数控机床直线电驱进给系统控制技术及动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速切削技术及多功能复合加工中心的迅猛发展要求数控机床进给系统具有高刚度、高精度、高速度和高响应能力,而传统滚珠丝杆进给系统无法满足这种高性能进给要求。直线电动机可以实现高速直接驱动,避免了滚珠丝杆传动中的反向间隙、惯性、摩擦力和刚度不足等缺点,可获得高速、高精度运行并具有极好的稳定和动态性能,直线电动机直接驱动进给系统是当前国际上公认的最有前途的数控机床高性能进给系统。
     数控机床直线电驱进给系统的高性能运行完全依赖于高性能的直线伺服控制技术,机械传动结构的简化必然增加直线电驱进给系统电气控制的难度,直线电驱进给系统的“零传动”方式使得各种扰动不经过任何中间环节的衰减而直接作用于直线电动机,影响了进给系统的性能;同时,直线电动机存在端部效应、推力波动、齿槽效应等非线性因素,这也增加了控制的难度。为充分发挥直线电动机在数控机床进给系统中的优势,必须对直线电驱进给系统的动态特性进行深入的理论和试验研究,从控制和补偿的角度提出适合于直线伺服系统实时控制的有效方法。
     论文围绕数控机床直线电驱进给系统的控制技术及其动态特性展开研究,保证直线电驱进给系统的各种动静态性能指标,提高直线电驱进给系统的动态刚度和抗干扰能力,充分满足高性能数控机床进给系统的要求。论文主要研究内容如下:
     (1)简要介绍了直线电动机基本结构及工作原理,建立了直线电驱进给系统数学模型和传递函数,对直线电驱进给系统的关键参数进行分析,并与传统滚珠丝杆传动方式进行了比较,指出直线电驱进给系统的优点及控制难点;分析总结了数控机床直线进给伺服系统工作过程中存在的非线性及不确定性扰动因素。
     (2)构建了直线电驱进给系统的三闭环控制结构,根据工程设计方法设计了电流环、速度环和位置环的PID数字控制,并进行了仿真和试验。重点研究了基于极点配置算法的直线电驱进给系统,详细介绍了极点配置控制器设计的基本原理及设计方法,具体给出了极点配置自适应算法的计算机实现方法,并通过仿真分析验证了控制器的有效性,最后通过试验比较了PID控制和极点配置两种算法的性能特点。
     (3)针对直线电驱进给系统的非线性、不确定性和动态复杂性的特点,引入具有非线性逼近能力、自适应自学习能力的神经网络智能控制算法,设计出基于神经网络的直线伺服控制系统。设计出具有局部逼近快速反应的CMAC神经网络自适应控制器,控制过程和在线学习过程同时进行,充分满足伺服控制实时性要求;引入具有动态递归特性的Elman神经网络,其“部分递归,全局前馈”的结构兼顾前馈神经网络的优点,具有适应时变特性的能力,充分利用Elman神经网络存储的历史控制信息,提高了直线电驱进给系统的动态抗干扰能力和系统的控制精度;对Elman神经网络的存储方式进行优化,创新性的提出具有稀疏存储功能的改进Elman神经网络,进一步提高网络的泛化能力和响应速度,并通过仿真验证了此算法的可行性和有效性;针对直线电驱进给系统运动过程中存在的各种非线性干扰,提出基于前馈和反馈的神经网络复合补偿的控制系统,不必对扰动力进行辨识和计算,因而无需过分依赖扰动力的精确数学模型,在同一网络结构中不仅对扰动力进行反馈补偿,而且对给定信号进行预测前馈补偿,提高了直线电驱进给系统的控制性能。
     (4)构建直线伺服系统整体结构;详细介绍了直线伺服控制器的硬件设计,主要包括驱动单元、检测单元和控制单元;根据矢量控制原理设计了伺服控制器的软件结构,对设计中存在的关键问题进行了探讨;并对所设计的具有自主知识产权的直线伺服控制器样机进行了调试试验。
     (5)构建了数控机床直线电驱进给系统试验平台,详细介绍了试验平台的结构、性能参数和检测方法;通过试验测定了工作台的摩擦系数和电动机推力系数;试验研究了PID控制、极点配置控制下直线电驱进给系统的动态性能,并分析了主要控制参数对系统动态性能的影响;最后,试验研究了直线电驱进给系统位置跟踪性能及动态刚度。
With the rapid development of high-speed cutting technology and multifunctional CNC machine center, feed system with high rigidity, high accuracy, high speed and high responsiveness was required. While the traditional ball-screw feed system can not satisfy the high-performance requirements. In comparison with the ball-screw drive, the direct drive feed system by linear motor has the advantages of less friction, no backlash, less mechanical limitations on acceleration and velocity, higher accuracy and speed, higher reliability and dynamic performance. The direct drive feed system by linear motor is regarded as the most promising high-performance feed system of CNC machine tools.
     The performance of Linear motor direct drive feed system is largely determined by linear servo control technology. The more simplify of mechanical transmission structure, the more difficulty of electrical control. Disturbance variations, without any attenuation of the transmission mechanism, directly impose on the motor shaft, leading to significant effect on the linear servo system performance. Meanwhile, the end effect, force ripple, cogging and other nonlinear factors have increased the difficulty of control. In order to satisfy the requirements of speed tracking performance and eliminate the influence of disturbance, an appropriate controller and research on dynamic performance are necessary and important for linear servo system of CNC machine tools. This paper focuses on the control technology and dynamic characteristics of Linear motor direct drive feed system, to improve disturbance rejection abilities and dynamic stiffness of Linear motor direct drive feed system, ensure all kinds of dynamic and static performance index, meet the requirements of high-performance CNC machine tools.
     The research works were as follows:
     (1) The basic structure and working principle of linear motor were introduced. The mathematics model and transfer function were established. The key parameters of Linear motor direct drive feed system were analyzed. In comparison with the ball-screw drive, It is realized the advantages and control difficult of linear servo system. The nonlinear and uncertain factors of Linear motor direct drive feed system were summarized.
     (2) Digital control technology of Linear motor direct drive feed system was introduced and the cascaded-loop structure of servo system, which contains current, velocity and position loops, was constructed according to the engineering design method. The pole placement controller was researched in detail including the basic principle, specific design process and digital realization method. The effectiveness of the proposed schemes was verified by simulation and experiment. The performance of two algorithms was compared finally.
     (3) According to characteristics of nonlinear, uncertainty and dynamic complexity in Linear motor direct drive feed system, the linear servo system based on neural network with the abilities of non-linear approximation, learning and adaptive were designed. CMAC adaptive neural network controller with the characteristic of rapid response and partial approximation was designed to meet the requirement of real-time. The tracking performance and disturbance resistance abilitie of the Linear motor direct drive feed system were improved by dynamic recurrent Elman neural network. An improved Elman neural network with spares memory was proposed and rapid associate theory based on table-look up was introduced to enhance learning speed and generalization capability of neural network. The information of neural network was classified, stored and selected to use. Compound controller with feedforward and feedback comprehensive compensation was proposed. The disturbances were compensated by feedback component and reference speed input signal was preview controlled by feedforward component. The tracking performance and respect speed of linear server system were improved.
     (4) The structure of linear servo system was constructed. The hardware of system including driver, detection and controller and so on was introduced in detail. The software was designed according to the principle of space-vector control and the important problems were discussed. The debugging test of servo controller was carried out.
     (5) The linear servo system test platform, the performance parameters and measure method were introduced. The parameters of friction and thrust coefficients were obtained and the dynamic performances of Linear motor direct drive feed system based on PID and pole placemen controller were researched by experiment. The key parameters which influence the performance of system in controller were analyzed. The position tracking performance and dynamic stiffness of Linear motor direct drive feed system were studied.
引文
[1]Seamus Gordon,Michael T Hillery.Development of a high-speed CNC cutting machine using linear motors[J]. Journal of Materials Processing Technology,2005,(166):321-329.
    [2]赵希梅,郭庆鼎,陈冬兰.通过直线伺服鲁棒跟踪控制方法提高轮廓加工精度[J].2006,42(6):166-169.
    [3]吴卫国,王贵成,沈春根.高速精密车削中心主轴系统动态特性的研究[J].制造技术与机床,2009, (8):54-57.
    [4]刘文化.高速加工机床的发展历史与现状[J].金属加工,2010, (12):17-20.
    [5]刘强,陈静,吴文镜,等.高性能数控机床几项关键设计技术的研究应用进展[J].航空制造技术,2009(5):42-45.
    [6]D.Tong,S.C.Veldhuis,M.A. Elbestawi. Control of a dual stage magnetostrictive actuator and linear motor feed drive system[J]. Int J Adv Manuf Technol,2007,(33):379-388.
    [7]王国彪,赖一楠,范大鹏,等.新型精密传动机构设计与制造综述[J].中国机械工程,2010,21(16):1891-1897.
    [8]王兰志,张怀存.高速切削技术[J].航天制造技术,2008(5):31-34.
    [9]潘超,左健民,汪木兰.数控机床用直线电动机的选型及分析[J].中国制造业信息化2007,36(7):56-59.
    [10]王红旭,魏巍.直接驱动技术的发展及其应用前景[J].制造技术与机床,2008, (6):150-154.
    [11]唐振宇.直线电动机进给驱动技术在数控机床上的应用[J].机床与液压,2009,27(3):62-63,70.
    [12]叶云岳.直线电机在现代机床业中的应用与发展[J].电机技术,2010, (3):1-5.
    [13]徐月同,傅建中,陈子辰.永磁直线同步电动机推力波动优化及试验研究[J].中国电动机工程学报,2005(6):122-126.
    [14]Sung Whan Youn,Jong Jin Lee,Hee Sung Yoon,et al. A New Cogging-Free Permanent-Magnet Linear Motor[J]. IEEE TRANSACTIONS ON MAGNETICS,2008, 44(7):1785-1790.
    [15]Arash Hassanpour Isfahani. Analytical Framework for Thrust Enhancement in Permanent-Magnet (PM) Linear Synchronous Motors With Segmented PM Poles[J]. IEEE TRANSACTIONS ON MAGNETICS,2010,46(4):1116-1122.
    [16]Aarsh Hassanpour Isfahani,Sadegh Vaez-Zadeh. Design optimization of a linear permanent magnet synchronous motor for extra low force pulsations[J]. Energy Conversion and Management,2007,(49):443-449.
    [17]Ferenc Toth. Finite-element analysis of linear synchronous motors with different pole configuration[J]. Journal of Electrical Engineering,2005,3(1):1-20.
    [18]In-Soung Jung,Sang-Beack Yoon,Jang-Ho Shim. Analysis of Force in a Short Primary Type and a Short Secondary Type Permanent Magnet Linear Synchronous Motor[J]. IEEE Transactions on Energy Conversion,2006,14(4):12-14.
    [19]Moon G.Lee,Dae-Gab Gweon. Optimal design of a double-sided linear motor with a multi-segmented trapezoidal magnet array for a high precision positioning system[J]. Journal of Magnetic Materials.2004,3:112-122.
    [20]史黎明,何晋伟.基于扩展绕组函数的直线异步电动机动态特性[J].电工技术学报,2008,23(10):28-32.
    [21]鲁军勇,张全红.永磁直线直流无刷电动机动态性能有限元分析[J].微特电动机,2007,(1):10-12.
    [22]王淑红,王旭平,熊光煜.动圈式永磁直线振动电动机的静动态分析[J].微特电动机,2006, (1):11-12,19.
    [23]N.Chen,Y.J.Tang, Y.N.Wu,et al. Study on static and dynamic characteristics of moving magnet linear compressors[J]. Cryogenics,2007,(47):457-467.
    [24]肖曙红,查长礼,张伯霖.高速大推力直线电机直接驱动进给系统动态性能的分析[J].机床与液压,2007,35(5):20-22.
    [25]余显忠,陈学东,叶玺,等.精密双层气浮直线电机动力学响应分析[J].中国机械工程,2008,19(7):761-765.
    [26]Lu C G,Eastham T R,Dawson G E. Transient and Dynamic Performance of a Linear Induction Motor [C]. Proceedings of the 28th IEEE Industry Applications Conference.1993:266-273.
    [27]Liu C T,Hsu S C. Analysis of Linear Electromagnetic Motion Devices by Multiple-Reference Frame Theory[J]. Transaction on Magnetics,1998,34(4):2063-2065.
    [28]Junyong Lu,Weiming Ma. Dynamic Characteristic Analysis of High Speed Long Primary Block Feed Linear Induction Motor[C].International Conference on Electrical Machines and systems,2008(ICEMS2008):3495-3463.
    [29]Mu-Tian Yan,Tun-Hua Cheng. High accuracy motion control of linear motor drive wire-EDM machines[J]. Int J Adv Manuf Technol,2009,(40):918-928.
    [30]郭庆鼎,赵希梅.数控机床直线伺服驱动控制的若干问题与展望[J].沈阳工业大学学报,2006,28(3):273-277.
    [31]艾武,程立,杜志强,等.基于DSP的直线电动机位置检测与控制技术[J].机械与电子,2004, (2):29-32.
    [32]潘超,左健民,汪木兰.基于前馈及反馈补偿的高性能直线伺服系统[J]. 系统仿真学报,2010,22(12):3025-3029.
    [33]周悦,郭威,郭庆鼎,等.最优预见补偿控制在PMLSM伺服系统中的应用[J].沈阳建筑工程学院学报,2000,16(1):75-77.
    [34]TIAN-HUA LIU,YUNG-CHING LEE,YIH-HUA CHANG.Adaptive Controller Design for a Linear Motor Control System[J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS,2004,40(2):601-616.
    [35]Bin Yao,Chuxiong Hu,Qingfeng Wang. Adaptive Robust Precision Motion Control of High-Speed Linear Motors with On-line Cogging Force Compensations[C].2007 IEEE/ASME international conference on Advanced intelligent mechatronics:l-6.
    [36]Yun Hong, BinYao.Aglobally stable saturated desired compensation adaptive robust control for linear motor systems with comparative experiments[J]. Automatica,2007,(43):1840-1848
    [37]Jianhua Wu,Donglin Pu,Han Ding.Adaptive robust motion control of SISO nonlinear systems with implementation on linear motors[J]. Mechatronics,2007,(17):263-270.
    [38]Shang-Liang Chen,Tsung-Hsien Hsieh. Repetitive control design and implementation for linear motor machine tool[J]. International Journal of Machine Tools & Manufacture. 2007(47):1807-1816.
    [39]孙宜标,魏秋瑾,王成元.永磁直线同步电机二阶滑模控制仿真研究[J].系统仿真学报,2009,21(7):2037-2040,2045.
    [40]M.S.Kang,D.H.Kim,J.S.Yoon,B.S.Park,et al. Straightness Error Compensation Servo-system for Single-axis Linear Motor Stage[J].Proceedings of World Academy of Science, Engineering and Technology,2009,(38):158-162.
    [41]韩江,苏志远.直线电动机进给伺服系统的自适应模糊位置控制研究[J].合肥工业大学学报(自然科学版),2008,31(1):136-139.
    [42]Yujie Zhao,Qingli Wang,Jinxue Xu,et al.A Fuzzy Sliding Mode Control Based on Model Reference Adaptive Control for Permanent Magnet Synchronous Linear Motor[C].2007 Second IEEE Conference on Industrial Electronics and Applications:980-984.
    [43]Zhu Linsen,Tang Yangping,Zhang Dailin. Application of Fuzzy Controller in the Speed Control of Permanent Magnet Linear Motors[C]. Proceedings of the 26th Chinese Control Conference 2007:242-245.
    [44]Ching-Chih Tsai,Shui-Chun Lin,Tai-Shen Cheng,et al.Adaptive Integral Position Control Using RBF Neural Networks for Brushless DC Linear Motor Drive[J]. Proceedings of the 2006 IEEE International Conference on Control Applications:3188-3192.
    [45]Niahn-Chung Shieha,Chin-Tzung Chang,Chun-Liang Lin,et al. Robust position control of a transportation carriage directly driven by linear motor using wavelet neural[J]. Engineering Applications of Artificial Intelligence,2002(15):479-489.
    [46]David Naso,Francesco Cupertino,Biagio Turchiano. Precise position control of tubular linear motors with neural networks and composite learning[J]. Control Engineering Practice.2010,(18):515-522.
    [47]F.Cupertino,E.Mininno,D.Naso,et al. Compact GAs for Neural Network online Training in Tubular Linear Motor Control [C].IEEE Congress on Evolutionary Computeation,2007:1542-1547.
    [48]Rong-Jong Wai,Chia-Chin Chu. Motion Control of Linear Induction Motor via Petri Fuzzy Neural Network[J].IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS.2007, 54(1):281-295.
    [49]汪木兰.神经网络硬化实现的共性技术在电力传动中应用研究[D].合肥:合肥工业大学,2010.
    [50]Shuhong Xiao,Changli Zha.Investigation on the Dynamic Behavior of High-Velocity Feed System Directly Driven by a Linera Motor[C].Proceeding of the first international conference on innovative computing, information and contro (ICICIC'06):665-668.
    [51]Faa-Jeng Lin,Po-Hung Shen,Ying-Shieh Kung. Adaptive Wavelet Neural Network Control for Linear Synchronous Motor Servo Drive[J]. IEEE TRANSACTIONS ON MAGNETICS. 2005,41(12):4401-4412.
    [52]S. Zhao,K.K. Tan. Adaptive feedforward compensation of force ripples in linear motors[J]. Control Engineering Practice,2005,(13):1081-1092.
    [53]Tai-Sik Hwang,Jul-Ki Seok,Dong-Hun Kim. Active Damping Control of Linear Hybrid Stepping Motor for Cogging Force Compensation [J].IEEE Transactions on magnetics,2006, 42(2):329-334.
    [54]Luca Bascetta,Paolo Rocco,Gianantonio Magnani. Force Ripple Compensation in Linear Motors Based on Closed-Loop Position-Dependent Identification [J].IEEE/ASME TRANSACTIONS ON MECHATRONICS,2010,15(3):349-359.
    [55]赵镜红,张俊洪.永磁直线同步电动机扰动观测器仿真研究[J].武汉理工大学学报(交通科学与工程版),2007,31(2):224-227.
    [56]D.L. Zhang,Y.P. Chen,Z.D. Zhou, et al. Robust adaptive motion control of permanent magnet linear motors based on disturbance compensation[J]. IET Electr. Power Appl.2007,1(4):543-548.
    [57]陆华才.无位置传感器永磁直线同步电动机进给系统初始位置估计及控制研究[D].浙江大学,2008.
    [58]叶云岳.直线电动机原理与应用[M].北京:机械工业出版社,2000.6.
    [59]郭红,贾正春,詹琼华,等.永磁直线同步电动机电磁推力的分析[J].电动机与控制学报,2004,8(1):1-4.
    [60]汤蕴璆.交流电动机动态分析[M].北京:机械工业出版社,2004.10.
    [61]李崇坚.交流同步电动机调速系统[M].北京:科学出版社,2006.
    [62]余凤豪,吕飞,张松涛,等.永磁直线同步电动机的数学模型分析[J].舰船电子工程,2010,30(9):120-122.
    [63]李庆雷,王先逵,吴丹,等.永磁直线同步电动机推力波动分析及改善措施[J].清华大 学学报(自然科学版),2000,40(5):33-36.
    [64]Seok-Myeong Jang,Dae-Joon You,Won-Bum Jang,et al. Dynamic Characteristics for Position Control of Permanent Magnet Linear Synchronous Motor with Control Parameters[J]. 2005,3(29):1893-1898.
    [65]G. Gentile,A.Ometto,N. Rotondale. PERFORMANCE ANALYSIS OF A PERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR[C]. Australasian Universities Power Engineering Conference (AUPEC 2004),2004.
    [66]C.H.Chen,M.Y.Cheng.Design and implementation of a cost-effective position control system for an ironless linear motor[J]. IEE Pro.-Electr. Power Appl.2005,152(5):1223-1232.
    [87]张群生.数控机床经给伺服系统的性能分析[J].机床与液压,2009,37(8):63-65.
    [68]宋玉.交流伺服进给系统数学模型研究及其仿真[J].机械,2010,37(7):9-12.
    [69]徐红丽,张宇.TH6363卧式加工中心伺服进给系统设计与分析[J].机械工程师,2008,(11):116-118.
    [70]Albert W.-J. Hsue,M.-T. Yan,S.-H. Ke. Comparison on linear synchronous motors and conventional rotary motors driven Wire-EDM processes[J]. Journal of Materials Processing Technology,2007,(192-193):478-485.
    [71]卢志刚,吴杰,吴潮.数字伺服控制系统与设计[M].北京:机械工业出版社,2007.7.
    [72]刘爱民,张锦辉,高君.直线电动机的推力波动及其抑制方法[J].沈阳工业大学学报,2003,25(6):482-485.
    [73]张宏伟,康润生,王新环,等.基于神经网络的永磁直线同步电动机推力波动补偿的仿真研究[J].电动机与控制学报,2004,8(4):299-302.
    [74]李庆雷,王先逵.永磁交流同步直线电机位置伺服控制系统设计[J].中国机械工程,2001,12(5):577-581.
    [75]Satoshi KANEKO,Ryuta SATO,Masaomi TSUTSUMI. Mathematical Model of Linear Motor Stage with Non-Linear Friction Characteristics[J].Journal of Advanced Mechanical Design, Systems, and Manufacturing.2008,2(4):675-684.
    [76]张从鹏,刘强.直线电动机定位平台的摩擦建模与补偿[J].北京航空航天大学学,2008,34(1):47-50.
    [77]艾武,张与厚,张颖,等.基于FAHP的永磁直线同步电动机推力波动分析与实验研究[J].微电动机,2007,40(5):10-14.
    [78]郭庆鼎,王成元.直线交流伺服系统的精密控制[M].北京:机械工业出版社.2000.
    [79]刘莉莉,夏加宽,姜平.永磁直线同步电动机端部效应及其补偿技术[J].沈阳工业大学学报,2005,27(3):261-265.
    [80]纳斯尔,波尔达.直线电动机[M].北京:科学出版社,1982.
    [81]Yubo Yang,Xiuhe Wang,Rong Zhang,et al. Research of Cogging Torque Reduction by Different Slot Width Pairing in Permanent Magnet Motors[C]. Proceedings of the Eighth International Conference on Electrical Machines and Systems,2005,vol.1:367-370.
    [82]赵瑞芹,田小涛.减小永磁同步伺服直线电动机磁阻力的研究[J].煤矿机电,2010,(4):4-6.
    [83]Hai-Hua Mu,Yun-Fei Zhou,Xin Wen,et al. Calibration and compensation of cogging effect in a permanent magnet linear motor[J]. Mechatronics,2009, (19):577-585.
    [84]张宏伟,康润生,王新环,等.基于神经网络的永磁直线同步电动机推力波动补偿的仿真研究[J].电动机与控制学报,2004,8(4):299-302.
    [85]尔桂花,窦口轩.运动控制系统[M].北京:清华大学出版社,2002.10.
    [86]李宁,白晶,陈桂.电力拖动与运动控制系统[M].北京:高等教育出版社,2009.
    [87]蔡一,郝双晖,郑伟峰,等.交流伺服直线位移平台高速定位控制[J].机械设计与制造,2010,(6):88-90.
    [88]仇国庆,罗宣林,王平,等.PMSM伺服系统的PID控制器设计及仿真[J].重庆大学学报,2008,31(3):259-262.
    [89]万山明,吴芳,黄声华.全数字化交流伺服系统控制环分析[J].微电机,2006,39(7):55-58.
    [90]郭亚军,马大为,何勇,等.交流伺服系统串级控制器应用设计[J].机床与液压,2010,38(11):53-55.
    [91]胡寿松.自动控制原理[M].北京:科学出版社,2000.
    [92]郑大钟.线性系统理论[M].北京:清华大学出版社,2002.10.
    [93]曹菁,朱纪洪.基于零极点配置的电动舵机控制器设计[J].微特电机,2006,(10):20-22.
    [94]郑泽东,李永东,FADEL M,等.基于状态观测和反馈的伺服系统位置控制器[J].清华大学学报(自然科学版),2008,48(1):24-27.
    [95]Pan Chao,Zuo Jianmin,Wang Mulan,Li Ning. Theoretical Analysis and Experiment on Dynamic Performance of Linear Servo System based on Pole Placement.2010 3rd International Conference on Computer and Electrical Engineering(ICCEE2010), vol.6: 149-153.
    [96]陶永华,尹怡欣,葛芦生.新型PID控制及其应用[J].北京:机械工业出版社,1998.
    [97]陆中宏,高欣.基于极点配置自校正的气动位置系统控制策略研究[J].液压与气动,2010,(6):51-54.
    [98]Mu-Tian Yan,Yau-Jung Shiu. Theory and application of a combined feedback-feedforward control and disturbance observer in linear motor drive wire-EDM machines[J]. International Journal of Machine Tools & Manufacture,2008,(48):388-401.
    [99]何玉彬,李新忠.神经网络控制技术及其应用[M].北京:科学出版社,2000.
    [100]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006.
    [101]左健民,潘超,汪木兰.基于CMAC的永磁直线同步电动机控制与仿真[J].制造业自 动化,2009,31(1):38-41.
    [102]阎平凡,张长水.人工神经网络与模拟进化计算(第二版)[M].北京:清华大学出版社,2005.9.
    [103]潘晔,顾幸生,卢胜利.基于信度分配的并行集成CMAC及其在建模中的应用[J].控制理论与应用,2010,27(2):211-215.
    [104]万书亭,何鹏,赵松杰.基于高斯基函数CMAC神经网络的发电机故障诊断方法[J].振动与冲击,2010,29(4):84-87.
    [105]王华秋.一种自适应CMAC软测量与控制模型[J].仪器仪表学报,2009,30(9):1956-1962.
    [106]SAHIN YILDIRIM. Design of Adaptive Robot Control System Using Recurrent Neural Network[J]. Journal of Intelligent and Robotic Systems 2005,(44):247-261.
    [107]张化光.递归时滞神经网络的综合分析与动态特性分析[M].北京:科学出版社,2008.
    [108]Chun-Fei Hsu. Intelligent position tracking control for LCM drive using stable online self-constructing recurrent neural network controller with bound architecture[J]. Control Engineering Practice,2009,(17):714-722.
    [109]Simone Kuhn,Wolf-Jiirgen Beyn,Holk Cruse. Modelling memory functions with recurrent neural networks consisting of input compensation units:Ⅰ.Static situation[J].Biological Cybernetics,2007,(96):455-470.
    [110]Zuo Jianmin,Pan Chao,Wang Mulan,et al. Elman Dynamic Neural Network Control for Direct-Drive Feed System in Advanced CNC Machine Tools[C].2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering(CMCE2010),vol.2:307-310.
    [111]Limin Wang,Xiaohu Shi,Yanchun Liang,et al. An Improved Elman Neural Network with Profit Factors and Its Applications[J]. Lecture Notes in Computer Science,2006,vol.4413:317-322.
    [112]温淑焕,强艳辉.基于改进Elman网络的X-Y定位平台力/位置控制[J].机床与液压,2009,37(7):117-120,122.
    [113]李翔.从复杂到有序——神经网络智能控制理论新进展[M].上海交通大学出版社,2006.
    [114]杨凌,宋军,金强.一种引入混沌机制的新型Elman神经网络及其应用[J].计算机应用,2009,29(2):549-553.
    [115]李静,左斌,胡云安.时延Elman递归神经网络及其在PMSM的混沌控制中的应用[J].吉林大学学报(工学版),2008,38(2):460-465.
    [116]X.Z.Gao,S.J.Ovaska. Genetic Algorithm Training of Elman Neural Network in Motor Fault Detection[J]. Neural Comput & Applic,2002,(11):37-44.
    [117]A.N.米歇尔,刘德荣.递归人工神经网络的定性分析和综合[M].北京:科学出版社,2004.
    [118]冯超,李柠,李少远.递增的稀疏神经网络研究[J].应用科学学报,2008,26(2): 194-198.
    [119]IGEL C,STAGGEP. Graph isomorphisms effect structure optimization of neural networks [C]. Proceedings of the 2002 International Joint Conference on Neural Networks:142-147.
    [120]张明超,尹文生,朱煜.永磁直线同步电机推力波动建模与抑制[J].清华大学学报(自然科学),2010,50(8):1253-1257.
    [121]舒志兵.交流伺服运动控制系统[M].北京:清华大学出版社,2006.3.
    [122]李永东.交流电动机数字控制系统[M].北京:机械工业出版社,2002.4.
    [123]张运芳,陈荣,赵永建.交流永磁同步伺服系统矢量控制设计[J].微特电机,2009,(12):42-47.
    [124]李长诗,王素梅.基DSP控制的IPM数字化电机伺服驱动系统设计[J].微电机,2010,43(4):42-44,63.
    [125]刘吉柱,郝双晖,郑伟峰,等.交流伺服系统及其运动控制[J].机床与液压,2010,38(5):77-80,107.
    [126]孙林.伺服控制系统设计及其内置式NC指令模块研究[D].哈尔滨工业大学,2006.6.
    [127]林建芬,彭达洲,胥布工.永磁同步电机伺服控制器保护系统的设计[J].电机与控制应用,2008,35(12):43-46.
    [128]周春蛟.全自动工业平缝机控制系统的研制[D].哈尔滨工业大学,2006.6.
    [129]俞迪峰,王竹林,孙正捷,等.基于TMS320F2812的DSP的工业缝纫机交流伺服系统设计[J].微电机,2010,43(1):71-73.
    [130]雷启华,楼佩煌,郭超.基于TMS320F2812的全数字交流伺服系统设计[J].电力电子技术,2010,44(4):48-50.
    [131]樊锋,刘强.交流直线电机矢量变换控制软换向方法及实现[J].北京航空航天大学学报,2004,30(4):353-357.
    [132]张锐,姜长生,卢伟健.基于DSP的神经网络实时仿真系统设计[J].小型微型计算机系统,2003,24(8):1462-1465.
    [133]苏良昱,赵忠彪.基于神经网络的动态称重系统的DSP实现[J].计量与测试技术,2009,36(8): 1-3.
    [134]Mustafa Mohamadian, Ed Nowicki,Farhad Ashrafzadeh,et al. A Novel Neural Network Controller and Its Efficient DSP Implementation for Vector-Controlled Induction Motor Drives[J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS,2003,39(6): 1622-1629.
    [135]Mulan Wang,Chongwei Zhang,Chao Pan,et al. Research on Comprehensive Dynamic Performance of Linear Servo System for High Speed CNC Machine Tools[C].2010 Second Pacific-Asia Conference on Knowledge Engineering and Software Engineering(KESE 2010),vol.4:193-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700