石英光纤材料辐射诱导缺陷的形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤正被广泛应用于航天航空、军事、核医学和核工业等与辐射相关的领域,特别是辐射环境下的光纤通信更是越来越受到重视。石英光纤的抗辐射特性也一直是国际国内的研究热点。为了降低石英光纤的辐射敏感特性,研制具有抗辐射能力的石英光纤是非常必要的。本论文以高纯石英光纤材料作为研究对象,从射线与物质相互作用原理出发,分析辐射损伤导致的石英光纤材料中缺陷结构的形成机制,并建立“色心”动力学理论模型;同时,通过实验研究石英光纤材料辐射诱导产生的E色心的特性,以及预辐照与退火技术结合对其特性的影响。其具体研究内容如下:
     首先介绍了电子和γ射线与物质相互作用的原理,并讨论石英光纤材料辐射损伤机制,材料的微结构特征,以及石英光纤材料辐射诱导形成的几种基本点缺陷结构的原子结构特征。
     其次,研究了荷能粒子辐照石英光纤材料形成色心的机制,建立了色心动力学理论模型,即创造加激活的色心动力学模型,并讨论了色心形成的动力学过程,以及色心浓度与辐照剂量之间的变化关系。对于低能辐照粒子,
     色心主要由固有点缺陷形成;对于高能粒子辐照,色心的形成包括两个过程,即色心的创造过程和色心的激活过程。其中,色心的创造主要是由二氧化硅网格中疲劳键的断裂或网格中氧移位而形成,而色心的激活过程主要是由二氧化硅玻璃中固有点缺陷形成。
     然后,采用电子自旋共振(ESR)波谱仪和吸收光谱仪,对石英光纤材料的抗辐射特性进行了实验研究。实验结果表明,在室温条件下,γ射线辐照石英光纤材料产生的缺陷结构为典型的色心,并且色心可以通过退火处理得到有效的修复。同时,根据本论文建立的色心动力学模型,对色心浓度与辐照剂量的变化关系进行拟合,与实验结果基本一致,表明建立的模型有效。
     最后,通过实验,研究了预辐照并结合退火技术对石英光纤材料抗辐射特性的影响。研究结果表明,先用γ射线进行预辐照,然后进行热退火处理,可在再次辐照处理时,有效地降低石英光纤材料的辐射敏感特性,也就是再次辐射诱导产生的E色心浓度明显降低,使其抗辐照特性得到明显的增强;并且色心浓度与退火温度相关,当退火温度大于特定温度时,色心浓度才能迅速下降。
     本论文研究了辐射损伤导致石英光纤材料点缺陷结构产生的机理,探索通过预辐照,结合退火技术的方法,抑制石英光纤材料中点缺陷结构的形成,为提高石英光纤材料的抗辐射特性提供理论依据,同时也为制备具有抗辐射特性的石英光纤奠定了非常重要的理论和实验基础。
Optical fiber is being widely used in aerospace, military, nuclear medicine,nuclear industry and other radiation related fields. And the optical fibercommunication in the radiation environment has received more and more attention.The anti-radiation properties of silica optical fiber have also been the internationaland domestic research focus. In order to reduce the radiation sensitivity, it isnecessary to develop the radiation-resistant silica optical fiber. In this dissertation,based on the principle of the interaction of radiation with matter, the formationmechanism of point defects induced by radiation damage in high-purity silica fibermaterial has been analyzed and a kinetic model for point defects has been established.Meanwhile, the characteristics of radiation-induced point defect E' center in silicaoptical fiber material have been investigated, and influences of pre-irradiation andthermal annealing on E' center have been studied by experiments. The main contentsare as follows:
     This paper firstly introduces the principle of electrons and γ-rays interact withmatter, discusses the microstructure characteristics of materials and the formationmechanism of point defects, and reviews the atomic structure of several basic pointdefects induced by radiation in silica optical fiber material.
     Secondly, the formation mechanism of E' center induced by energetic particleirradiated in silica optical fiber material is analyzed in detail. According to thisformation mechanism of E' center, a kinetic theory model has been established, thatis creation plus activation kinetic model. The formation dynamic process of E'centers is discussed. The relation of E' center concentration changing with irradiationdose is obtained theoretically. For the low-energy particles, E' centers are formedmainly by pre-existing defects. For high-energy particle, the production of E' centerincludes two processes creation and activation. The cleavage of strained bonds or oxygen replacement in silica networks lead to the creation of new defects. Thepre-existing defects produce the activation.
     Then using electron spin resonance (ESR) spectroscopy and optical absorptionspectroscopy, the radiation characteristics of the silica optical fiber material havebeen investigated. The experimental results show that the point defect induced byγ-ray irradiation at room temperature in silica optical fiber material is typical E'center. And the E' center can be effectively repaired by annealing treatment.According to the formation dynamic model of E' center established in this paper, therelation of the concentration of E' centers changing with irradiation dose weresimulated. The simulated results are in good agreement with the experimental results,which indicates that the model is effective.
     At last, the influences of pre-irradiation and thermal annealing on the radiationcharacteristic of the silica optical fiber material have been investigated by measuringESR spectra and optical absorptions. The results show if silica optical fiber materialhas been treated by pre-irradiation and subsequently thermal annealing, the radiationsensitivity can be reduced effectively when irradiated again. That is to say, theconcentration of E' defect induced by irradiated again can be decreased effectively.The anti-radiation characteristics can be improved significantly. And the E' defectconcentration is related with the annealing temperature. When the annealingtemperature is higher than a certain temperature, the concentration of E' center candecrease rapidly.
     This paper has studied the formation mechanism of point defects induced byradiation damage in silica optical fiber material and explored through the method ofpre-irradiation and subsequent thermal annealing to decrease the generation of pointdefects. The results provide a theoretical basis not only for improving anti-radiationcharacteristics of the silica optical fiber material, but also for preparing theradiation-resistant silica optical fiber.
引文
[1]张煦,记光纤通信发明家—高锟博士[J].光通信研究,1995,3:3-6.
    [2] C. K. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for opticalfrequencies [J]. Proceedings IEE,1966, July:1151-1158.
    [3] C. K. Kao, G. A. Hockham, Dielectric-fibre surface waveguides for opticalfrequencies [J]. Proceedings IEE,1986,133(3):191-198.
    [4] A. Buck, Fundamentals of optical fibers [M],2nd edition, A wileyinterscience publication,2004.
    [5]苏君红,张玉龙,光纤材料技术[M],浙江:浙江科学技术出版社,2009.
    [6]马晶,韩琦琦,谭立英等,卫星光通信技术发展及其影响因素分析[J].光通信技术,2004,(10):15-18.
    [7] B. Brichard, P. Borgermans, F. Fernandez, et al.Radiation effect in silicaoptical fiber exposed to intense mixed neutron-gamma radiation field [J].IEEE Transactions on Nuclear Science,2001,48(6):2069-2073.
    [8] M. Kyoto, Y. Chigusa,M. Ohe, et al.Gamma-ray radiation hardenedproperties of pure silica core single-mode fiber and its data link system inradioactive environments [J]. Journal of Lightwave Technology,1992,10(3):289-293.
    [9] Y. Chigusa, M. Watanabe, M. Kyoto, et al.γ-ray and neutron irradiationcharacteristics of pure silica core single mode fiber and its life timeestimation[J].IEEE Transactions on Nuclear Science,1988,35(1):894-897.
    [10] Y. Morishita, K. Nouchi, K. Tanaka, Radiation-induced attenuation inCo-dopted fibre attenuators [J]. Electronics Letters,2001,37(14):887-889.
    [11] S. Girard, J. Keurinck, A. Boukenter, et al. Gamma-ray and X-ray radiationresponses of nitrogen-, germanium-dopted and pure silica core opticalfibers[J]. Nuclear Instruments and Methods in Physics Research B,2004,215:187-195.
    [12] K. Okamoto, K. Toh, S. Nagata, et al.Temperature dependence of radiationinduced optical transmission loss in fused silica core optical fibers[J].Journal of Nuclear Material,2004,329-333:1503-1506.
    [13] H. Imai, H. Hirashima, Intrinsic-and extrinsic-defect formation in silicaglasses by radiation [J]. Journal of Non-Crystalline Solids,1994,179:202-213.
    [14] H. Henschel, O. K hn,U. Weinand, A new radiation hard optical fiber forhigh-dose values [J]. IEEE Transactions on Nuclear Science,49(3),2002:1432-1438.
    [15] K. Arai, H. Imai, J. Isoya, et al. Evidence for pair generation of an E’ centerand a nonbridging oxygen-hole center in γ-ray-irradiated fluorine-dopedlow-OH synthetic silica glasses[J]. Physical Review B,1992,45(18):10818-10821.
    [16] L. T. Alexander, M. G. Konstantin, Radiation-resistant andradiation-sensitive silica optical fibers[C], Proceedings of SPIE,2000,4083:188-201.
    [17] D. L. Griscom, Radiation Hardening of pure silica core optical fibers byultra-high dose ray pre-irradiation,radiation and its effects on componentsand systems [C]. Third European conference,1995,95:498-502.
    [18] V. A. Bogatyrjov, E. M. Dianov, K. M. Golant, et al. Silica fibres withsilicon oxynitride core fabricated by plasma chemical technology [C]. Proc.OFC95, San Diego CA, Technical Digest,1995:266-268.
    [19] K. M. Golant, E. M. Dianov, R. R. Khrapko, et al. Nitrogen-doped silicafibers and fiber-based optoelectronic components[C]. Proceedings of SPIE,2000,4083:2-11.
    [20] O. V. Butov1, E. M. Dianov, K. M. Golant, Nitrogen-doped silica-corefibers for bragg grating sensors operating at elevated temperatures[J].Measurement Science and Technology,2006,17(4):975-979.
    [21] E. M. Dianov, K. M. Golant, R. R. Khrapko, et al. Low-hydrogen siliconoxynitride optical fibers prepared by SPCVD [J], Journal of LightwaveTechnology,1995,13(7):1471-1474.
    [22] E. M. Dianov, K. M. Golant, R. R. Khrapko, et al. Nitrogen doped silicacore fibres: a new type of radiation-resistant fibre[J]. Electronics Letters,1995,31(17):1490-1491.
    [23] A. Alessi, S. Girard, C. Marcandella, et al. X-ray irradiation effects on amultistep Ge-doped silica fiber produced using different drawingconditions[J]. Journal of Non-Crystalline Solids,2011,357(8-9):1966-1970.
    [24] B. Brichard, A. L. Tomashuk,V. A. Bogatyrjov, et al. Reduction of theradiation Induced absorption in hydrogenated pure silica core fibersirradiated in situ with γ-Rays [J], Journal of Non-Crystalline Solids,2007,353:466-472.
    [25] B. Brichard, A. F. Fernandez, H. Ooms, et al. Dependence of the POR andNBOHC defects as function of the dose in hydrogen-treated and untreatedKU1Glass Fibers [J]. IEEE Transactions on Nuclear Science,2003,50(6):2024-2029.
    [26] H. Hensche, Radiation hardening of pure silica optical fibers by highpressure hydrogen treatment [J]. IEEE Transactions on Nuclear Science,2002,49(3):1401-1409.
    [27] P. B. Lyons and L. D. Looney, Enhanced radiation resistance of high-OHsilica optical fibers[C]. SPIE Optical materials reliability and testing,1992,1791:286-296.
    [28] M. Nakahara, Y. Ohmori, H. Itoh, et al. Formation and Disappearance ofDefect Centers in GeO2-Doped silica fiber with heat treatments[J]. Journal ofLightwave Technology,1986, LT-4(2):127-132.
    [29] R. M. Gilbert, Photobleaching of radiation-induced color centers in agermania-doped glass fiber[J]. IEEE Transactions on Nuclear Science,1982,NS-29(6):1484-1488.
    [30]刘德文,肖文,韩艳玲.光纤陀螺抗辐照方案[J].中国惯性技术学报,2007,15(2):245-247.
    [31] E. J. Friebele, D. L. Griscom, and M. Stapelbroek, Fundamental defectcenters in glass: The peroxy radical in irradiated, high-purity, fused silica [J],Physical Review Letters,1979,42:1346-1349.
    [32] R. I. Mashkovtsev, Z. Li, M. Mao, et al.73Ge,17O and29Si hyperfineinteractions of the Ge E1′center in crystalline SiO2[J]. Journal of MagneticResonance,2013,233:7–16.
    [33]殷宗敏,李新碗,李荣玉.特种光纤辐照总剂量效应研究[J].光纤与电缆及其应用技术,1997,(3):23-25.
    [34]刘锐,殷宗敏,李荣玉等,石英光纤受γ射线辐照实验[J].光学技术,2000,26(1):81-83.
    [35]阴泽杰,吴孝义,盛锦华等,抗辐射光纤在强γ场中的辐射损伤研究[J].核电子学与探测技术,1996,16(2):81-82.
    [36]葛文萍,殷宗敏,郭晓金,聚合物光纤辐照特性的实验研究[J].光子学报,2004,33(1):40-43.
    [37]阴泽杰,盛锦华,吴孝义等,塑料光纤的辐射损伤特性的研究[J].量子电子学报,1997,14(3):254-256.
    [38]张京城,廖廷彪,冯铁荪等,保偏光纤热处理的研究[J].中国激光,1991,18(10):779-784.
    [39]姜雄伟,朱从善,武四新等,玻璃在飞秒激光作用下的新现象[J].科技前沿与学术评论,2000,22(1):36-37.
    [40]周秦岭,刘丽英,徐雷等,飞秒激光辐照K9玻璃引起的暗化和折射率变化[J].中国激光,2005,32(1):119-122.
    [41]周秦岭,刘丽英,徐雷等,近红外飞秒激光在纯石英玻璃中诱导产生点缺陷结构[J].激光与光电子学进展,2003,40(9):20-24.
    [42]魏强,何世禹,刘海等,石英玻璃低能质子辐照损伤动力学研究[J].光学学报,2005,25(1):83-87.
    [43]肖中银,王廷云,罗文芸等,高能粒子辐照二氧化硅玻璃E′色心形成机理研究[J].物理学报,2008,57(4):2273-2277.
    [44]肖中银,罗文芸,王廷云,高纯硅低能粒子辐照E′色心形成动力学研究[J].物理学报,2007,56(5):2731-2735.
    [45] T. Wang, Z. Xiao, and W. Luo. Influences of Thermal AnnealingTemperatures on Irradiation Induced Centers in Silica Glass[J]. IEEETransactions on Nuclear Science,2008,55(5):2685-2688
    [46] J. Wen, W. Luo, Z. Xiao, T. Wang, et al. Formation and conversion ofdefect centers in low water peak single mode optical fiber induced bygamma rays irradiation[J]. Journal of Applied Physics,2010,107:044904.
    [47] T. Wang, J. Wen, W. Luo, et al, Influences of irradiation on networkmicrostructure of optical fiber material [J]. Journal of Non-CrystallineSolids,2010,356:1332-1336.
    [48] J. Wen, G. Peng, W. Luo, Z. Xiao, et al. Gamma Irradiation Effect onRayleigh Scattering in Low Water Peak Single-Mode Optical Fibers[J].Optics Express,2011,19(23):23271-23278.
    [49]姆拉杰诺维奇(Mladjenovic).放射性同位素和辐射物理学导论[M].北京:原子能出版社,1986.
    [50]丁富荣,班勇,夏宗璜,辐射物理[M].北京:北京大学出版,2004.
    [51]杨福家,王炎森,陆福全,原子核物理[M].上海:复旦大学出版社,2006.
    [52] D. L. Griscom, Nature of defects and defect generation in optical glasses [J].Proceedings of SPIE,1985,541:38–59.
    [53] D. L. Griscom, A minireview of the natures of radiation-induced pointdefects in pure and doped silica glasses and their visible/near-IR absorptionbands, with emphasis on self-trapped holes and how they can be controlled[J]. Physics Research International,2013:379041-14.
    [54] L. Skuja, M. Hirano, H. Hosono, et al. Defects in oxide glasses [J].Physica Status Solidi (c),2005,2(1):15-24.
    [55] C. E. Jesurum, V. Pulim, L. W. Hobbs, Modeling the cascade amorphizationof silicas with local-rules reconstruction[J]. Nuclear Instruments andMethods in Physics Research B,1998,141:25-34.
    [56] R. A. Weeks, Paramagnetic resonance of lattice defects in irradiated quartz[J].Journal of Applied Physics,1956,27(11):1376-1381.
    [57] G. Pacchioni, G. Ierano, Ab initio formation energies of point defects in pureand Ge-doped SiO2[J]. Physical Review B,1997,56(12):7304-7312.
    [58] H. Imai, K. Arai, H. Hosono, et al. Dependence of defects induced byexcimer laser on intrinsic structural defects in synthetic silica glasses[J].Physical Review B,1991,44:4812-4818.
    [59] H. Imai, K. Arai, H. Imagawa, et al. Two types of oxygen-deficient centersin synthetic silica glass[J]. Physical Review B,1988,38:12772-12775.
    [60] H. Nishikawa, E. Watanabe, D. Ito, et al. Decay kinetics of the4.4-eVphotoluminescence associated with the two states of oxygen-deficient-typedefect in amorphous SiO2[J]. Physical Review Letters,1994,72:2101-2104.
    [61] T. E. Tsai, D. L. Griscom, J. Friebele, Mechanism of intrinsic Si E′-centerphotogeneration in high-purity silica[J]. Physical Review Letters,1988,61:444-446.
    [62] K. Awazu, H. Kawazoe, K. Muta, Optical properties of oxygen-deficientcenters in silica glasses fabricated in H2or vacuum ambient[J]. Journal ofApplied Physics,1991,70:69-74.
    [63] T. Ucjino, M. Takahashi, T. Yoko, Model of oxygen-deficiency-relateddefects in SiO2glass[J]. Physical Review B,2000,62:2983-2986
    [64] L. Skuja, Optically active oxygen-deficiency-related centers in amorphoussilicon dioxide[J]. Journal of Non-Crystal Solids,1998,239:16-48.
    [65] S. Agnello, R. Boscaino, M. Cannas, et al. Competitive relaxation processesof oxygen deficient centers in silica[J]. Physical Review B,2003,67:033202.
    [66] H. Nishikawa, R. Tohmon, and Y. Ohki, Defects and optical absorptionbands induced by surplus oxygen in high purity synthetic silica[J]. Journal ofApplied Physics,1989,65(12):4672-4678.
    [67] L. Skuja, K. Kajihara, T. Kinoshita, et al. The behavior of interstitial oxygenatoms induced by F2laser irradiation of oxygen-rich glassy SiO2[J]. NuclearInstruments and Methods in Physics Research B,2002,191:127–130.
    [68] G. Pacchloni, G. Ierano, A. M. Marquez, Optical absorption andnonradioactive decay mechanism of E’ center in silica[J]. Physical ReviewLetters,1998,81:377-380.
    [69] S. Agnello, R. Boscaino, F. M. Gelardi, et al. Weak hyperfine interaction ofE’ centers in gamma and beta irradiated silica[J]. Journal of Applied Physics,2001,89:6002-6006.
    [70] C. M. Carbonaro, V. Fiorentini, F. Bernardini, Proof of the thermodynamicalstability of the E’ center in SiO2[J]. Physical Review Letters,2001,86:3064-3067.
    [71] D. L. Griscom, Characterization of three E’-center variants in X-andγ-irradiated high purity a-SiO2[J]. Nuclear Instruments and Methods inPhysics Research Section B: Beam Interactions with Materials and Atoms,1984,1:481-488.
    [72] D. L. Griscom, Defect structure of glasses: some outstanding questions inregard to vitreous silica[J]. Journal of Non-Crystalline Solids,1985,73:51-77.
    [73] D. L. Griscom, E. J. Friebele, Fundamental radiation induced defect centersin synthetic fused silicas[J]. Physical Review B,1986,34:7524-7533.
    [74] R. Tohmon, Y. Shimogaichi, Y. Tsuta, et al. Triplet-state defect inhigh-purity silica glass[J], Physical Review B,1990,41(10):7258.
    [75] E. J. Friebele, D. L. Griscom, and G. H. Sigel, Defect centres in agermanium-doped silica-core optical fiber[J]. Journal of Applied Physics,1974,45(8):3424-3428.
    [76] H. Nishikawa, T. shiroyama, R. Nakamura, et al. Photoluminescence fromdefect centers in high-purity silica glasses observed under7.9-eVexcitation[J]. Physical Review B,1992,45:586-591.
    [77] R. A. Devine, J. Arndt, Correlated defect creation and dose-dependentradiation sensitivity in amorphous SiO2[J]. Physical Review B,1989,39:5132-5138.
    [78] Y. Sakurai, K. Nagasawa, Correlation between the green photoluminescenceband and the peroxy radical in γ-irradiated silica glass[J]. Journal ofApplied Physics,2000,88:168-171.
    [79] H. Nishikawa, R. Nakarmura, Y. Ohki et al. Correlation of preexistingdiamagnetic defect centers with induced paramagnetic defect centers byultraviolet or vacuum-ultraviolet photons in high-purity silica glasses[J].Physical Review B,1993,48:15584-15594.
    [80] D. L. Griscom, Self-trapped holes in amorphous silicon dioxide[J]. PhysicalReview B,1989,40(6):4224-4227.
    [81] G. Pacchioni, A. Basile, Calculated spectral properties of self-trapped holesin pure and Ge-doped SiO2[J]. Physical Review B,1999,60(14):9990–9998.
    [82] S. Sicolo, G. Palma, C. D. Valentin, et al. Structure and ESR properties ofself-trapped holes in pure silica from first-principles density functionalcalculations[J]. Physical Review B,2007,76:075121-10.
    [83] S. Girard, C. Marcandella,Transient and steady state radiation responses ofsolarization-resistant optical fibers[J]. IEEE Transactions on Nuclear Science,2010,57(4):2049-2055.
    [84] D. L. Griscom, γ-Ray-induced visible/infrared optical absorption bands inpure and F-doped silica-core fibers: are they due to self-trapped holes?[J].Journal of Non-Crystalline Solids,2004,349:139-147.
    [85] D. L. Griscom, Self-trapped holes in pure-silica glass: A history of theirdiscovery and characterization and an example of their critical significanceto industry[J]. Journal of Non-Crystalline Solids,2006,352(23-25):2601-2617.
    [86] D. L. Griscom, On the natures of radiation-induced point defects inGeO2-SiO2glasses: reevaluation of a26-year-old ESR and optical dataset[J]. Optical Materials Press,2011,1(3):400-412.
    [87] R. P. Wang, K. Saito, and A. Ikushima, Photo-bleaching of self-trappedholes in SiO2glass[J]. Journal of Non-Crystalline Solids,2005,351(19-20):1569-1572.
    [88] E. X. Zhang, C. Qian, Z. X. Zhang, and et al. Improvement of total-doseirradiation hardness of silicon-on-insulator materials by modifying theburied oxide layer with ion implantation[J]. Chinese Physics,2006,15(4):0792-0797.
    [89] Q. Y. Ma, Y. X. Li, G. F. Chen, and et al. Accelerated oxygen precipitationin fast neutron irradiated Czochralski silicon[J]. Chinese Physics,2005,14(9):1882-1885.
    [90]陈习权,祖小涛,郑万国等,单层SiO2物理膜与化学膜激光损伤机理的对比研究[J].物理学报,2006,55(3):1201-1206.
    [91] H. Nagasawa, Y. Hoshi, Y. Ohki, Investigation of switching characteristicsof vinylidene fluoride/trifluoroethylene copolymers in relation to theirstructures[J]. Japanese Journal of Applied Physics,1987,26:554.
    [92] H. Nagasawa, R. Nakamura, R.Tohmon, Generation mechanism of photoinduced paramagnetic centers from preexisting precursors in high-puritysilicas[J]. Physical Review B,1990,41:7828.
    [93] G. Bersuker, A. Korkin, Y. Jeon, Atomistic model for E' center generationduring electrical stress[C]. IEEE international reliability physics symposiumproceedings, Dallas, Texas,2002,417-418.
    [94] H. Imai, K. Arai, J. Isoya, et al. Generation of E’ centers and oxygen holecenters in synthetic silica glasses by γ irradiation[J]. Physical Review B,1993,48:3116–3123.
    [95]高祀建,欧阳世翕,γ射线辐照对电熔石英玻璃介电性质的影响[J].物理学报,2003,52(5):1292-1926.
    [96]姜雄伟,邱建荣,朱从善等,飞秒激光作用下光学玻璃和激光玻璃的光致暗化及其ESR研究[J].物理学报,2001,50(5):0871-0874.
    [97] D. L. Griscom, E. J. Friebele, Effects of ionizing radiation on amorphousinsulators[J]. Radiation Effects,1982,65:63-72.
    [98] C. D. Marshall, J. A. Speth, and S. A. Payne, Induced optical absorption ingamma, neutron and ultraviolet irradiated fused quartz and silica[J]. Journalof Non-Crystalline Solids,1997,212:59-73.
    [99] R. R. Gulamova, E. M. Gasanov, R. Alimov, Proton-induced changes ofoptical properties and defect formation in quartz glasses[J]. NuclearInstruments and Methods,1997,127:497-502.
    [100] E. P. O’Reilly, J. Robertson, Theory of defects in vitreous silicondioxide[J]. Physical Review B,1983,27:3780-3795.
    [101] P. Karlitschek, G. Hillrichs, K. F. Klein, Influence of hydrogen on thecolour center formation in optical fibers induced by pulsed UV-laserradiation. Part2: All-silica fibers with low-OH undoped core[J]. OpticsCommunication,1998,155:386-397.
    [102] H. Hosono, Y. Ikuta, T. Kinoshita, Physical disorder and optical propertiesin vacuum ultraviolet region of amorphous SiO2[J]. Physical Review Letters,2001,87:175501.
    [103] F. L. Galeener, D. B. Kerwin, A. J. Miller, et al. X-ray creation andactivation of electron spin resonance in vitreous silica[J]. Physical ReviewB,1993,47:7760.
    [104] D. B. Kerwin, F. L. Galeener, Creation of E′defects in vitreous SiO2byenergetic electrons produced by x irradiation[J]. Applied Physics Letter,1991,59:2959.
    [105] D. L. Griscom, F. L. Galeener, M. J. Weber, Point defects in amorphousSiO2[C]. in Proc. Defects in Glasses Symp, Pittsburgh, PA,1986,213-221.
    [106] D. L. Griscom, ESR investigations on defects and defect processes inamorphous silicon dioxide[J]. Review of Solid State Science,1990,4:565.
    [107] K. Saito and A. J. Ikushima, Effects of preirradiation and thermalannealing on photo induced defects creation in synthetic silica glass[J].Journal of applied physics,1999,86:3497-3501.
    [108] H. Imai, K. Arai, J. Isoya, et al. Generation of E’ centers and oxygen holecenters in synthetic silica glasses by γ irradiation[J]. Physical Review B,1993,48:3116–3123.
    [109] A. E. Geissberger, F. L. Galeener, Raman studies of vitreous SiO2versusfictive temperature[J]. Physical Review B,1983,28:3266-3271.
    [110] C. Pfleiderer, N. Leclerc, K. O. Greulich, The UV-induced210nmabsorption band in fused silica with different thermal history andstoichiometry[J]. Journal of Non-Crystalline Solids,1993,159:145-153.
    [111] F. L. Galeener, Raman and ESR studies of the thermal history ofamorphous SiO2[J]. Journal of Non-Crystalline Solids,1985,71:373-386.
    [112] V. Uhl, K.O. Greulich1, S. Thomas, Comparison of the influence of thefictive and the annealing temperature on the UV-transmission properties ofsynthetic fused silica[J]. Applied Physics A,1997,65:457-462.
    [113] D. L. Griscom, Thermal bleaching of x-ray-induced defect centers in highpurity fused silica by diffusion of radiolytic molecular hydrogen[J]. Journalof Non-Crystalline Solids,1984,68:301-325.
    [114] T. Wang, J. Yin, Z. Xiao, et al. Influence of irradiation and annealing onstructural properties of the optical fiber cladding material[J]. IEEETransactions on Nuclear Science,2012,59(6):3244-3248.
    [115] J. Yin, J. Wen, W. Luo, et al. Influence of Photo and thermal-bleaching onpre-irradiation low water peak single mode fibers[C]. Proceedings of theSPIE,2011,8307:83072J-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700