properties, scale, distrubution and combination rule, carrys out the study about deformation stages, component, geometrical pattern and mechanical properties ect. And the cover tectonic units were divided into several rational units. On the basis, contracting, extending, and srike-slipping are considered fully on the process of basin structural deformation. By distinguishing the structural sequences and deformation mechanism in different structural level, analyzing the effects of structural replacement and composition in different time, the structural deformation sequences and the structural patterns were built. And then the stress-field of the fold structures in the basin was ascertained after structural strain analysis. Finally, combined with the basin structural deformation , magma-volcano effection and the stratum characteristics, the author got the tectonic reform intensity, ascertained the areas which are propitious to gas-oil preservation in west part of the Dingri-Gamba basin, and provided scientific basis for gas-oil resources potential valuation and prospecting areas in Dingri-Gamba basin from the aspect of tectonic deformation and reform systematically.
     The paper mainly draws following several conclusions:
     1. Divided the research region into three first-grade structural units by analyzing the effects of structural deformation: northern thrust belt, central compound-fold belt, southern detachment structure belt, further, divided the northern thrust belt into nothern synclinorium belt and southern anticlinorium belt, central compound fold belt into northern synclinorium belt and southern anticlinorium belt.
     2. The study also suggested that the basin has experienced four tectonic reformations episodes since late Mesozoic to Cenozoic. The first is closed to tight folds result from middle to deep shearing mechanism along the delamination. The second is the thrust fault and fold structure caused by middle layer compression system. The third phase deformation is normal fault that developed along the formation interface from different times or the same stratum with different lithology in the basin. The fourth phase is that the NS graben structure was produced by EW expanding mechanism in late Cenozoic. Thereinto, the second deformation is the leading structural form in the basin, and the form of fold structure is fine and large, which is an advantageous trap structure.
     3. The study result about stress field of fold structure indicates that the deformation in basin is dominatingly trending NNE to near SN direction extrusion. The SN direction takes contracts strain, EW direction happens to extend, the fold motion axis stands straight. Therefore, the fold belongs to buckle fold.
     4. By the analysis of structural deformation intensity, the author think that the research area, Na jia-Xiong ru-Qa er wa-Qiang mu guo area and Ji long-Woma-E la-Bo er jie jia la area, is propitious to gas-oil preservation.
引文
[1]Brookfield M E.1993.The Himalayan passive margin from Precambrian to Cretaceous times[J].Sedimentary Geology,84:1-35.
    [2]Burchfiel,B.C.,Chen Zhiliang,Hodges,K.V.,et al.,1992,The South Tibetan Detachment System,Himalayan orogen:extension contemporaneous with and parallel to shortening in a collisional mountain belt:Geological Society of America,Special paper 269,1-51
    [3]Gaetani M,Jadoul F,Erba E,Garzanti E.1993.Jurassic and Cretaceous orogenic in the North Kalakoram:and constraint from sedimentary rocks.In:Treolar P J and Searle M P,eds.Himalaya Tectonics[J].Geol.Soc.Spec.Publ.,74:39-52.
    [4]Gansser A.1974.Mesozoic-Cenozoic Orogenic Belts Data for Orogenic Studies-Himalaya[J].The Geol.Soc.Spe.Publ.,4:267-278.
    [5]Jadoul F,Berra F,Garzanti E.1998.The Tethys Himalayan passive margin from Late Triassic to Early Cretaceous(South Tibet)[J].Journal of Asian Earth Sciences,16:173-194
    [6]Searle M P,Windley B F,Coward,M P,et al.1987.The closing of Tethys and the tectonics of the Himalaya[J].GSA Bull.,98:678-701.
    [7]Zhong Dalai,Ding Lin.1996.Rising process of the Qinghai-Xizang Plateau and its mechanism[J].Science in China.(Series D),39(4):369-379
    [8]An Y,Paul A K,Michael A M.et al,1999,Significant late Neogene east-west extension in northern Tibet[J].Geology,27(9).
    [9]Decells P G,Robinson D M,Zandt G.Implications of shortening in the Himalayan fold-thrust belt for uplift of the Tibetan Plateau[J].Tectonics,2002,21(6):1602.
    [10]Deway J F,Chnag Chengfa,R M Shackleton.1990.The tectonic evolution of the Tibet Plateau.In:Chang Chengfa et al.eds:Geological evolution of Tibet[J].Beijing:Science Press,381-341.
    [11]Searle M P.1996.Cooling history,erosion,exhumation,and kinematic of the Himalaya~Karakoram~Tibet orogenic belt.In The Tectonic Evolution of Asia[J].A Yin,TM Harrison,Cambridge University Press,110-137.
    [12]Harrison TM,Copel,Kidd,Yin.A.1992.RaisingTibet[J].Science255:1663-1670.
    [13]Gansser A.1964.The geology of the Himalayas[J].Wiley Interscience,New York,289.
    [14]Dewey J F,and Burke.K.1973.Variscan and Precambrian basement reactivation:products of continental collision[J].Geol.,81:683-692.
    [15]An Yin.2006.喜马拉雅造山带新生代构造演化:岩走向变化的构造几何形态、剥露历史和 前陆沉积的约束[J].地学前缘,13(5):416-515.
    [16]刘焰,wolfgang Siebel,李剑等.2004.藏南定日地区主中央冲断层与藏南拆离系的特征及其活动时代[J].地质通报,7(26):636-644.
    [17]成都地质矿产研究所.2003.中华人民共和国区域地质调查报告,1:25万聂拉木县幅(H45C004002)[M],区域地质调查报告.
    [18]河北省区域地质调查研究所,石家庄经济学院.2002.中华人民共和国区域地质调查报告,萨嘎县幅(H45C003001),吉隆县幅(H45C004001国内部分)[M],1:25万.中国区域地质调查局地质专报.
    [19]河北省区域地质调查研究所,石家庄经济学院.2002.中华人民共和国区域地质调查报告,桑桑区幅[M],1:25万.中国区域地质调查局地质专报.
    [20]王剑,谭富文,李亚林等.2004.青藏高原重点沉积盆地油气资源潜力分析[M].北京:地质出版社.175-296
    [21]王富葆,李升峰,申旭辉等.1996.吉隆盆地的形成演化、环境变迁与喜马拉雅隆起[J].中国科学(D辑),26(4):329-335.
    [22]西藏地质地矿局.1993.西藏自治区区域地质志[M].北京:地质出版社,pp.200.
    [23]西藏地质矿产局.1997.西藏自治区岩石地层[M].武汉:中国地质大学出版社,183-184.
    [24]中国科学院西藏科学考察队.1974,珠穆朗玛峰地区科学考察报告(1966-1968)[M],北京:科学出版社.
    [25]张进江.2007.北喜马拉雅及藏南伸展构造综述[J].地质通报,6(26):631-649.
    [26]肖序常等.1988.喜马拉雅岩石圈构造演化[M].地质矿产部地质专报.北京:地质出版社.
    [27]王成善,夏代祥,周详,等.雅鲁藏布江缝合带:喜玛拉雅山地质[M].北京:地质出版社,1999
    [28]赵文津.喜玛拉雅山及雅鲁藏布江缝合带深部结构与构造研究[M].北京:地质出版社,2001.
    [29]高瑞祺,赵政璋.中国油气新区勘探.第六卷,青藏高原石油地质[M].北京:石油地质出版社,2001
    [30]赵政璋,李永铁,叶和飞等.2000.青藏高原大地构造特征及盆地演化[M].北京:科学出版社1-427.
    [31]赵政璋,李永铁,叶和飞,等.2001.青藏高原地层[M].北京:科学出版社,125-139.
    [32]潘钟祥.1987.石油地质学[M].北京:地质出版社,62-64
    [33]章炳高.1974.珠穆朗玛峰地区的地层—石碳系、二叠系.见:中国科学院西藏科学考察队,珠穆朗玛峰地区科学考察报告(1966—1968),北京:科学出版社.
    [34]阴家润,万晓樵.1998,岩鸨蛤Lithiotis在藏南的发现及其扩散路线[J].古生物学报,37(2):253-256.
    [35]阴家润,万晓樵.1996.侏罗纪菊石形态-特提斯喜马拉雅海的深度标志[J].古生物学报,35(6):734-751.
    [36]阴家润,万晓樵,金朝雯.2000.东特提斯首条三叠-侏罗系界线剖面.见:《第三届全国地层会议论文集》编委会,第三届全国地层会议论文集[M].北京:地质出版社,179-185.
    [37]刘池洋,杨兴科.2000.改造盆地研究和油气评价的思路[J].石油与天然气地质,21(1):11-14
    [38]刘池洋,孙海山.1999.改造型盆地类型划分[J].新疆石油地质:20(2):79-83
    [39]陈章明,吴元燕,吕延防,等.2003.油气藏保存与破坏研究[M].北京:石油工业出版社.1-28
    [40]万晓樵,高莲凤,李国彪等.2005.西藏江孜浪卡子一带的侏罗—白垩纪界线地层[J].现代地质,19(4):479-487.
    [41]史晓颖.2001.藏南珠穆朗玛峰地区三叠系层序地层及沉积演化——从陆表海盆地到裂谷盆地[J].地质学报,75(3):293-302
    [42]史晓颖.2000.藏南珠峰地区侏罗纪晚期至白垩纪早期层序地层序列及沉积环境演化.见:《第三届全国地层会议论文集》编委会,第三届全国地层会议论文集[M].北京:地质出版社,260-264.
    [43]史晓颖,雷振宇,阴家润.1996.珠穆朗玛峰北坡下侏罗统层序地层及沉积相研究[J].地质学报,70(1):73-83.
    [44]穆恩之,尹集祥,文世宣等.1973.中国西藏南部珠穆朗玛峰地区的地层[J].中国科学,16(1):59-71
    [45]穆恩之,陈挺恩.1984.西藏南部志留纪地层新材料[J].地层学杂志,8(1):49-55.
    [46]林宝玉,邱洪荣.1982.西藏喜马拉雅地区古生代地层的新认识[J].青藏高原地质文集(7).北京:地质址出版社,149-152.
    [47]李国彪,万晓樵,于潮.2003.特提斯喜马拉雅白垩纪层序地层分析[J].沉积地质与特提斯地质.23(3):21-34.
    [48]计宏祥,徐钦琦,黄万波.1980.西藏吉隆沃马公社三趾马动物群[J].见:西藏古生物(第一分册).北京:科学出版社,18-32.
    [49]王连成,王东安.1981.西藏南部的沉积岩[J].北京:科学出版社,pp.102.
    [50]王义刚,孙东立,何国雄.1980.喜马拉雅地区(我国境内)地层研究的新认识[J].地层学杂志,4(1):55-59.
    [51]王义刚,孙东立,何国雄.1984.特提斯喜马拉雅南部分区[J].见:中国科学院青藏高原综合科学考察队,西藏地层.北京:科学出版社,14-100.
    [52]杨遵仪,吴顺宝.1962,西藏南部侏罗纪晚期至老第三纪海相地层及动物群[J].见:中国地质学会第22届学术年会论文选集.北京:地质出版社,66-69.
    [53]杨遵仪,吴顺宝.1964.西藏南部晚侏罗世的若干箭石[J].古生物学报,12(2):187-216.
    [54]徐钰林,万晓樵,苟宗海,等.西藏侏罗纪、白垩纪、第三纪生物地层[J].武汉:中国地质 大学出版社,1990,147pp.
    [55]尹集祥,郭师曾.1978.珠穆朗玛峰及其北坡的地层[J].中国科学,1.
    [56]尹集祥.1974.寒武-奥陶系-三叠系.见:中国科学院西藏科学考察队:珠穆朗玛峰地区科学考察报告(1966.1968)[M].北京:科学出版社.
    [57]尹集祥,闻传芬.1982.珠峰地区晚石炭世冰海相杂砾岩石英颗粒表面结构[J].地质科学,(3):283-289.
    [58]李亚林,黄继钧,王成善,等.2005.羌塘盆地构造改造强度划分与油气远景区分析[J].沉积与特提斯地质,25(4):11-15.
    [59]许志琴,杨经绥,戚学祥,等.2006.印度/亚洲碰撞——南北向和东西向拆离构造与现代喜马拉雅造山机制再讨论[J].地质通报,25(1-2):1-13.
    [60]尹安.2001.喜马拉雅-青藏高原造山带地质演化——显生宙亚洲大陆生长[J].地球学报,22(3):193-230.
    [61]罗小平,朱剑如,祁开令.1995.中国西藏岗巴—定日盆地找油前景[J].中扬油气勘查,(2):20-27.
    [62]殷秀华,黎益仕,冯华.青藏高原重力场特征和地壳构造[J].物探与化探,1998,22(6):440-445.
    [63]孔祥儒,王谦身.西藏高原西部综合地球物理与岩石圈结构研究[J].中国科学:D 辑,1996,26(4):308-315.
    [64]杨华.青藏高原航磁图展示的地球物理特征及其地质构造意义[J].青藏高原地球物理研究文集,地球物理学报,1985,28(增刊Ⅰ),185-195.
    [65]许志琴,杨经绥,李海兵,等.2006.青藏高原与大陆动力学——地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质,(2):221-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700