非回转对称微结构表面超精车削轨迹生成及形状误差评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非回转对称微结构表面在成像、照明、精密测量、激光光束整形等领域中得到了越来越广泛的应用,此类表面的超精密加工已经成为了21世纪先进制造技术中的一项关键技术。采用金刚石车削方法实现非回转对称微结构表面加工,具有形状精度高、表面粗糙度好、加工形状可灵活控制等优点,得到了越来越多的重视。车削加工此类表面时,需要同时考虑机床工作台的直线位移和主轴转动的角度,这决定了非回转对称表面车削与传统回转对称表面车削加工在表面成形原理上的差异。车削加工满足要求的非回转对称微结构表面,不仅需要相应的超精密加工设备、良好质量的金刚石刀具,还需要对刀具轨迹生成、形状误差评价、加工仿真等关键技术进行研究。
     刀具轨迹是实现加工的基础。根据非回转对称微结构表面车削加工表面成形原理,分别给出了公式描述表面、阵列类表面和离散点描述表面的刀具轨迹计算方法。为保证所加工表面的形状精度,需对刀尖圆弧半径进行补偿,而刀具补偿量通常既有X坐标轴运动分量,又有Z坐标轴运动分量。刀尖圆弧半径补偿后,就使原本单向、匀速进给的X向工作台叠加了一个高频往复运动分量,不利于微结构表面的车削加工。针对上述问题,提出了基于Hermite插值和散乱点插值的两种刀具轨迹生成方法,可将刀尖圆弧半径补偿后的高频的运动分量都分解到Z坐标方向上。其中,基于Hermite插值的刀具轨迹生成算法适用于公式描述的表面,而基于散乱点插值的刀具轨迹生成算法则更适用于阵列类和离散点表示的表面。
     形状误差评价是分析加工结果的重要部分。分别给出了非回转对称微结构表面加工结果二维轮廓误差及三维面形误差的评价方法。在进行轮廓误差计算时,采用弧长曲率曲线互相关方法得到测量轮廓与设计轮廓的对应点,根据这些对应点推导了实现轮廓粗匹配时对测量轮廓进行的的旋转、平移参数的快速计算方法,进而采用实数编码遗传算法实现测量轮廓与设计轮廓的精确匹配,得到了轮廓的轮廓误差。在面形误差评价时,采用曲率极值点作为粗匹配的特征点,建立了表面粗匹配和精匹配模型,采用遗传算法依次实现了对上述匹配模型的求解,得到了表面面形误差的评价结果,并对算法的可靠性进行了讨论。
     加工仿真是预测形状误差,保证加工质量的有效手段。采用超精密车削加工非回转对称微结构表面时,加工程序复杂、加工参数各异、加工结果易受环境影响。因此,需要参照真实加工系统建立相应的仿真系统,仿真系统不仅包括切削力、运动控制系统、工作台振动、切削刀具轮廓、加工表面三维形貌等模型,并且还包括机床运动和简化的动力学模型,上述所有模型的综合决定了工件的最终加工质量。在机床运动模型中,将机床各运动部件均抽象为具有六个自由度的刚体,并通过坐标变换得到金刚石刀具相对于工件的三维切削轨迹,进而通过采样法建立了加工表面的三维形貌。此仿真系统不仅可以预测加工结果的表面粗糙度,还可以分析主轴转速、刀尖圆弧半径补偿、对刀误差等加工参数对表面形状误差的影响,对实际加工具有指导意义。
     加工非回转对称微结构表面时需选择具有合适刀尖几何参数的金刚石刀具,以避免刀具与所加工的表面发生干涉。本文给出了金刚石刀具刀尖圆弧半径、前角、后角等几何参数的选择方法,并加工了多种非回转对称微结构表面。加工的公式描述表面为正弦网格表面,它可作为制作激光核聚变调制靶的模板。加工的阵列类表面为四边形和六边形排布的非球面微透镜阵列,它们在光学系统中具有广泛的应用。在对非球面形状参数进行光学性能优化的基础上,分别设计并加工得到了四边形和六边形排布微透镜阵列模板,对加工结果的形状精度进行了分析,对刀具对心误差对透镜形状误差的影响进行了讨论,并对热压印后非球面微透镜阵列的焦斑和成像性能进行了测试,表明超精密车削方法是加工微透镜阵列元件的一种有效手段。对于离散点描述的表面,成功实现了用图片表示的头像以及用于激光光束整形的连续衍射表面的加工,对刀具轨迹生成算法进行了验证。
Non-rotational symmetric microstructured surfaces have been widely applied inthe fields of imaging, illumination, precision measurement and laser beam reshaping.The fabrication technique of such surfaces has become a key to the advancedmanufacture technologies in the21th century. Diamond turning of these surfaces hasthe advantages of high form accuracy, excellent surface roughness and the flexiblegeometries. Thus, it attracts more and more attention. During the turning process,both the linear motion of the sliders and the rotated angle of the spindle need to betaken into account. This distinguishes the non-rotational symmetric turning from thetraditional turning in the principle of surface generation. To obtain qualified surfaces,not only the ultra-precision machine and the high quality diamond tools are needed,but also the key technologies like tool path generation, form error evaluation andmachining simulation should be further studied.
     The fabrication is on the foundation of tool path generation. According to theturning principle of non-rotational symmetric surfaces, the algorithms are providedto calculate the tool paths of the fomula represented surfaces, array distributedsurfaces and the discrete points represented surfaces. To satisfy the accuracyrequirements, the tool nose radius needs to be compensated with the compensationcomponents both in X and Z direction. Thus, a high frequency motion componentwould be added onto the X slider which should move in one direction with aconstant speed. This high frequency motion is disadvantageous to the fabricationprocess. To solve the above problem, two tool path generation algorithms arebrought out. One is based on the Hermite interpolation and the other is based on thescattered data interpolation, both of them can decompose the high frequency motionto the Z direction. The first tool path generation method is suited for the fomularepresented surfaces and the second one is appropriate for the array distributed anddiscrete points represented surfaces.
     The form error evaluation is an important part of the analyzation of themachined results. Methods for evaluating the2-D profiles and3-D geometries of thenon-rotational symmetric surfaces are proposed. When evaluating measured profiles,the cross correlation of arc length-curvature curves was adopted to obtain thecorresponding points on measured and designed profiles. Based on thesecorresponding points, a high effecient algorithm was developed to estimate therotation and the translation parameters for initial matching. The real coded geneticalgorithm was adopted to fine match the measured profile with the designedtemplate. Then, the profile error can be characterized. The local extreme curvature points are used as the feature points for initial matching the measured with thedesigned surface. After establishing the models of initial and fine matching, thematching models were both solved using the genetic algorithm. Then the form errorwas obtained and the robustness of the algorithm was discussed.
     Simulation is an effective way to predict the form error and to ensure themachining quality. During the turning process of non-rotational symmetric surfaces,the numerical control program is complicated, the machining parameters are variedand the results also are affected by the environment. Thus, it is highly needed toestablish a simulation system according to the real machining system. Thesimulation system includes not only the model of the cutting force, the motioncontrol system, the vibration of the sliders, the cutting tool geometry, the surfacegeneration, but also the kinematic and the simplified dynamic model of the machine.In the kinematic model, each moving part can be simplified as a rigid body with sixdegree of freedoms and the3-D cutting tool path can be obtained by the coordinatetransformation. Then the3-D geometry of the machined surface can be obtainedbased on a sampling mehtod. This simulation system can not only predict the surfaceroughness, but also can be used to analyze the influence of the spindle speed, thetool nose radius compensation and the tool alignment error on the form error whichwould be of instructive significance for the real machining process.
     To avoid the interference between the diamond tool and the surface to befabricated, diamond tools with proper geometry parameters are needed. Method fortool geometry selection including the tool nose radius, rake angle and clearanceangle was proposed. Many kinds of non-rotational symmetric surfaces werefabricated. The sinusoidual grid surface is a fomula represented surface which canbe used as the mold to fabricate the pertubated target for the inertially confinedfusion experiment. The array distributed surfaces are square and hexagonaldistributed aspherical micro lens array (MLA) which are widely used in opticalsystems. Based on the optical design, the molds of the MLA were fabricated with theform error was evaluated, the affect of the tool alignment error on the form error ofthe micro lens was discussed and the focal spots and the image character were tested.The tested results show that the ultra-precision turning menthod is an excellent wayfor the fabrication of MLA. As to the discrete points represented surfaces, a figuregenerated form a picture and two continuous diffractive surfaces were successfullyfabricated which further validate the tool path generation algorithm.
引文
[1] Miyoshi H, Ju J, Lee S M, et al. Control of highly migratory cells bymicrostructured surface based on transient change in cell behavior[J].Biomaterials,2010,31:8539-8545.
    [2] Liu C F, Pan C T, Chen Y C, et al. Design and fabrication of double-sidedoptical film for OLED lighting[J]. Optics Communications,2013,291:349-358.
    [3] Tsai J Z, Chang R S, Li TY. LED Backlight module by a light guide-diffusivecomponent with tetrahedron reflector array[J]. Journal of Display Technology,2012,8(6):321-328.
    [4] Carbone G, Pierro E, Gorb S N. Origin of the superior adhesive performanceof mushroom-shaped microstructured surfaces[J]. Soft Matter,2011,7(12):5545-5552.
    [5] Davies M A, Evans C J, Patterson S R, et al. Application of precision diamondmachining to the manufacture of micro-photonics components[C]. Proc. ofSPIE. Bellingham, United States.2003,5183:94-108.
    [6] Niggemann M, Riede M, Gombert A, et al. Light trapping in organic solarcells[J]. Physica Status Solidi (a),2008,205(12):2862-2874.
    [7] Chen H L, Chuang S Y, Lin C H,et al.Using colloidal lithography to fabricateand optimize sub-wavelength pyramidal and honeycomb structures in solarcells[J].Optics Express,2007,15(22):14793-14803.
    [8] Shimizu M, Takeuchi K, Sai H, et al. High-temperature Solar SelectiveAbsorber Material Using Surface Microcavity Structures[C]. Proceedings ofthe ASME20115th International Conference on Energy Sustainability.Washington, USA.2011:ES2011-54599.
    [9] Choi S J, Huh S Y. Direct Structuring of a Biomimetic Anti-Reflective,Self-Cleaning Surface for Light Harvesting in Organic Solar Cells[J].Macromolecular Rapid Communications,2010,31:539-544.
    [10] Li L, Yi A Y. Design and fabrication of a freeform microlens array for acompact large-field-of-view compound-eye camera[J]. Applied Optics,2012,51(12):1843-1852.
    [11] Reichle R, Pruss C, Gessenhardt C, et al. Diffractive/refractive (hybrid)UV-imaging system for minimally invasive metrology: design, performance,and application experiments[J]. Applied Optics,2012,51(12):1982-1996.
    [12] He P, Wang F, Li L K, et al. Development of a low cost high precisionfabrication process for glass hybrid aspherical diffractive lenses[J]. Journal ofOptics,2011,13:085703.
    [13] Hao X, Zheng Z R, Liu X, et al. Freeform surface lens design for uniformillumination[J]. Journal of Optics A: Pure and Applied Optics,2008,10(7):075005.
    [14] Wang K, Liu S, Chen F, et al. Freeform LED lens for rectangularly prescribedillumination[J]. Journal of Optics A: Pure and Applied Optics,2009,11:105501.
    [15] Kong L B, Cheung C F, Jiang J B, et al. Characterization of freeform optics inautomotive lighting systems using an Optical–Geometrical Feature BasedMethod[J]. Optik,2011,122(4):358-363.
    [16] Gao W, Kimura A. A Three-axis Displacement Sensor with NanometricResolution[J]. Annals of the CIRP,2007,56(1):529-532.
    [17] Liua K H, Chenb M F, Pan CT, et al. Fabrication of various dimensions of highfill-factor micro-lens arrays for OLED package[J]. Sensors and Actuators A,2010,159:126–134.
    [18] Kindermann S, Neubauer A, Ramlau R. A singular value decomposition for theShack–Hartmann based wavefront reconstruction[J]. Journal ofComputational and Applied Mathematics,2012,236:2186–2199.
    [19] Li H Q, Song H L, Rao C H, et al. Accuracy analysis of centroid calculated bya modified center detection algorithm for Shack–Hartmann wavefrontsensor[J]. Optics Communications,2008,281:750–755.
    [20] Vekshin M M, Levchenko A S, Nikitin A V, et al. Glass microlens arrays forShack–Hartmann wavefront sensors[J]. Measurement Science and Technology,2010,21:054010.
    [21] Chen Z C, Hong M H, Lim C S, et al. Parallel laser micro fabrication oflarge-area asymmetric split ring resonator materials and its structural tuningfor terahertz resonance[J]. Applied Physics Letters,2010,96:181101.
    [22] Chen Z C, Hong M H, Dong H, et al. Parallel laser micro fabrication ofterahertz metamaterials and its polarization-dependent transmissionproperty[J]. Applied Physics A: Materials Science and Processing,2010,101:33–36.
    [23] Chong T C, Hong M H, Shi L P. Laser precision engineering: frommicrofabrication to nanoprocessing[J]. Laser&Photonics Reviews,2010,4(1):123-143.
    [24] Wu M H, Whitesides G M. Fabrication of two-dimensional arrays ofmicrolenses and their applications in photolithography[J]. Journal ofMicromechanics and Microengeering,2002,12:747-758.
    [25] Tiziani H J, Achi R, Kramer R N, et al. Microlens arrays for confocalmicroscopy[J]. Optics and laser technology,1997,29(2):85-91.
    [26] Chen F Z, Chen C H, Wu C H, et al. Development of a Double-Sided MicroLens Array for Micro Laser Projector Application[J]. Optical Review,2012,19(4):238–241.
    [27] Moses E I. The National Ignition Facility and the National IgnitionCampaign[J]. IEEE Transactions on Plasma Science,2010,38(4):684-689.
    [28] Watari T, Nakai M, Azechi H, et al. Rayleigh-Taylor instability growth onlow-density foam targets[J].Physics of plasmas,1998,15(9):092109.
    [29] Clark D S, Haan S W, Hammel B A. Plastic ablator ignition capsule design forthe national ignition facility[J]. Physics of Plasmas,2010,17:052703.
    [30] Schappert G T, Batha S H, Klare K A, et al. Rayleigh-Taylor spikeevaporation[J]. Physics of plasmas,2001,8(9):4156-4162.
    [31] Nishimura H, Takabe H, Mima K, et al. Hydrodynamic instability in anablatively imploded target irradiated by high power green lasers[J]. Physics ofFluids,1988,31(10):2875-2883.
    [32] Hsing W W, Barnes C W, Beck J B, et al. Rayleigh–Taylor instability evolutionin ablatively driven cylindrical implosions[J]. Physics of plasmas,1997,4(5):1832-1840.
    [33] Glendinning S G, Colvin J, Haan S, et al. Ablation front Rayleigh–Taylorgrowth experiments in spherically convergent geometry[J]. Physics of Plasmas,2000,7(5):2033-2039.
    [34]周斌,王钰,沈君.研究瑞利-泰勒流体动力学不稳定性的实验用靶[J].中国激光,1999,26(10):878-882
    [35]孙骐,周斌,黄耀东等.二维调制靶的图形转移研究[J].原子能科学技术,2002,7(36):327-330.
    [36] Yang C L, Zhang RZ, Xu Q, et al. Continuous phase plate for laser beamsmoothing[J]. Applied Optics,2008,47(10):1465-1469.
    [37]温圣林,侯晶,杨春林等.用于光束匀滑的连续相位板近场均匀性[J].强激光与粒子束,2011,23(6):1543-1547
    [38]阳泽健,高福华,姚欣等.连续相位板优化设计[J].激光与光子学进展,2010,47:022301.
    [39]温圣林,许乔,马平等.基于工艺的连续相位板设计[J].光学学报,2009,29(11):3079-3082.
    [40] Marozas J A. Fourier transform-based continuous phase-plate design technique:a high-pass phase-plate design as an application for OMEGA and the NationalIgnition Facility[J]. Journal of the Optical Society of America A,2007,24(1):74-83.
    [41]孙光宇,毕晓川,洪义麟等.大调制度表面正弦图形制作工艺研究[J].光学技术,1999,5(3):17-18.
    [42] Huang Y, Liu R, Lai J J, et al.Design and fabrication of a negative microlensarray[J].Optics&Laser Technology,2008,40(8):387-392.
    [43] Totsu K, Fujishiro K, Tanaka S, et al.Fabrication of three-dimensionalmicrostructure using maskless gray-scale lithography[J]. Sensors andActuators A,2006,130:387-392.
    [44] Ong N S, Koh Y H, Fu YQ. Microlens array produced using hot embossingprocess[J]. Microelectronic Engineering,2002,60:365-379.
    [45] Huang C Y, Hsiao W T, Huang K C, et al. Fabrication of a double-sidedmicro-lens array by a glass molding technique[J]. Journal of Micromechanicsand Microengeering,2011,21:085020.
    [46] Bettiol A A, Sum T C, Cheong F C, et al. A progress review of proton beamwriting applications in microphotonics[J]. Nuclear Instruments and Methods inPhysics Research B,2005,231:364-371.
    [47] Oha H, Kima G, Seo H, et al. Fabrication of micro-lens array using quartz wetetching and polymer[J]. Sensors and Actuators A,2010,164:161-167.
    [48] Lazoglu L, Boz Y, Erdim H. Five-axis milling mechanics for complex freeformsurfaces[J]. CIRP Annals-Manufacturing Technology,2011,60(1):117-120.
    [49] Brinksmeier E, Glabe R, Flucke C. Manufacturing of Molds for Replication ofMicro Cube Corner Retroreflectors[J]. Production Engineering,2008,2:33-38.
    [50] Brinksmeier E, Glabe R, Schonemann L. Review on diamond-machiningprocesses for the generation of functional surface structures[J]. CIRP Journalof Manufacturing Science and Technology,2012,5:1–7.
    [51] Weck M, Fischer S. Manufacturing of Microstructured Surfaces UsingUltraprecision Turning, Milling and Shaping[C]. Proceedings of the1stInternational Conference and General Metting of the European Society forPrecision Engineering and Nanotechnology. Bremen, Germany.1999:240-243.
    [52] Chen Y, Li L, Yi A Y. Fabrication of precision3D microstructures by use of acombination of ultraprecision diamond turning and reactive ion etchingprocess[J]. Journal of Micromechanics and Microengeering,2007,17:883-890.
    [53] Pan C T, Wu T T, Chen M F, et al. Hot embossing of micro-lens array on bulkmetallic glass[J].Sensors and Actuators A,2008,141:422-431.
    [54]李荣彬,张志辉,杜雪等.自由曲面光学元件的设计、加工及面形测量的集成制造技术[J].机械工程学报,2010,46(11):137-148.
    [55]李荣彬,张志辉,杜雪等.微结构光学元件快速伺服刀架加工技术[J].纳米技术与精密工程,2005,3(3):216-221.
    [56] Kwok T C, Cheung C F, Kong L B. Analysis of surface generation inultra-precision machining with a fast tool servo[J]. Proc. IMechE Part B: J.Engineering Manufacture,2009,224:1351-1367.
    [57] Kong L B, Cheung C F, Jiang X Q, et al. Characterization of surfacegeneration of optical microstructures using a pattern and feature parametricanalysis method[J]. Precision Engineering,2010,34(4):755-766.
    [58] Cheung C F, Hua K, Jiang X Q, et al. Characterization of surface defects infast tool servo machining of microlens array using a pattern recognition andanalysis method[J]. Measurement,2010,43:1240-1249.
    [59]张效栋,房丰洲,程颖.自由曲面超精密车削加工路径优化设计[J].天津大学学报,2009,42(3):278-282.
    [60] Fang F Z, Zhang X D, Hu X T. Cylindrical coordinate machining of opticalfreeform surfaces[J]. Optical Express,2008,16:7323-7329.
    [61]关朝亮,铁贵鹏,尹自强.光学阵列器件的慢刀伺服车削加工技术[J].国防科技大学学报,2009,31(4):31-36.
    [62]关朝亮,戴一凡,尹自强.刀具对中误差对离轴抛物面镜慢刀伺服车削加工的影响[J].纳米技术与精密工程,2011,9(1):89-94.
    [63] Liu Q, Zhou X Q, Xu P Z,et al. A flexure-based long stroke fast tool servo fordiamond turning[J]. The International Journal of Advanced ManufacturingTechnology,2012,59:859-867.
    [64] Zhu Z W, Zhou X Q, Liu Q,et al. Multi-objective Optimum Design of FastTool Servo Based on improved differential evolution algorithm[J]. Journal ofMechanical Science and Technology,2012,25(12):3141-3149.
    [65] Ma H Q, Hu D J, Zhang K. A Fast Tool Feeding Mechanism UsingPiezoelectric Actuators in Noncircular Turning[J]. International Journal ofAdvanced Manufacturing Technology,2005,27(3/4):254-259.
    [66]谢晓丹,王博超,吴丹.电磁驱动快速刀具伺服机构的电磁场和驱动力[J].清华大学学报(自然科学版),2008,48(8):1298-1301.
    [67]杨元华.基于FTS的微结构功能表面超精密切削加工关键技术研究[D].哈尔滨工业大学博士论文,2007.
    [68] Yang Y H, Chen S J, Huo D H, et al. Performance analysis and optimal designof fast tool servo used for machining micro-structured surfaces[J]. Proceedingsof the Institution of Mechanical Engineers, Part C Journal of MechanicalEngineering Science,2008,222:1541–1546.
    [69]王晓慧.基于FTS的微结构表面超精密车削控制系统及实验研究[D].哈尔滨工业大学博士论文,2011.
    [70] Wang X H, Sun T. Preisach modeling of hysteresis for fast tool servo system[J].Optics and Precision Engineering,2009,17(6):1421-1425.
    [71]张海军.基于FTS的微结构表面金刚石切削加工若干技术问题研究[D].哈尔滨工业大学博士论文,2010.
    [72] Zhang H J, Chen S J, Zhou M, et al. Fast tool servo control for diamondcutting microstructured optical components[J]. Journal of Vacuum Science andTechnology B: Microelectronics and nanometer structures,2009,27(3):1226-1229.
    [73] Zhou M, Zhang H J, Chen S J. Study on diamond cutting of non-rotationallySymmetric Microstructured surfaces with Fast Tool Servo[J]. Materials andManufacturing Processes,2010,25(6):1-7.
    [74] Gao W, Takeshi A, Satoshi K, et al. Precision Nano-fabrication and Evaluationof a Large Area Sinusoidal Grid Surface for a Surface Encoder[J]. PrecisionEngineering,2003,27:289-298.
    [75] Hirabayashi R, Noh Y J, Arai Y, et al.Hot Embossing of a Sine Grid for aSurface Encoder[J].Nanotechnology and Precision Engineering,2007,5(2):102-107.
    [76] Gao W, Tano M, Sato S, et al.On-machine measurement of a cylindricalsurface with sinusoidal micro-structures by an optical slope sensor[J].Precision Engineering,2006,30:274-279.
    [77] Brecher C, Weck M, Winterschladen M, et al. Manufacturing of Free-formSurfaces in Optical Quality Using an Integrated NURBS Data Interface[C].Proceedings of the ASPE Winter Topical Meeting.2004.
    [78] Brinksmeier E, Riemer O, Glabe R, et al. Submicron functional surfacesgenerated by diamond machining[J]. CIRP Annals-Manufacturing Technology,2010,59(1):535-538.
    [79] Falldorf C, Dankwart C, Glabe R, et al. Holographic projection based ondiamond-turned diffractive optical elements[J]. Applied Optics,2009,48(30):5782-5785.
    [80] Dankwart C, Falldorf C, Glabe R, et al. Design of diamond-turned hologramsincorporating properties of the fabrication process[J]. Applied Optics,2010,49(20):3949-3955.
    [81] Dow T A, Miller M H, Falter P J. Application of a fast tool servo for diamondturning of nonrotationally symmetric surfaces[J]. Precision Engineering,1991,13(4):243-250.
    [82] Miller M H, Garrard K P, Dow T A, et al. A controller architecture forintegrating a fast tool servo into a diamond turning machine[J]. PrecisionEngineering,1994,16(1):42-48.
    [83] Tohme Y E, Lowe J A. Machining of Freeform Optical Surfaces by Slow SlideServo Method[C]. Proceedings of the ASPE Annual Meeting.2003.
    [84] Bono M J, Hibbard R L. Fabrication and Metrology of Micro-Scale SinusoidalSurfaces in Polymer Workpiece materials[C]. Proc. of ASPE. Orlando, USA.2004,34:1-6.
    [85] Yi A Y, Li L. Design and fabrication of a microlens array by use of a slow toolservo[J]. Optics Letters,2005,30(13):1707-1709.
    [86] Huang C N, Li L, Yi A Y.Design and fabrication of a micro Alvarez lens arraywith a variable focal length[J]. Microsystems Technology,2009,15:559-563.
    [87] Li L, Yi A Y. Microfabrication on a curved surface using3D microlens arrayprojection[J]. Journal of Micromechanics and Microengeering,2009,19:105010.
    [88] Li L, Yi A Y, Huang C N, et al. Fabrication of diffractive optics by use of slowtool servo diamond turning process[J]. Optical Engineering,2006,45(11):113401.
    [89] Lu X D, Trumper D L. Spindle rotary position estimation for fast tool servotrajectory generation[J]. International Journal of Machine Tools&Manufacture,2007,47:1362-1367.
    [90] Yu D P, Wong Y S, Hong G S. Optimal selection of machining parameters forfast tool servo diamond turning[J]. International Journal of AdvancedManufacturing Technology,2011,57(1-4):85-99.
    [91] Yu D P, Hong G S, Wong Y S. Profile error compensation in fast tool servodiamond turning of micro-structured surfaces[J].International Journal ofMachine Tools and Manufacture,2012,52(1):13-23.
    [92] Yi A Y, Huang C N, Klocke F, et al. Development of a compression moldingprocess for three-dimensional tailored free-form glass optics[J]. AppliedOptics,2006,45(25):6511-6518.
    [93] Brecher C, Lange S, Merz M, et al. NURBS Based Ultra-Precision Free-FormMachining[J]. CIRP Annals-Manufacturing Technology,2006,55(1):547-550.
    [94] Yu D P, Gan S W, Wong Y S, et al. Optimized tool path generation for fast toolservo diamond turning of micro-structured surfaces[J]. International Journal ofAdvanced Manufacturing Technology,2012,63:1137-1152.
    [95] Starly B, Lau A, Sun W, et al. Direct slicing of STEP based NURBS modelsfor layered manufacturing[J]. Computer-Aided Design,2005,37(4):387-397.
    [96] Jiang X, Scott P, Whitehouse D. Freeform surface characterization-A freshstrategy[J].CIRP Annals-Manufacturing Technology,2007,56,(1):553-556.
    [97] Xu C J, Liu J Z, Tang X O.2D Shape Matching by Contour Flexibility[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(1):180-186.
    [98] Xu D, Xu W L.Description and recognition of object contours using arc lengthand tangent orientation[J].Pattern Recognition Letters.2005,26:855-864.
    [99] Ma F, Chang C Q, Hung Y S. Affine-Invariant Shape Matching andRecognition Under Partial Occlusion[C]. Proceedings of2010IEEE17thInternational Conference on Image Processing. Hong Kong, China.2010:4606-4608.
    [100]黄富贵,崔长彩.任意方向上直线度误差的评定新方法[J].机械工程学报,2008,44(7):221-224.
    [101]缪立栋,郭慧,张帆.基于多种群实数编码遗传算法的圆度误差评定[J].工程图学学报,2010,2:43-48.
    [102]李秀明,石照耀.基于方程的椭圆轮廓度的评定[J].北京工业大学学报,2009,35(10):1303-1307.
    [103]张琳,郭俊杰,姜瑞等.自由曲线轮廓度误差评定中的坐标系自适应调整[J].仪器仪表学报,2002,23(2):203-205,217.
    [104]廖平,喻寿益.基于遗传算法的复杂平面曲线形状误差计算[J].计量学报,2003,24(3):181-184,224.
    [105] Kong L B, Cheung C F, Gao D, et al. Theoretical and Experimental Evaluationof Surface Quality for Optical Freeform Surfaces[J]. Proc. IMechE,2006,220:1439-1448.
    [106] Paul J B, Neil D M. A method for Registration of3-D Shapes[J]. IEEETransactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
    [107] Li Y D, Gu P. Automatic Localization and Comparison for Free-from SurfaceInspection[J]. Journal of Manufacturing Systems,2006,25(4):251-268.
    [108] Liu Y H. Improving ICP with Easy Implementation for Free Form SurfaceMatching[J]. Pattern Recognition,2000,37:211-226.
    [109] Yu Y, Lu J, Wang X C. Modeling and Analysis of the Best Matching Free-formSurface Measuring[J].Mechnical Science and Technology,2001,20(3):467-471.
    [110] Sun Y W, Wang X M, Guo D M, et al. Machining Localization and QualityEvaluation of Parts with Sculptured Surfaces Using SQP Method[J].International Journal of Advanced Manufacturing Technology,2009,42:1131-1139.
    [111] Li Y D, Gu P. Inspection of Free-form Shaped Parts[J]. Robotics andComputer-Integrated Manufacturing,2005,21:421-430.
    [112] Kong L B, Cheung C F, To S, et al. Measuring Optical Freeform SurfacesUsing a Coupled Reference Data Method[J]. Measurement Science andTechnology,2007,18:2252-2260.
    [113] Cheung C F, Li H F, Lee W B, et al. An Integrated Form CharacterizationMethod for Measuring Ultra-precision Freeform Surfaces[J]. InternationalJournal of Machine Tools and Manufacture,2007,47:81-91.
    [114] Jiang X Q, Zhang X C, Paul J S. Template Matching of Freeform SurfacesBased on Orthogonal Distance Fitting for Precision Metrology[J].Measurement Science and Technology,2010,21:045101.
    [115] Luo X, Cheng K, Ward R. The effects of machining process variables andtooling characterisation on the surface generation[J]. International Journal ofAdvanced Manufacturing Technology,2005,25:1089-1097.
    [116] Cheung C F, Lee W B. Characterization of nanosurface generation insingle-point diamond turning[J]. International Journal of Machine Tools&Manufacture,2001,41:851-875.
    [117] Cheung C F, Lee W B. A theoretical and experimental investigation of surfaceroughness formation in ultra-precision diamond turning[J]. InternationalJournal of Machine Tools&Manufacture,2000,40:979-1002.
    [118] Cheung C F, Lee W B. Modelling and simulation of surface topography inultra-precision diamond turning[J]. Proceedings of the Institution ofMechanical Engineers, Part B: Journal of Engineering Manufacture,2000,214:463-480.
    [119] Lee W B, Cheung C F. A dynamic surface topography model for the predictionof nano-surface generation in ultra-precision machining[J]. InternationalJournal of Mechanical Sciences,2001,43:960-991.
    [120] Aris N F M, Cheng K. Characterization of the surface functionality onprecision machined engineering surfaces[J]. International Journal of AdvancedManufacturing Technology,2008,38(3-4):402-409.
    [121] Zhou L, Cheng K. Dynamic cutting process modeling and its impact on thegeneration of surface topography and texture in nano/micro cutting[J]. Journalof Engineering Manufacture Part B,2009,223:247-265.
    [122] Ma W, Kruth J P. Parameterization of randomly measured points for leastsquares fitting of B-spline curves and surfaces[J]. Computer-AidedDesign,1995,27(9):663-675.
    [123] Ma W, Kruth J P. NURBS curve and surface fitting for reverse engineering[J].The International Journal of Advanced Manufacturing Technology,1998,14(12):918-927.
    [124] Lancaster P, Salksuskas K. Surfaces generated by moving least squaresmethods[J]. Mathematics of Computation.1981,37:141-158.
    [125]朱心雄.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [126] Yoon S. Dynamic T-search for accelerating searching speeds in Delaunaytriangulation[J]. Engineering Computations,2003,20(3):296-304.
    [127] Cui M, Femiani J, Hu J, et al. Curve matching for open2D curves[J]. PatternRecognition Letters,2009,30:1-10.
    [128] Michalewicz Z. Genetic Algorithms+Data Structures=Evolution Programs[M].New York: Springer,1996.
    [129] Arcona C, Dow T A. An Empirical Tool Force Model for PrecisionMachining[J]. Transaction of ASME,1998,120:700-707.
    [130]鲁恒.超精密机床动力学建模及分析[D].哈尔滨工业大学硕士论文,2007.
    [131] Zhu W H, Jun M B, Altintas Y. A fast tool servo design for precision turning ofshafts on conventional CNC laths[J]. International Journal of Machine Tools&Manufacture,2001,41:953-965.
    [132] Byl M F, Ludwick S J, Trumper D L. A loop shaping perspective for turningcontrollers with adaptive feedforward cancellation[J]. Precision Engineering,2005,29:27-40.
    [133] Firestone G C, Jain A, Yi A Y. Precision laboratory apparatus for hightemperature compression molding of glass lenses[J]. Review of scientificinstruments,2005,76:063101.
    [134] Schifta H, Davida C, Gabrielb M, et al. Nanoreplication in polymers using hotembossing and injection molding[J]. Microelectronic Engineering,2000,53(1-4):171-174.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700