伽玛暴火球辐射光度与初始洛伦兹因子相关性及物理意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伽玛射线暴(简称伽玛暴),一种宇宙空间中的伽玛射线在短期产生的强烈的脉冲现象。在上世纪60年代后期被Vela卫星意外的发现,这引起了天文学家和天体物理学家的广泛关注。在过去的二十年中,一些空间项目如康普顿伽玛射线天文台(CGRO)、BeppoSAX、HETE II,与地面上的光学、红外、射电观测站一起改变着我们对伽玛暴的理解,让我们知道了伽玛暴是伴有长时间余辉的一类宇宙学事件。而2004年专门用于伽玛暴研究的Swift卫星和2008年可以对伽玛暴更宽能段研究的Fermi卫星的发射成功,带我们进入了伽玛暴研究的新时代。
     本论文研究的主要方向是,统计分析伽玛暴洛伦兹因子与各向同性光度的相关性,并利用伽玛中心引擎的中微子主导吸积流(NDAF)模型解释这种相关性。这一研究涉及伽玛暴的中心引擎模型理论以及伽玛暴观测中各物理量的数据处理和分析。论文的内容结构如下:第一章是对伽玛暴的综述,主要包括伽玛暴瞬时辐射阶段、余辉阶段的相关观测以及辐射模型、伽玛暴中心引擎理论和重要经验关系,重点介绍了伽玛暴观测上的各物理量和中心引擎理论。第二章是对伽玛暴初始洛伦兹因子与各向同性光度或各向同性能量的统计拟合,以及用NDAF模型解释这一相关关系。伽玛暴的初始洛伦兹因子是理解伽玛暴物理的一个重要参量,尤其对理解伽玛暴瞬时辐射的物理起源非常关键。其中介绍了几种求解洛伦兹因子的常用方法,详细的NDAF模型理论,并给出了已知红移的51个伽玛暴的洛伦兹因子的统计。第三章是关于伽玛暴的射电光度与X射线光度的相关性研究,以及这一关系是否可以与太阳、冷星、活动星系核等统一的问题。第四章是对伽玛暴领域中已解决问题和期望未来解决问题的总结和展望。
     本论文提供了关于伽玛暴初始洛伦兹因子的详细计算方法,以及初始洛伦兹因子与各向同性光度或各向同性能量的相关关系,并用伽玛暴中心引擎的黑洞加NDAF盘模型很好的解释了这一相关关系。
Gamma-Ray Burst (GRB) is a phenomenon of short and intense pulses of gamma rays occurred in space. GRBs were unexpected discovery in the late1960s by the Vela satellite, which caused widespread concern of astronomers and astrophysicists. In the last two decades, some space missions---CGRO/BATSE, BeppoSAX, HETE II (High-Energy Transient Explorer), together with the ground-based optical, infrared, and radio observatories are changing our understanding of GRBs. GRBs are cosmological events and accompanied with long-lasting afterglows. The Swift satellite dedicated to study the GRBs and the Fermi satellite covering large energy range, successfully launched in2004and2008respectively, have taken us into a new era of GRB research.
     The main direction of this thesis is the correlation between Lorentz factor and mean isotropic luminosity/energy of GRBs, and interpretation with neutrino dominated accretion flow (NDAF) model of central engine of GRBs. This work involves the central engine of GRB and data statistical analysis of observed quantities of GRBs. The thesis is structured as follows:Chapter I is the review of GRBs, including the observations of prompt radiation and afterglow of GRBs, radiation mechanisms, central engine of GRBs and some important relations of GRBs. In Chapter II, we give the statistical fitting and theoretical analysis with NDAF model between initial Lorentz factor and the isotropic equivalent luminosity or isotropic equivalent energy of GRBs. The initial Lorentz factor is a very important parameter to understand the physics of GRBs, especially for understanding the physical origin of the prompt GRB emission phase. We apply several commonly used methods to constrain the initial Lorentz factor of GRBs in Chapter II, and give the details of NDAF model and the Lorentz factor statistics of51GRBs with known redshifts. Chapter III is about the correlation studies between radio luminosity and X-ray luminosity of GRBs, and whether the relationship can be extended to the sun, cool stars and active galactic nuclei. Finally, we summarize the important findings of GRBs in the past several years and the problems we hope to solve in future.
     This thesis provides detailed calculations of the initial Lorentz factor of gamma-ray burst, and gives the relationship between initial Lorentz factor and isotropic equivalent luminosity of GRBs, meanwhile it proposes an interpretation to the statistical correlation within the framework of a blackhole-NDAF disk GRB central engine model.
引文
[1]Klebesad.Rw, Strong, I. B. and Olson, R. A., OBSERVATIONS OF GAMMA-RAY BURSTS OF COSMIC ORIGIN. Astrophysical Journal,1973,182, L85-L88.
    [2]Meegan, C. A., Fishman, G J., Wilson, R. B. et al, SPATIAL-DISTRIBUTION OF GAMMA-RAY BURSTS OBSERVED BYBATSE. Nature,1992,355,143-145.
    [3]Kouveliotou, C., Meegan, C. A., Fishman, G J. et al., IDENTIFICATION OF 2 CLASSES OF GAMMA-RAY BURSTS. Astrophysical Journal,1993,413, L101-L104.
    [4]Harrison, F. A., Bloom, J. S., Frail, D. A. et al., Optical and radio observations of the afterglow from GRB 990510:Evidence for a jet Astrophysical Journal,1999,523, L121-L124.
    [5]Paciesas, W. S., Meegan, C. A., Pendleton, G. N. et al., The fourth BATSE gamma-ray burst catalog (revised). Astrophysical Journal Supplement Series,1999, 122,465-495.
    [6]Pendleton, G. N., Paciesas, W. S. and Briggs, M. S., ApJ,1997,489,175.
    [7]Mallozzi, R. S., Paciesas, W. S., Pendleton, G. N. et al., The nu F nu Peak Energy Distributions of Gamma-Ray Bursts Observed by BATSE. ApJ,1995,454,597.
    [8]Briggs, M. S., Band, D. L., Kippen, R. M. et al., Observations of GRB 990123 by the Compton Gamma Ray Observatory. Astrophysical Journal,1999,524,82-91.
    [9]Preece, R. D., Briggs, M. S., Mallozzi, R. S. et al., The BATSE Gamma-Ray Burst Spectral Catalog. I. High Time Resolution Spectroscopy of Bright Bursts Using High Energy Resolution Data The Astrophysical Journal Supplement Series,2000, 126,19-36.
    [10]Heise, J., in't Zand, J., Kippen, R. M. et al., X-ray flashes and X-ray rich gamma ray bursts, Gamma-Ray Bursts in the Afterglow Era 2001,16.
    [11]Kippen, R. M., et al., Spectral characteristics of X-ray flashes compared to gamma-ray bursts. Gamma-Ray Burst and Afterglow Astronomy 2001:A Workshop Celebrating the First Year of the HETE Mission,2003,662,244-247.
    [12]Piran, T. & Narayan, R., Gamma-Ray Bursts,3rd Huntsville Symposium. AIP Conference Proceedings No.384,1996,233.
    [13]Cohen, E., Katz, J. I., Piran, T. et al., Possible Evidence for Relativistic Shocks in Gamma-Ray Bursts. ApJ,1997,488,330.
    [14]Higdon, J. C. & Lingenfelter, R. E., Gamma-Ray Bursts. AIP Conference Proceedings No.428,1998,40.
    [15]Lloyd, N. M. & Petrosian, V., Distribution of Spectral Characteristics and the Cosmological Evolution of Gamma-Ray Bursts. ApJ,1999,511,550-561.
    [16]Harris, M. J. & Share, G. H., Gamma-Ray Bursts. AIP Conference Proceedings No. 428,1998,314.
    [17]Qin, Y.-P., Xie, G.-Z., Xue, S.-J. et al., The Hardness-Duration Correlation in the Two Classes of Gamma-Ray Bursts. Publications of the Astronomical Society of Japan,2000,52,759.
    [18]Dezalay, J. P., Lestrade, J. P., Barat, C. et al., The Hardness-Duration Diagram of Gamma-Ray Bursts. ApJL,1996,471, L27.
    [19]Kouveliotou, C., Koshut, T., Briggs, M. S. et al., Gamma-ray Bursts. AIP Conference Proceedings No.384,1996,42.
    [20]Pendleton, G. N., Paciesas, W. S., Briggs, M. S. et al., The Identification of Two Different Spectral Types of Pulses in Gamma-Ray Bursts. ApJ,1997,489,175.
    [21]McBreen, S., Quilligan, F., McBreen, B. et al., Temporal properties of the short gamma-ray bursts. Astronomy and Astrophysics,2001,380, L31-L34.
    [22]Nakar, E. & Piran, T., Time-scales in long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2002,331,40-44.
    [23]Piran, T., The physics of gamma-ray bursts. Reviews of Modern Physics,2004,76, 1143-1210.
    [24]Fenimore, E. E. & Ramirez-Ruiz, E., Redshifts For 220 BATSE Gamma-Ray Bursts Determined by Variability and the Cosmological Consequences, eprint arXiv,2000, astro-ph,0004176.
    [25]Reichart, D. E., Lamb, D. Q., Fenimore, E. E. et al., A Possible Cepheid-like Luminosity Estimator for the Long Gamma-Ray Bursts. ApJ,2001,552,57-71.
    [26]Ford, L. A., Band, D. L., Matteson, J. L. et al., BATSE observations of gamma-ray burst spectra.2:Peak energy evolution in bright, long bursts. ApJ,1995,439, 307-321.
    [27]Liang, E. & Kargatis, V., Dependence of the spectral evolution of y-ray bursts on their photon fluence. Nature,1996,381,49-51.
    [28]Norris, J. P., Nemiroff, R. J., Bonnell, J. T. et al., Attributes of Pulses in Long Bright Gamma-Ray Bursts. ApJ,1996,459,393.
    [29]Norris, J. P., Marani, G F. and Bonnell, J. T., Connection between Energy-dependent Lags and Peak Luminosity in Gamma-Ray Bursts. ApJ,2000, 534,248-257.
    [30]Fenimore, E. E., in't Zand, J. J. M., Norris, J. P. et al., Gamma-Ray Burst Peak Duration as a Function of Energy. ApJL,1995,448, L101.
    [31]Borgonovo, L. & Ryde, F., On the Hardness-Intensity Correlation in Gamma-Ray Burst Pulses. ApJ,2001,548,770-786.
    [32]Ramirez-Ruiz, E. & Merloni, A., Quiescent times in gamma-ray bursts-1. An observed correlation between the durations of subsequent emission episodes. Monthly Notices of the Royal Astronomical Society,2001,320, L25-L29.
    [33]Quilligan, F., McBreen, B., Hanlon, L. et al., Temporal properties of gamma ray bursts as signatures of jets from the central engine. Astronomy and Astrophysics, 2002,385,377-398.
    [34]Ramirez-Ruiz, E. & Fenimore, E. E., Pulse Width Evolution in Gamma-Ray Bursts: Evidence for Internal Shocks. ApJ,2000,539,712-717.
    [35]Beloborodov, A. M., On the Efficiency of Internal Shocks in Gamma-Ray Bursts. ApJL,2000,539, L25-L28.
    [36]Nakar, E. & Piran, T., Temporal properties of short gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2002,330,920-926.
    [37]Horvath, I., A Third Class of Gamma-Ray Bursts? ApJ,1998,508,757-759.
    [38]Mukherjee, S., Feigelson, E. D., Jogesh Babu, G. et al., Three Types of Gamma-Ray Bursts. ApJ,1998,508,314-327.
    [39]Hakkila, J., Haglin, D. J., Pendleton, G. N. et al., Gamma-Ray Burst Class Properties. ApJ,2000,538,165-180.
    [40]Barraud, C., Atteia, J. L., Olive, J. F. et al., Spectral analysis of 50 GRBs detected by HETE-2, in Gamma-Ray Bursts:30 Years of Discovery, E.E. Fenimore and M. Galassi, Editors.2004. p.81-85.
    [41]Coburn, W. & Boggs, S. E., Polarization of the prompt y-ray emission from the y-ray burst of 6 December 2002. Nature,2003,423,415-417.
    [42]Hurley, K., Cline, T., Mitrofanov, I. et al., IPN triangulation of GRB021206 (exceptionally bright). GRB Coordinates Network,2002,1727,1.
    [43]Hurley, K., Cline, T., Mitrofanov, I. et al., IPN triangulation of GRB021206 (small error box). GRB Coordinates Network,2002,1728,1.
    [44]Rutledge, R. E. & Fox, D. B., Re-analysis of polarization in the γ-ray flux of GRB 021206. Monthly Notices of the Royal Astronomical Society,2004,350, 1288-1300.
    [45]Wigger, C., Hajdas, W., Arzner, K. et al., Gamma-Ray Burst Polarization:Limits from RHESSI Measurements. ApJ,2004,613,1088-1100.
    [46]Akerlof, C., Balsano, R., Barthelmy, S. et al., Observation of contemporaneous optical radiation from a y-ray burst Nature,1999,398,400-402.
    [47]Fox, D. B., Kaplan, D. L., Cenko, B. et al., XRF030723:Palomar observations and proposed counterpart GRB Coordinates Network,2003,2323,1.
    [48]Li, W., Filippenko, A. V., Chornock, R. et al., The Early Light Curve of the Optical Afterglow of GRB 021211. ApJL,2003,586, L9-L12.
    [49]Price, P. A., Fox, D. W., Kulkarni, S. R. et al., The bright optical afterglow of the nearby y-ray burst of 29 March 2003. Nature,2003,423,844-847.
    [50]Guidorzi, C., Kobayashi, S., Perley, D. A. et al., A faint optical flash in dust-obscured GRB 080603 A:implications for GRB prompt emission mechanisms. Monthly Notices of the Royal Astronomical Society,2011,417,2124-2143.
    [51]Burenin, R. A., Vikhlinin, A. A., Gilfanov, M. R. et al., GRANAT/SIGMA observation of the early afterglow from GRB 920723 in soft gamma-rays. Astronomy and Astrophysics,1999,344, L53-L56.
    [52]Giblin, T. W., van Paradijs, J., Kouveliotou, C. et al., Evidence for an Early High-Energy Afterglow Observed with BATSE from GRB 980923. ApJL,1999, 524, L47-L50.
    [53]Connaughton, V., BATSE Observations of Gamma-Ray Burst Tails. ApJ,2002,567, 1028-1036.
    [54]Barthelmy, S. D., Cannizzo, J. K., Gehrels, N. et al., Discovery of an afterglow extension of the prompt phase of two gamma-ray bursts observed by Swift. Astrophysical Journal,2005,635, L133-L136.
    [55]Costa, E., Frontera, F., Heise, J. et al., Discovery of an X-ray afterglow associated with the γ-ray burst of 28 February 1997. Nature,1997,387,783-785.
    [56]van Paradijs, J., Groot, P. J., Galama, T. et al., Transient optical emission from the error box of the y-ray burst of 28 February 1997. Nature,1997,386,686-689.
    [57]Frail, D. A., Kulkarni, S. R., Nicastro, L. et al., The radio afterglow from the γ-ray burst of 8 May 1997. Nature,1997,389,261-263.
    [58]Zhang, B., Fan, Y. Z., Dyks, J. et al., Physical processes shaping gamma-ray burst X-ray afterglow light curves:Theoretical implications from the Swift X-ray telescope observations. Astrophysical Journal,2006,642,354-370.
    [59]Zhang, B.-B., Liang, E.-W. and Zhang, B., A comprehensive analysis of Swift XRT data. I. Apparent spectral evolution of gamma-ray burst X-ray tails. Astrophysical Journal,2007,666,1002-1011.
    [60]Butler, N. R. & Kocevski, D., X-ray hardness evolution in GRB afterglows and flares:Late-time GRB activity without N-H variations. Astrophysical Journal,2007, 663,407-419.
    [61]Starling, R. L. C., O'Brien, P. T., Willingale, R. et al., Swift captures the spectrally evolving prompt emission of GRB070616. Monthly Notices of the Royal Astronomical Society,2008,384,504-514.
    [62]Campana, S., Antonelli, L. A., Chincarini, G. et al., Swift observations of GRB 050128:The early X-ray afterglow. Astrophysical Journal,2005,625, L23-L26.
    [63]De Pasquale, M., Beardmore, A. P., Barthelmy, S. D. et al., Swift and optical observations of GRB 050401. Monthly Notices of the Royal Astronomical Society, 2006,365,1031-1038.
    [64]O'Brien, P. T., Willingale, R., Osborne, J. et al., The early X-ray emission from GRBs. Astrophysical Journal,2006,647,1213-1237.
    [65]Liang, E.-W., Zhang, B.-B. and Zhang, B., A comprehensive analysis of swift XRT data. II. Diverse physical origins of the shallow decay segment Astrophysical Journal,2007,670,565-583.
    [66]Willingale, R., O'Brien, P. T., Osborne, J. P. et al., Testing the standard fireball model of gamma-ray bursts using late X-ray afterglows measured by Swift. Astrophysical Journal,2007,662,1093-1110.
    [67]Burrows, D. N., Hill, J. E., Nousek, J. A. et al., The Swift X-ray telescope. Space Science Reviews,2005,120,165-195.
    [68]Romano, P., Campana, S., Chincarini, G. et al., Panchromatic study of GRB 060124: from precursor to afterglow. Astronomy & Astrophysics,2006,456,917-U30.
    [69]Barthelmy, S. D., Chincarini, G, Burrows, D. N. et al., An origin for short gamma-ray bursts unassociated with current star formation. Nature,2005,438, 994-996.
    [70]Campana, S., Tagliaferri, G, Lazzati, D. et al., The X-ray afterglow of the short gamma ray burst 050724. Astronomy & Astrophysics,2006,454,113-117.
    [71]Chincarini, G, Moretti, A., Romano, P. et al., The first survey of X-ray flares from gamma-ray bursts observed by Swift:Temporal properties and morphology. Astrophysical Journal,2007,671,1903-1920.
    [72]Falcone, A. D., Morris, D., Racusin, J. et al., The first survey of X-ray flares from gamma-ray bursts observed by Swift:Spectral properties and energetics. Astrophysical Journal,2007,671,1921-1938.
    [73]Piran, T., Kumar, P., Panaitescu, A. et al., The Energy of Long-Duration Gamma-Ray Bursts. ApJL,2001,560, L167-L169.
    [74]Piro, L., Gamma-ray Bursts in the Afterglow Era. 2001,97.
    [75]Gou, L. J., Meszaros, P. and Kallman, T. R., Detectability of gamma-ray burst iron lines by Swift, Chandra, and XMM-Newton. Astrophysical Journal,2005,624, 889-897.
    [76]Panaitescu, A. & Vestrand, W. T., Taxonomy of gamma-ray burst optical light curves:identification of a salient class of early afterglows. Monthly Notices of the Royal Astronomical Society,2008,387,497-504.
    [77]Jakobsson, P., Hjorth, J., Fynbo, J. P. U. et al., Swift identification of dark gamma-ray bursts. Astrophysical Journal,2004,617, L21-L24.
    [78]Cenko, S. B., Kelemen, J., Harrison, F. A. et al., DARK BURSTS IN THE SWIFT ERA:THE PALOMAR 60 INCH-SWIFT EARLY OPTICAL AFTERGLOW CATALOG. Astrophysical Journal,2009,693,1484-1493.
    [79]Li, L., Liang, E. W., Tang, Q. W. et al., A COMPREHENSIVE STUDY OF GAMMA-RAY BURST OPTICAL EMISSION. I. FLARES AND EARLY SHALLOW-DECAY COMPONENT. Astrophysical Journal,2012,758,27.
    [80]Stanek, K. Z., Matheson, T., Garnavich, P. M. et al., Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. Astrophysical Journal,2003,591, L17-L20.
    [81]Galama, T. J., Vreeswijk, P. M., van Paradijs, J. et al., An unusual supernova in the error box of the gamma-ray burst of 25 April 1998. Nature,1998,395,670-672.
    [82]Hjorth, J., Sollerman, J., Moller, P. et al., A very energetic supernova associated with the gamma-ray burst of 29 March 2003. Nature,2003,423,847-850.
    [83]Malesani, D., Tagliaferri, G, Chincarini, G. et al., Sn 20031w and GRB 031203:A bright supernova for a faint gamma-ray burst Astrophysical Journal,2004,609, L5-L8.
    [84]Pian, E., Mazzali, P. A., Masetti, N. et al., An optical supernova associated with the X-ray flash XRF 060218. Nature,2006,442,1011-1013.
    [85]Sollerman, J., Jaunsen, A. O., Fynbo, J. P. U. et al., Supernova 2006aj and the associated X-Ray Flash 060218. Astronomy & Astrophysics,2006,454,5O3-+.
    [86]Maeda, K., Kawabata, K., Tanaka, M. et al., Sn 2006aj associated with XRF 060218 at late phases:Nucleosynthesis signature of a neutron star-driven explosion. Astrophysical Journal,2007,658, L5-L8.
    [87]Bloom, J. S., Kulkarni, S. R. and Djorgovski, S. G, The unusual afterglow of the y-ray burst of 26 March 1998 as evidence for a supernova connection. Nature, 1999,401,453-456
    [88]Bloom, J. S., Kulkarni, S. R., Price, P. A. et al., Detection of a supernova signature associated with GRB 011121. Astrophysical Journal,2002,572, L45-L49.
    [89]Reichart, D. E., GRB 970228 revisited:Evidence for a supernova in the light curve and late spectral energy distribution of the afterglow. Astrophysical Journal,1999, 521.L111-L115.
    [90]Della Valle, M., Malesani, D., Benetti, S. et al., Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. Astronomy & Astrophysics,2003,406, L33-L37.
    [91]Fynbo, J. P. U., Sollerman, J., Hjorth, J. et al., On the afterglow of the X-ray flash of 2003 July 23:Photometric evidence for an off-axis gamma-ray burst with an associated supernova? Astrophysical Journal,2004,609,962-971.
    [92]Zeh, A., Klose, S. and Hartmann, D. H., A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophysical Journal,2004,609,952-961.
    [93]Fox, D. B., Frail, D. A., Price, P. A. et al., The afterglow of GRB 050709 and the nature of the short-hard gamma-ray bursts. Nature,2005,437,845-850.
    [94]Hjorth, J., Sollerman, J., Gorosabel, J. et al., GRB 050509B:Constraints on short gamma-ray burst models. Astrophysical Journal,2005,630, L117-L120.
    [95]Nakar, E., Short-hard gamma-ray bursts. Physics Reports,2007,442,166-236.
    [96]Frail, D. A., Kulkarni, S. R., Berger, E. et al., A complete catalog of radio afterglows:The first five years. Astronomical Journal,2003,125,2299-2306.
    [97]Pihlstrom, Y. M., Taylor, G. B., Granot, J. et al., Stirring the embers: High-sensitivity VLBI observations of GRB 030329. Astrophysical Journal,2007, 664,411-415.
    [98]van der Horst, A. J., Kamble, A., Resmi, L. et al., Detailed study of the GRB 030329 radio afterglow deep into the non-relativistic phase. Astronomy & Astrophysics,2008,480,35-43.
    [99]Goodman, J., Radio scintillation of gamma-ray-burst afterglows. New Astronomy, 1997,2,449-460.
    [100]Gehrels, N., Ramirez-Ruiz, E. and Fox, D. B., Gamma-Ray Bursts in the Swift Era. Annual Review of Astronomy & Astrophysics,2009,47,567-617.
    [101]Frail, D. A., Kulkarni, S. R., Sari, R. et al., Beaming in Gamma-Ray Bursts: Evidence for a Standard Energy Reservoir. ApJ,2001,562, L55-L58.
    [102]Cenko, S. B., Frail, D. A., Harrison, F. A. et al., The Collimation and Energetics of the Brightest Swift Gamma-ray Bursts. ApJ,2010,711,641-654.
    [103]Meszaros, P., Laguna, P. and Rees, M. J., Gasdynamics of relativistically expanding gamma-ray burst sources-Kinematics, energetics, magnetic fields, and efficiency. ApJ,1993,415,181-190.
    [104]Shemi, A. & Piran, T., The appearance of cosmic fireballs. ApJ,1990,365, L55-L58.
    [105]Meszaros, P. & Rees, M. J., Steep Slopes and Preferred Breaks in Gamma-Ray Burst Spectra:The Role of Photospheres and Comptonization. ApJ,2000,530, 292-298.
    [106]Rossi, E. M., Beloborodov, A. M. and Rees, M. J., Neutron-loaded outflows in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2006, 369,1797-1807.
    [107]Derishev, E. V., Kocharovsky, V. V. and Kocharovsky, V. V., The Neutron Component in Fireballs of Gamma-Ray Bursts:Dynamics and Observable Imprints. ApJ,1999,521,640-649.
    [108]Razzaque, S. & Meszaros, P., MeV-GeV Emission from Neutron-loaded Short Gamma-Ray Burst Jets. ApJ,2006,650,998-1003.
    [109]Beloborodov, A. M., Collisional mechanism for gamma-ray burst emission. Monthly Notices of the Royal Astronomical Society,2010,407,1033-1047.
    [110]Rees, M. J. & Meszaros, P., Dissipative Photosphere Models of Gamma-Ray Bursts and X-Ray Flashes. ApJ,2005,628,847-852.
    [111]Pe'er, A., Meszaros, P. and Rees, M. J., The Observable Effects of a Photospheric Component on GRB and XRF Prompt Emission Spectrum. ApJ,2006,642, 995-1003.
    [112]Amati, L., Frontera, F., Tavani, M. et al., Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astronomy and Astrophysics,2002,390,81-89.
    [113]Ghirlanda, G., Ghisellini, G and Lazzati, D., The Collimation-corrected Gamma-Ray Burst Energies Correlate with the Peak Energy of Their vFv Spectrum. ApJ,2004,616,331-338.
    [114]Thompson, C., Meszaros, P. and Rees, M. J., Thermalization in Relativistic Outflows and the Correlation between Spectral Hardness and Apparent Luminosity in Gamma-Ray Bursts. ApJ,2007,666,1012-1023.
    [115]Veres, P. & Meszaros, P., Single-and Two-component Gamma-Ray Burst Spectra in the Fermi GBM-LAT Energy Range. ApJ,2012,755,12.
    [116]Preece, R. D., Briggs, M. S., Mallozzi, R. S. et al., The Synchrotron Shock Model Confronts a "Line of Death" in the BATSE Gamma-Ray Burst Data ApJL,1998, 506, L23-L26.
    [117]Pe'Er, A., Zhang, B.-B., Ryde, F. et al., The connection between thermal and non-thermal emission in gamma-ray bursts:general considerations and GRB 090902B as a case study. Monthly Notices of the Royal Astronomical Society, 2012,420,468-482.
    [118]Guiriec, S., Briggs, M. S., Connaugthon, V. et al., Time-resolved Spectroscopy of the Three Brightest and Hardest Short Gamma-ray Bursts Observed with the Fermi Gamma-ray Burst Monitor. ApJ,2010,725,225-241.
    [119]Guiriec, S., Connaughton, V., Briggs, M. S. et al., Detection of a Thermal Spectral Component in the Prompt Emission of GRB 100724B. ApJ,2011,727, L33.
    [120]Rees, M. J. & Meszaros, P., Unsteady outflow models for cosmological gamma-ray bursts. ApJ,1994,430, L93-L96.
    [121]Dermer, C. D., Curvature Effects in Gamma-Ray Burst Colliding Shells. ApJ, 2004,614,284-292.
    [122]Kobayashi, S., Piran, T. and Sari, R. e., Can Internal Shocks Produce the Variability in Gamma-Ray Bursts? ApJ,1997,490,92.
    [123]Medvedev, M. V. & Loeb, A., Generation of Magnetic Fields in the Relativistic Shock of Gamma-Ray Burst Sources. ApJ,1999,526,697-706.
    [124]Inoue, T., Asano, K. and Ioka, K., Three-dimensional Simulations of Magnetohydrodynamic Turbulence Behind Relativistic Shock Waves and Their Implications for Gamma-Ray Bursts. ApJ,2011,734,77.
    [125]Razzaque, S., Meszaros, P. and Zhang, B., GeV and Higher Energy Photon Interactions in Gamma-Ray Burst Fireballs and Surroundings. ApJ,2004,613, 1072-1078.
    [126]Kaneko, Y., Preece, R. D., Briggs, M. S. et al., The Complete Spectral Catalog of Bright BATSE Gamma-Ray Bursts. The Astrophysical Journal Supplement Series, 2006,166,298-340.
    [127]Goldstein, A., Burgess, J. M., Preece, R. D. et al., The Fermi GBM Gamma-Ray Burst Spectral Catalog:The First Two Years. The Astrophysical Journal Supplement,2012,199,19.
    [128]Granot, J., Piran, T. and Sari, R., The Synchrotron Spectrum of Fast Cooling Electrons Revisited ApJL,2000,534, L163-L166.
    [129]Panaitescu, A. & Meszaros, P., Gamma-Ray Bursts from Upscattered Self-absorbed Synchrotron Emission. ApJ,2000,544, L17-L21.
    [130]Lloyd-Ronning, M., N. and Petrosian, V., Interpreting the Behavior of Time-resolved Gamma-Ray Burst Spectra ApJ,2002,565,182-194.
    [131]Mena, O., Razzaque, S. and Villaescusa-Navarro, F., JCAP,2011,1102,030.
    [132]Ackermann, M., Asano, K. and Atwood, W. B., Fermi Observations of GRB 090510:A Short-Hard Gamma-ray Burst with an Additional, Hard Power-law Component from 10 keV TO GeV Energies. ApJ,2010,716,1178-1190.
    [133]Wang, X.-Y., Li, Z., Dai, Z.-G et al., GRB 080916C:ON THE RADIATION ORIGIN OF THE PROMPT EMISSION FROM keV/MeV TO GeV. Astrophysical Journal Letters,2009,698, L98-L102.
    [134]Bosbrevenjak, Z., Daigne, F. and Dubus, G., Prompt high-energy emission from gamma-ray bursts in the internal shock model. Astronomy & Astrophysics,2009, 498,677-703.
    [135]Toma, K., Wu, X.-F. and Meszaros, P., AN UP-SCATTERED COCOON EMISSION MODEL OF GAMMA-RAY BURST HIGH-ENERGY LAGS. Astrophysical Journal,2009,707,1404-1416.
    [136]Toma, K., Wu, X. F. and Meszaros, P., Photosphere-internal shock model of gamma-ray bursts:case studies of Fermi/LAT bursts. Monthly Notices of the Royal Astronomical Society,2011,415,1663-1680.
    [137]Ackermann, M., Ajello, M., Asano, K. et al., DETECTION OF A SPECTRAL BREAK IN THE EXTRA HARD COMPONENT OF GRB 090926A Astrophysical Journal,2011,729.
    [138]Abdo, A. A., Ackermann, M. and Arimoto, M., Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C. Science,2009,323, 1688.
    [139]Zhang, B. & Pe'er, A., Evidence of an Initially Magnetically Dominated Outflow in GRB 080916C. ApJ,2009,700, L65-L68.
    [140]Meszaros, P. & Rees, M. J., Poynting jets from black holes and cosmological gamma-ray bursts. Astrophysical Journal,1997,482, L29-L32.
    [141]Lyutikov, M. & Blandford, R., Gamma Ray Bursts as Electromagnetic Outflows. eprint arXiv,2003, astro-ph/0312347,12347L.
    [142]Usov, V. V., On the Nature of Nonthermal Radiation from Cosmological Gamma-Ray Bursters. MNRAS,1994,267,1035.
    [143]Thompson, C., A Model of Gamma-Ray Bursts. Mon. Not. R. Astron. Soc,1994, 270,480.
    [144]Drenkhahn, G, Acceleration of GRB outflows by Poynting flux dissipation. Astronomy & Astrophysics,2002,387,714-724.
    [145]Drenkhahn, G. & Spruit, H. C., Efficient acceleration and radiation in Poynting flux powered GRB outflows. Astronomy & Astrophysics,2002,391,1141-1153.
    [146]Thompson, C., Deceleration of a relativistic, photon-rich shell:End of preacceleration, damping of magnetohydrodynamic turbulence, and the emission mechanism of gamma-ray bursts. Astrophysical Journal,2006,651,333-365.
    [147]Zhang, B. & Yan, H., THE INTERNAL-COLLISION-INDUCED MAGNETIC RECONNECTION AND TURBULENCE (ICMART) MODEL OF GAMMA-RAY BURSTS. Astrophysical Journal,2011,726.
    [148]Razzaque, S., Dermer, C. D. and Finke, J. D., Synchrotron Radiation from Ultra-High Energy Protons and the Fermi Observations of GRB 080916C. The Open Astronomy Journal,2010,3,150-155.
    [149]Asano, K., Guiriec, S. and Meszaros, P., HADRONIC MODELS FOR THE EXTRA SPECTRAL COMPONENT IN THE SHORT GRB 090510. Astrophysical Journal Letters,2009,705, L191-L194.
    [150]Murase, K., Asano, K., Terasawa, T. et al., THE ROLE OF STOCHASTIC ACCELERATION IN THE PROMPT EMISSION OF GAMMA-RAY BURSTS: APPLICATION TO HADRONIC INJECTION. Astrophysical Journal,2012,746.
    [151]Asano, K., Inoue, S. and Meszaros, P., PROMPT X-RAY AND OPTICAL EXCESS EMISSION DUE TO HADRONIC CASCADES IN GAMMA-RAY BURSTS. Astrophysical Journal Letters,2010,725, L121-L125.
    [152]Crumley, P. & Kumar, P., Hadronic models for Large Area Telescope prompt emission observed in Fermi gamma-ray bursts. MNRAS,2013,429,3238-3251.
    [153]Blandford, R. D. & McKee, C. F., FLUID-DYNAMICS OF RELATIVISTIC BLAST WAVES. Physics of Fluids,1976,19,1130-1138.
    [154]Sari, R., Piran, T. and Narayan, R., Spectra and light curves of gamma-ray burst afterglows. Astrophysical Journal,1998,497, L17-L20.
    [155]Meszaros, P. & Rees, M. J., Optical and long-wavelength afterglow from gamma-ray bursts. Astrophysical Journal,1997,476,232-237.
    [156]Wijers, R., Rees, M. J. and Meszaros, P., Shocked by GRB 970228:the afterglow of a cosmological fireball. Monthly Notices of the Royal Astronomical Society, 1997,288, L51-L56.
    [157]Ackermann, M., Ajello, M., Asano, K. et al., MULTIWAVELENGTH OBSERVATIONS OF GRB 110731 A:GeV EMISSION FROM ONSET TO AFTERGLOW. Astrophysical Journal,2013,763.
    [158]De Pasquale, M., Schady, P. and Kuin, N. P. M., Swift and Fermi Observations of the Early Afterglow of the Short Gamma-Ray Burst 090510. ApJL,2010,709, L146-L151.
    [159]Razzaque, S., A Leptonic-Hadronic Model for the Afterglow of Gamma-ray Burst 090510. ApJL,2010,724, L109-L112.
    [160]Kumar, P. & Duran, R. B., External forward shock origin of high-energy emission for three gamma-ray bursts detected by Fermi. Monthly Notices of the Royal Astronomical Society,2010,409,226-236.
    [161]Ghisellini, G, Ghirlanda, G., Nava, L. et al., GeV emission from gamma-ray bursts: a radiative fireball? Monthly Notices of the Royal Astronomical Society,2010, 403,926-937.
    [162]Corsi, A., Guetta, D. and Piro, L., HIGH-ENERGY EMISSION COMPONENTS IN THE SHORT GRB 090510. Astrophysical Journal,2010,720,1008-1015.
    [163]Chevalier, R. A. & Li, Z. Y., Wind interaction models for gamma-ray burst afterglows:The case for two types of progenitors. Astrophysical Journal,2000, 536,195-212.
    [164]Granot, J. & Sari, R., The shape of spectral breaks in gamma-ray burst afterglows. Astrophysical Journal,2002,568,820-829.
    [165]Waxman, E. & Bahcall, J., High energy neutrinos from cosmological gamma-ray burst fireballs. Physical Review Letters,1997,78,2292-2295.
    [166]Rachen, J. P. & Meszaros, P., Photohadronic neutrinos from transients in astrophysical sources. Physical Review D,1998,58.
    [167]Dermer, C. D. & Atoyan, A., High-Energy Neutrinos from Gamma Ray Bursts. Physical Review Letters,2003,91,071102.
    [168]Guetta, D., Hooper, D., Alvarez-Muniz, J. et al., Neutrinos from individual gamma-ray bursts in the B ATSE catalog. Astroparticle Physics,2004,20, 429-455.
    [169]Kashti, T. & Waxman, E., Astrophysical neutrinos:Flavor ratios depend on energy. Physical Review Letters,2005,95.
    [170]Lipari, P., Lusignoli, M. and Meloni, D., Flavor composition and energy spectrum of astrophysical neutrinos. Physical Review D,2007,75.
    [171]Vietri, M., Ultrahigh energy neutrinos from gamma ray bursts. Physical Review Letters,1998,80,3690-3693.
    [172]Waxman, E. & Bahcall, J. N., Neutrino afterglow from gamma-ray bursts:similar to 10(18) eV. Astrophysical Journal,2000,541,707-711.
    [173]Dai, Z. G. & Lu, T., Neutrino afterglows and progenitors of gamma-ray bursts. Astrophysical Journal,2001,551,249-253.
    [174]Meszaros, P. & Waxman, E., TeV neutrinos from successful and choked gamma-ray bursts. Physical Review Letters,2001,87.
    [175]Razzaque, S., Meszaros, P. and Waxman, E., Neutrino tomography of gamma ray bursts and massive stellar collapses. Physical Review D,2003,68.
    [176]Kochanek, C. S. & Piran, T., GRAVITATIONAL-WAVES AND GAMMA-RAY BURSTS. Astrophysical Journal,1993,417, L17-L20.
    [177]Ruffert, M. & Janka, H. T., Gamma-ray bursts from accreting black holes in neutron star mergers. Astronomy & Astrophysics,1999,344,573-606.
    [178]Fryer, C. L., Woosley, S. E. and Heger, A., Pair-instability supernovae, gravity waves, and gamma-ray transients. Astrophysical Journal,2001,550,372-382.
    [179]Ott, C. D., Reisswig, C., Schnetter, E. et al., Dynamics and Gravitational Wave Signature of Collapsar Formation. Physical Review Letters,2011,106.
    [180]Kiuchi, K., Shibata, M., Montero, P. J. et al., Gravitational Waves from the Papaloizou-Pringle Instability in Black-Hole-Torus Systems. Physical Review Letters,2011,106.
    [181]Abadie, J., Abbott, B. P., Abbott, R. et al., Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Classical and Quantum Gravity,2010,27.
    [182]Smith, M. W. E., Fox, D. B. and Cowen, D. F., The Astrophysical Multimessenger Observatory Network (AMON). eprint arXiv,2012,1211.5602.
    [183]Rosswog, S., Ramirez-Ruiz, E. and Davies, M. B., High-resolution calculations of merging neutron stars-III. Gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2003,345,1077-1090.
    [184]Popham, R., Woosley, S. E. and Fryer, C., Hyperaccreting black holes and gamma-ray bursts. Astrophysical Journal,1999,518,356-374.
    [185]Di Matteo, T., Perna, R. and Narayan, R., Neutrino trapping and accretion models for gamma-ray bursts. Astrophysical Journal,2002,579,706-715.
    [186]Blandford, R. D. & Znajek, R. L., ELECTROMAGNETIC EXTRACTION OF ENERGY FROM KERR BLACK-HOLES. Monthly Notices of the Royal Astronomical Society,1977,179,433-456.
    [187]雷卫华,Blandford-Znajek过程-伽玛射线暴的中心发动机.博士学位论文,华中科技大学,2006.
    [188]Usov, V. V., Millisecond pulsars with extremely strong magnetic fields as a cosmological source of gamma-ray bursts. Nature,1992,357,472-474.
    [189]Cheng, K. S. & Dai, Z. G., Conversion of Neutron Stars to Strange Stars as a Possible Origin of y-Ray Bursts. Physical Review Letters,1996,77,1210-1213.
    [190]Eichler, D., Livio, M., Piran, T. et al., Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature,1989,340,126-128.
    [191]Paczynski, B., Cosmological gamma-ray bursts. Acta Astronomica,1991,41, 257-267.
    [192]Narayan, R., Paczynski, B. and Piran, T., Gamma-ray bursts as the death throes of massive binary stars. ApJ,1992,395, L83-L86.
    [193]Vietri, M. & Stella, L., Supranova Events from Spun-up Neutron Stars:an Explosion in Search of an Observation. The Astrophysical Journal,1999,527, L43-L46.
    [194]Gehrels, N. & Meszaros, P., Gamma-Ray Bursts. Science,2012,6097,932.
    [195]Daigne, F. & Mochkovitch, R., Gamma-ray bursts from internal shocks in a relativistic wind:temporal and spectral properties. Monthly Notices of the Royal Astronomical Society,1998,296,275-286.
    [196]Schaefer, B. E., Deng, M. and Band, D. L., Redshifts and luminosities for 112 gamma-ray bursts. Astrophysical Journal,2001,563, L123-L127.
    [197]Amati, L., Guidorzi, C, Frontera, F. et al., Measuring the cosmological parameters with the E(p,i)-E(iso) correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2008,391,577-584.
    [198]Amati, L., Frontera, F. and Guidorzi, C, Extremely energetic Fermi gamma-ray bursts obey spectral energy correlations. Astronomy & Astrophysics,2009,508, 173-180.
    [199]Nakar, E. & Piran, T., Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2005, 360, L73-L76.
    [200]Band, D. L. & Preece, R. D., Testing the gamma-ray burst energy relationships. Astrophysical Journal,2005,627,319-323.
    [201]Yonetoku, D., Murakami, T., Nakamura, T. et al., Gamma-ray burst formation rate inferred from the spectral peak energy-peak luminosity relation. Astrophysical Journal,2004,609,935-951.
    [202]Ghirlanda, G, Ghisellini, G and Lazzati, D., The collimation-corrected gamma-ray burst energies correlate with the peak energy of their nu F-nu spectrum. Astrophysical Journal,2004,616,331-338.
    [203]Liang, E. W. & Zhang, B., Model-independent multivariable gamma-ray burst luminosity indicator and its possible cosmological implications. Astrophysical Journal,2005,633,611-623.
    [204]Bloom, J. S., Frail, D. A. and Kulkarni, S. R., Gamma-ray burst energetics and the gamma-ray burst Hubble diagram:Promises and limitations. Astrophysical Journal,2003,594,674-683.
    [205]Lloyd-Ronning, N. M. & Ramirez-Ruiz, E., On the spectral energy dependence of gamma-ray burst variability. Astrophysical Journal,2002,576,101-106.
    [206]Firmani, C., Ghisellini, G, Avila-Reese, V. et al., Discovery of a tight correlation among the prompt emission properties of long gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2006,370,185-197.
    [207]Sari, R. & Piran, T., Predictions for the very early afterglow and the optical flash. Astrophysical Journal,1999,520,641-649.
    [208]Piran, T., Gamma-ray bursts and the fireball model. Physics Reports-Review Section of Physics Letters,1999,314,575-667.
    [209]Lithwick, Y. & Sari, R., Lower limits on Lorentz factors in gamma-ray bursts. Astrophysical Journal,2001,555,540-545.
    [210]Maxham, A. & Zhang, B., MODELING GAMMA-RAY BURST X-RAY FLARES WITHIN THE INTERNAL SHOCK MODEL. Astrophysical Journal, 2009,707,1623-1633.
    [211]Zou, Y. C. & Piran, T., Lorentz factor constraint from the very early external shock of the gamma-ray burst ejecta. Monthly Notices of the Royal Astronomical Society,2010,402,1854-1862.
    [212]Zou, Y.-C., Fan, Y.-Z. and Piran, T., A REVISED LIMIT OF THE LORENTZ FACTORS OF GAMMA-RAY BURSTs WITH TWO EMITTING REGIONS. Astrophysical Journal Letters,2011,726,2.
    [213]Zhao, X.-H., Li, Z. and Bai, J.-M., THE BULK LORENTZ FACTORS OF FERMI-LAT GAMMA RAY BURSTS. Astrophysical Journal,2011,726,89.
    [214]Piran, T., Shemi, A. and Narayan, R., Hydrodynamics of Relativistic Fireballs. Monthly Notices of the Royal Astronomical Society,1993,263,861.
    [215]Meszaros, P., Gamma-ray bursts. Reports on Progress in Physics,2006,69, 2259-2321.
    [216]Nakar, E., Piran, T. and Sari, R., Pure and loaded fireballs in soft gamma-ray repeater giant flares. Astrophysical Journal,2005,635,516-521.
    [217]Pe'er, A., Ryde, F., Wijers, R. et al., A new method of determining the initial size and Lorentz factor of gamma-ray burst fireballs using a thermal emission component Astrophysical Journal,2007,664, L1-L4.
    [218]Jin, Z. P. & Fan, Y. Z., GRB 060418 and 060607A:the medium surrounding the progenitor and the weak reverse shock emission. Monthly Notices of the Royal Astronomical Society,2007,378,1043-1048.
    [219]Butler, N. R., Kocevski, D. and Bloom, J. S., GENERALIZED TESTS FOR SELECTION EFFECTS IN GAMMA-RAY BURST HIGH-ENERGY CORRELATIONS. Astrophysical Journal,2009,694,76-83.
    [220]Xu, D., Starling, R. L. C., Fynbo, J. P. U. et al., IN SEARCH OF PROGENITORS FOR SUPERNOVALESS GAMMA-RAY BURSTS 060505 AND 060614: RE-EXAMINATION OF THEIR AFTERGLOWS. Astrophysical Journal,2009, 696,971-979.
    [221]Liu, T., Gu, W. M., Xue, L. et al., Structure and luminosity of neutrino-cooled accretion disks. Astrophysical Journal,2007,661,1025-1033.
    [222]Lei, W. H., Wang, D. X., Zhang, L. et al., MAGNETICALLY TORQUED NEUTRINO-DOMINATED ACCRETION FLOWS FOR GAMMA-RAY BURSTS. Astrophysical Journal,2009,700,1970-1976.
    [223]Gu, W.-M., Liu, T. and Lu, J.-F., Neutrino-dominated accretion models for gamma-ray bursts:Effects of general relativity and neutrino opacity. Astrophysical Journal,2006,643, L87-L90.
    [224]Lee, H. K., Wijers, R. and Brown, G. E., The Blandford-Znajek process as a central engine for a gamma-ray burst Physics Reports-Review Section of Physics Letters,2000,325,83-114.
    [225]Wang, D. X., Lu, Y. and Yang, L. T., Effects of the Blandford-Znajek process on the evolution of the central black holes of accretion discs. Monthly Notices of the Royal Astronomical Society,1998,294,667-672.
    [226]Li, L. X., Screw instability and the Blandford-Znajek mechanism. Astrophysical Journal,2000,531, L111-L114.
    [227]Lei, W. H., Wang, D. X. and Ma, R. Y, A new model for gamma-ray burst powered by the Blandford-Znajek process. Chinese Journal of Astronomy and Astrophysics,2005,5,279-283.
    [228]Narayan, R., Piran, T. and Kumar, P., Accretion models of gamma-ray bursts. Astrophysical Journal,2001,557,949-957.
    [229]Kohri, K. & Mineshige, S., Can neutrino-cooled accretion disks be an origin of gamma-ray bursts? Astrophysical Journal,2002,577,311-321.
    [230]Chen, W.-X. & Beloborodov, A. M., Neutrino-cooled accretion disks around spinning black holes. Astrophysical Journal,2007,657,383-399.
    [231]Janiuk, A., Yuan, Y, Perna, R. et al., Instabilities in the time-dependent neutrino disk in gamma-ray bursts. Astrophysical Journal,2007,664,1011-1025.
    [232]Janiuk, A., Perna, R., Di Matteo, T. et al., Evolution of a neutrino-cooled disc in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2004, 355,950-958.
    [233]Kawanaka, N. & Mineshige, S., Neutrino-cooled accretion disk and its stability. Astrophysical Journal,2007,662,1156-1166.
    [234]Zalamea, I. & Beloborodov, A. M., Neutrino heating near hyper-accreting black holes. Monthly Notices of the Royal Astronomical Society,2011,410, 2302-2308.
    [235]Page, D. N. & Thorne, K. S., DISK-ACCRETION ONTO A BLACK-HOLE.1. TIME-AVERAGED STRUCTURE OF ACCRETION DISK. Astrophysical Journal,1974,191,499-506.
    [236]Metzger, B. D., Piro, A. L. and Quataert, E., Time-dependent models of accretion discs formed from compact object mergers. Monthly Notices of the Royal Astronomical Society,2008,390,781-797.
    [237]Amati, L., The E-p,E-i-E-iso correlation in gamma-ray bursts:updated observational status, re-analysis and main implications. Monthly Notices of the Royal Astronomical Society,2006,372,233-245.
    [238]Lei, W. H., Zhang, B. and Liang, E. W., HYPERACCRETING BLACK HOLE AS GAMMA-RAY BURST CENTRAL ENGINE. I. BARYON LOADING IN GAMMA-RAY BURST JETS. Astrophysical Journal,2013,765,125.
    [239]Zhang, B. & Pe'er, A., EVIDENCE OF AN INITIALLY MAGNETICALLY DOMINATED OUTFLOW IN GRB 080916C. Astrophysical Journal Letters, 2009,700, L65-L68.
    [240]Fan, Y.-Z., The spectrum of gamma-ray burst:a clue. Monthly Notices of the Royal Astronomical Society,2010,403,483-490.
    [241]Metzger, B. D., Giannios, D., Thompson, T. A. et al., The protomagnetar model for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society,2011, 413,2031-2056.
    [242]Sanders, D. B., Phinney, E. S., Neugebauer, G. et al., CONTINUUM ENERGY-DISTRIBUTIONS OF QUASARS-SHAPES AND ORIGINS. Astrophysical Journal,1989,347,29-51.
    [243]Merloni, A., Heinz, S. and Di Matteo, T., A fundamental plane of black hole activity. Monthly Notices of the Royal Astronomical Society,2003,345, 1057-1076.
    [244]Gudel, M. & Benz, A. O., X-RAY MICROWAVE RELATION OF DIFFERENT TYPES OF ACTIVE STARS. Astrophysical Journal,1993,405, L63-L66.
    [245]Gudel, M., Schmitt, J., Bookbinder, J. A. et al., A TIGHT CORRELATION BETWEEN RADIO AND X-RAY LUMINOSITIES OF M-DWARFS. Astrophysical Journal,1993,415,236-239.
    [246]Benz, A. O. & Gudel, M., THE SOFT-X-RAY MICROWAVE RATIO OF SOLAR AND STELLAR FLARES AND CORONAE. Astronomy and Astrophysics,1994, 285,621-630.
    [247]Linsky, J. L., Steady radio emission from stars:Observations and emission processes. Radio Emission from the Stars and the Sun, ed. A.R. Taylor and J.M. Paredes. Vol.93.1996.439-446.
    [248]van den Oord, G. H. J., Stellar flares:Theory and observations. Solar and Stellar Activity:Similarities and Differences, ed. C.J. Butler and J.G. Doyle. Vol.158. 1999.189-200.
    [249]Gudel, M., Coronal microwaves from cool stars with intense X-ray emission. Radio Emission from the Stars and the Sun, ed. A.R. Taylor and J.M. Paredes. Vol. 93.1996.285-290.
    [250]Laor, A. & Behar, E., On the origin of radio emission in radio-quiet quasars. Monthly Notices of the Royal Astronomical Society,2008,390,847-862.
    [251]Middleton, M. J., Miller-Jones, J. C. A., Markoff, S. et al., Bright radio emission from an ultraluminous stellar-mass microquasar in M 31. Nature,2013,493, 187-190.
    [252]Chandra, P. & Frail, D. A., A RADIO-SELECTED SAMPLE OF GAMMA-RAY BURST AFTERGLOWS. Astrophysical Journal,2012,746.
    [253]Franciosini, E. & Drago, F. C., RADIO AND X-RAY-EMISSION IN STELLAR MAGNETIC LOOPS. Astronomy and Astrophysics,1995,297,535-542.
    [254]Rezzolla, L., Giacomazzo, B., Baiotti, L. et al., THE MISSING LINK:MERGING NEUTRON STARS NATURALLY PRODUCE JET-LIKE STRUCTURES AND CAN POWER SHORT GAMMA-RAY BURSTS. Astrophysical Journal Letters, 2011,732.
    [255]Metzger, B. D. & Berger, E., WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? Astrophysical Journal,2012,746.
    [256]Qin, Y. P., The full curvature effect expected in early X-ray afterglow emission from gamma-ray bursts. Astrophysical Journal,2008,683,900-912.
    [257]Bevington, P. R. & Robinson, D. K., DATA REDUCTION AND ERROR ANALYSIS FOR THE PHYSICAL SCIENCES [M].1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700