交流伺服系统在植针机自动化改造中的应用及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
永磁交流伺服系统广泛应用于消费品市场和工业现场中,而对于如家电、工业植针机等成本要求较高的产品,迫切需要开发高性能价格比的伺服系统。
     本课题来源于“植针机自动化改造”项目。
     本文首先分析了原植针机系统结构及原理。根据“安全、可靠、简便、先进”的设计原则,结合植针机自身特点设计了整个系统自动化控制方案。主要完成了:1)传动机构,定位机构的机械设计;2)基于植针机快速进给、精度较高的性能要求,选用台达ASDA-A系列750W伺服电机建立植针机伺服控制系统,基于台达DVP-SV型PLC实现系统功能。
     然后,本文推导了永磁同步电动机相关公式,建立了数学模型。在MATLAB/Simulink中建立了基于矢量控制的交流伺服系统电流环、速度环、位置环三环模型,采用工程整定方法整定了台达750W伺服驱动器PID参数,然后对系统性能进行分析。运行结果显示,本方法整定的参数基本满足系统需求,但存在速度超调量大,响应时间较长等不足。
     接着,本文对二次型最优化准则的三种类型的特点及其对控制系统的影响进行了分析,并基于二次型最优化准则对本项目的交流伺服系统进行优化。分析结果表明ITSE准则最不受限于优化初值的选择,并能得到较好的系统性能,最适于作为本系统优化准则。最后,本文提出了基于相位裕度的PID最优化参数整定方法。根据相位裕度概念推导出参数整定公式,并以此为约束应用两次寻优的方法整定PID参数,优化准则选用ITSE。并将该方法在交流伺服系统中进行应用研究。
As servo drives employing permanent magnet synchronous motors are being used for various purposes in consumer products and industry applications. Although their technical advantages are generally acknowledged, researchers are becoming aware of their cost and are exploring the possibility of cost reduction. Especially for industrial sewing machines, a servo control system with low cost but high performance is needed. The research subject is based on the‘industrial sewing machine automation transformation’project.
     In this paper, it analyze the structure and principles of the industrial sewing machine, primarily the feature and principles of the two-axis feeding. Following the principles of safety, reliability, conveniences and advancement, an overall design of the automation system is combined with the feature of the machine. The transmission and locating mechanism are designed. The ASDA-A 750W servo motor and driver are chosen for the design of the servo system. The function of the system is implemented by DVP-SV PLC.
     Secondly, the paper deduced the equation related to PMSM, and then built the mathematical model of PMSM. The model of the current loop, speed loop and position loop were built based on Vector Control for PMSM by MATLAB/Simulink. The PID parameter of ASDA-A 750W servo driver were tuned by the project tuning method, furthermore, it analyzed the system performance. The running result revealed that this method could achieve the basic demand of the system, on the other way, it revealed the fault, such as large amount of overshoot and too long response time.
     Thirdly, the paper analyzed the performance of three kinds of the optimal algorithm based on Quadratic Form. The AC servo system in this project was optimized by three typical optimal algorithm based on Quadratic Form., which were called ISTE, ITSE and ITAE. The running results indicated that ITSE algorithm was the most adaptable to optimize the PID parameters of the AC servo system of PMSM. Because ITSE do not depend on the choose of initial value and make better system performance.
     Finally, in this paper, the differential regulation is introduced to constitute the high performance speed loop of PMSM and realize the perfect following capacity of high speed variation. The mathematical model of the speed loop of permanent magnet synchronous motor(PMSM)was constructed. The PI parameters were tuned by the method which is commonly used in engineering practice, and then the capability of system was analyzed. The PID parameters were tuned by a new optimization tuning method base on phase margin. The tuning formula was derived from the concept of phase margin. Furthermore, quadratic optimization was used for PID parameters tuning, which was constrained by the tuning formula. Compared with the traditional PM method derived from geometrical graph, it is simple and pellucid.
引文
[1]刘吉宾,交流伺服系统的神经网络自适应控制[硕士学位论文],南京理工大学, 2003
    [2]骆再飞,蒋静坪,许振伟,交流伺服系统及其先进控制策略综述[J],机床与液压, 2002(6):7~10
    [3]李华德,交流调速控制系统,北京,电子工业出版社, 2002
    [4]许振伟,永磁交流伺服系统及其控制策略研究[博士学位论文],浙江大学, 2003
    [5]秦忆,交流伺服系统,武汉,华中理工大学出版社, 1995
    [6]陈荣,交流永磁同步伺服系统的现状与发展[J],电气时代, 2005, (9):104~107
    [7]李烨,严欣平,永磁同步电动机伺服系统研究现状及应用前景[J],微电机, 2001,34(4):30~33
    [8]孙迪生,赵立军,交流伺服系统使用综述[J], Sevro Control, 2005,(9):15~17
    [9]李璇,永磁交流伺服系统的智能PID控制[硕士学位论文],武汉理工大学, 2006
    [10] Astrom K J, Hagglund T. Automatic Tuning of PID Controller. Research Triangle Park[J], Instrument Society of American,1988
    [11]杨智,工业自整定PID调节器关键技术综述[J],化工自动化及仪表, 2000,27(2):5~10
    [12] Astrom K J, Hagglund T. PID Controllers: Theory, Design and Tuning. Research Triangle Park[J], Instrument Society of America,1995
    [13] Asrtom K J, Hang CC, Persson P, etc. Towards Intelligent PID Control. Automatica,1992,28(l):l~9
    [14]薛定宇,反馈控制系统的分析与设计-MATLAB语言及应用.北京,清华大学出版社,2000
    [15]王耀南,智能控制系统,长沙,湖南大学出版社,1999
    [16]丁锋,屈明昌,林廷圻,交流位置伺服系统PID控制方法实现[J],电子机械工程, 2003,19(1):52~54
    [17] Ahmad M, Harb, Ashraf A, Zaher, Nonlinear control of permanent magnet stepper motors[J]. Communication in Nonlinear Scienceand Numerical Simulation,2004,4:443~458
    [18]孙业树,周新云,李正明etc,永磁同步电机交流伺服系统模型参考模糊控制[J],微电机,2003,36(1):19~23
    [19]陈伯时,电力拖动自动控制系统[M],北京,机械工业出版社, 1999
    [20]李发海,王岩,电机与拖动基础,北京,清华大学出版社,1993.300~316
    [21]符曦,系统最优化及控制,北京,机械工业出版社, 1995
    [22]陈荣,邓智泉,严仰光.永磁同步伺服系统电流环的设计[J],南京航空航天大学学报, 2004,36(2):220~225
    [23]刘胜,彭侠夫,叶瑰昀,现代伺服系统设计[M],哈尔滨,哈尔滨工程大学出版社, 2001
    [24]钱平,伺服系统[M],北京,机械工业出版社, 2005
    [25]杨叔子,杨克冲,机械工程控制基础[M],武汉,华中科技大学出版社, 2002
    [26] Ebrahimi M. Analysis, modeling and simulation of stiffness in machine tool drives[J]. Computers & Industrial Engineering,2000,38:93~105
    [27]陶永华,尹怡欣,葛芦生编著,新型PID控制系统及其应用,北京,机械工业出版社, 1998
    [28]叶岚,基于继电反馈的PID控制器的参数整定[硕士学位论文],上海,上海交通大学, 2007
    [29]叶佩青,李光耀,廖文和,数控技术的现状及发展策略[J],机械科学与技术, 1997, 26(3):6~9
    [30]谷安,刘正郧,高精度伺服系统的机理研究[J],机电一体化, 2002,2:28~29
    [31]于东,郭锐,数控机床中伺服系统的现状及展望[J],机械工人,2005,3:19~21
    [32]郭庆鼎,王成元,交流伺服系统[M],北京,机械工业出版社, 1994
    [33]冯琪玲,综述数控机床对进给伺服驱动系统的要求[J],中国科技信息, 2005,23:4
    [34] Sayeed Mir, Malik E, Elbuluk, Donald S, Zinger. PI and Fuzzy Estimators for Tuning the Stator Resistance in Direct Torque Control of Induction Machines [J].IEEE Trans. on PE,1998,13(2):279-287
    [35] F.J.Lin, S.L.Chiu.Adaptive Fuzzy Sliding-mode Control for PM Synchronous Servo Motor Drive[J].IEE on Control Theory Appl, 1998,145(2):63-72
    [36]陈先锋,舒志兵,赵英凯,基于PMSM伺服系统的数学模型及其性能分析[J],机械与电子, 2005,(1):41~43
    [37]王成元,矢量控制交流伺服驱动电动机[M],北京,机械工业出版社, 1995
    [38]王德斌,交流伺服进给系统及其数学模型的研究[J],机械制造与自动化, 2006,35(1):86~88,91
    [39]邵群涛,赵伟军,基于SIMULINK的数控机床伺服系统动态性能仿真[J],机床与液压, 2003,6:222~224
    [40]周晓光,徐志军, MATLAB语言的高阶伺服系统控制与仿真[J],制造技术与机床, 2000,7:17~18
    [41]刘金琨,先进PID控制及MATLAB仿真[M],北京,电子工业出版社, 2003
    [42]王英剑,何希才etc,新型开关电源实用技术.电子工业出版社, 1999
    [43]韩安太,刘峙飞,黄海, DSP控制器原理及其在运动控制系统中的应用,清华大学出版社, ISBN 7-89494-103-4, 2003
    [44]刘峙飞,韩安太,黄海etc,高速工业曲折缝缝纫机的控制系统设计[J],机床与液压, 2004(7):142~144
    [45]刘峙飞,王树青.网络控制系统的仿真平台设计[J],仪器仪表学报,已录用
    [46]刘峙飞,工业平缝机伺服控制系统研究[博士学位论文],杭州,浙江大学, 2005
    [47]廖效果,数控技术[M],武汉,湖北科学技术出版社, 2005
    [48]李琳,数控机床交流伺服控制系统的设计与仿真[硕士学位论文,三峡大学, 2006
    [49]陈福祥,朱家万编著,线性系统控制理论,武汉工业大学出版社, 1990,1~57
    [50]赵志凡,自整定PID调节器的现状和展望[J],化工自动化及仪表, 1989,4
    [51] Astrom,K.J.,Ziegler-Nichols Auto-tuners,Report TFRT-3167,Dept. of Automatic Control Lund Institute of Technology, Lund, Sweden,1982
    [52]陈福祥,有色噪声扰动下的随机控制间题研究[J],自动化学报, 1987,3,224~228
    [53] Astrom K J, Hagglund T. Automatic Tuning of simple Regulators with Specification on Phase and Amptitude Margins. Automatic,5(1984),645~651
    [54]陈福祥,杨芝雄, PID调节器自整定的PM法及其公式推导[J],自动化学报, 1993,19(6):736~740
    [55] Tang K L. Comparing fuzzy logic with classical controller design [J]. IEEE Trans Systems Man Cybernet,1987, 17(6):1085~1087.
    [56] Lee J. On method for improving performance of PI-type fuzzy logic controllers [J]. IEEE Trans Fuzzy Systems, 1993, 1(4):298~301.
    [57] Ying H. A nonlinear fuzzy controller with linear control rules is the sum of global two-dimensional multi-level relay and a local nolinear PI controller[J]. Automatica, 1993, 29(2):499~505.
    [58] Li H X. A comparative design and tuning for conventional fuzzy control [J]. IEEE Trans SystemMan Cybernet PB: Cybernetics, 1997, 27(5):884~889.
    [59] Tzafestas S, Papanikopoulos N P. Incremental fuzzy expert PID control[J]. IEEE Trans Industrial Electronics, 1990, 37(5):365~371.
    [60] Takagi T, Sugeno M. Fuzzy identification of system and its applications to modeling and control[J]. IEEE Trans Systems Man Cybernet, 1985, 15(1):116~132.
    [61] Copeland R P, Rattan K S. A fuzzy logic supervisor for PID control of unknown systems[A]. IEEE International Symposium on Intelligent Control [ C ].Columbus, USA, 1994. 22~26.
    [62]张志强,邵惠鹤,一种新的基于相位裕度PID参数最优整定方法[J],上海交通大学学报, 2000,34(5):623~624
    [63]班立权,鲁五一, PID参数自整定算法及仿真[J],计算技术与自动化, 2005.24(3):11~13
    [64]曹刚, PID控制器参数整定方法及其应用研究[硕士学位论文],杭州,浙江大学,2004
    [65]柴天佑,张贵军,基于给定的相角裕度和幅值裕度的PID参数自整定新方法[J],自动化学报, 1997,23(2):167~172.
    [66]张波,李忠,毛宗源, PWM逆变器供电的同步电动机矢量控制电流控制环的研究和设计[J],控制理论与应用, 1999,16(5):664 ~668.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700