区间B样条小波有限元在含裂纹结构及经典层合板中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工程结构日趋复杂化、材料多样化及计算机技术的发展,数值计算在工程结构设计和分析中占据着重要地位,已成为现代科学研究的主要手段之一。含裂纹结构在裂纹尖端处应力具有1/(?)r奇异性,为获得较高计算精度,传统有限元需在裂纹尖端处划分细致的网格,裂纹扩展时,原有的网格需要重新划分,使数值计算精度和效率大幅度降低,严重影响裂纹参数的准确识别。工程断裂数值分析中,由于环境变化、加工和装配误差等的影响,设计参数常存在不确定性,设计分析时如果忽略这些因素的影响,将会得到不切合实际的计算结果,模糊数学是解决不确定性问题的主要工具。复合材料层合板由于具有比强度比刚度高、耐腐蚀性能好及材料性能可设计性等优点,被广泛应用于卫星发射、国防建设等尖端科技领域,然而复合材料层合板材料各向异性、结构呈层性及边缘应力分布复杂性等给传统有限元数值分析带来了很大困难。因此,如何提高含裂纹结构及复合材料层合板数值计算精度和效率,准确识别裂纹损伤参数,以及如何利用模糊理论解决断裂数值分析中不确定性问题是当今数值计算领域研究的热点问题。
     基于上述原因,本文开展了区间B样条小波(B-spline wavelet on the interval,BSWI)有限元的应用研究。BSWI有限元是近年来发展起来的一种新的数值计算方法,以区间B样条小波尺度函数或小波函数作为插值函数,具有待定系数少、逼近精度高、局部化性能强和多分辨分析等特性,可弥补传统有限元在处理裂纹奇异性问题和复合材料层合板数值计算时的不足。目前,BSWI有限元已广泛应用于偏微分方程数值求解、故障诊断、变载荷构件应力分析和几何非线性等方面,而在断裂参数数值计算、不确定性问题分析和复合材料层合板应力分析等方面研究还较少。鉴于此,本文通过对BSWI有限元的研究,将其应用到含裂纹结构、不确定性问题分析和经典层合板数值计算中,提出了一系列以提高含裂纹结构和经典层合板数值计算精度和效率的算法,具体有:
     1、利用区间B样条小波良好的局部化特性,能以较少的单元和自由度数最大限度地逼近待求函数,本文将BSWI有限元引入到断裂参数数值计算中,提出了基于BSWI有限元的虚拟裂纹闭合法,建立了含裂纹结构BSWI有限元模型,利用BSWI哑节点断裂单元提取裂纹尖端附近节点信息,应用虚拟裂纹闭合法计算应力强度因子,数值算例结果表明此算法计算简单,具有较高的计算精度和效率,为实际工程中含裂纹结构复杂数值计算提供了新方法。
     2、为解决工程实际中载荷和材料参数等不确定性给断裂数值计算带来的影响,将模糊理论、BSWI有限元理论和断裂力学相结合,提出了含裂纹结构的模糊BSWI有限元法,建立了含裂纹结构模糊BSWI有限元模型,推导出模糊BSWI有限元平衡方程,利用λ水平截集及区间数分解定理求解模糊BSWI有限元平衡方程,数值算例结果表明该方法更为真实、准确地反映了结构响应的变化情况,为工程实际中处理含不确定参数断裂数值计算提供了一种新途径。
     3、微小裂纹的存在和扩展,往往会导致重大灾难性事故的发生,因而,预知微小裂纹的存在并定量识别其参数是工程实际中的重要课题,裂纹的出现,将引起结构局部刚度的改变,从而改变结构的动力学特性,本文从线弹性断裂力学角度出发,利用弹簧单元模拟裂纹引起的局部柔度变化,建立了裂纹梁BSWI有限元辨识模型,利用BSWI有限元裂纹故障诊断算法对矩形截面裂纹梁进行裂纹参数定量识别,数值模拟和实验研究验证了该算法的可行性和准确性。
     4、为解决经典层合板拉-剪、弯-扭、拉剪-弯扭耦合效应给传统有限元数值计算带来的困难,本文将BSWI有限元与经典层合板理论相结合,提出了经典层合板应力分析的BSWI有限元法,首次采用同尺度不同阶数BSWI尺度函数张量积插值,构造出BSWI经典层合板单元,推导了经典层合板BSWI有限元平衡方程,数值算例表明了该算法的有效性和高效性。
With complexity of engineering structures increasing, diversity of materials andthe development of computer technology, numerical calculation plays a fundamentaland important role in the design and analysis of engineering structures, it has becomeone of the essential means of modern scientific research. Because of stress singularityat the crack tip, extremely refined meshes have to be used at the crack-tip and newmeshes need to be re-divided as the crack propagates, which causes lower numericalaccuracy and efficiency for the traditional finite element method, severely influencingthe accurate identification of crack parameters. During numerical analysis ofengineering, design parameters have uncertainties due to the environmental changesand errors caused by machining and assembling. If these uncertain factors are ignored,we may get unreasonable calculation results, fuzzy mathematics is the main tool tosolve the uncertainty problem. Composite laminates are widely used in the satellitelaunch, national defense construction and other advanced technology areas because ofthe advantages of high specific strength and high specific stiffness, good corrosionresistance and material properties. However, the anisotropy of the material, layer ofstructure as well as the complexity of the edge stress distribution makes it difficult forthe traditional finite element method. Therefore, the researches on how to improve thenumerical calculation accuracy and efficiency of structures with cracks and compositelaminates plates,and combine fuzzy mathematics with numerical analysis of fracturehave become one of the focused topics. As a new numerical calculation method,BSWI employs wavelet scaling function or wavelet function of BSWI as interpolationfunction, it has a lot of good properties, such as less undetermined coefficients, highapproximation accuracy, strong localized performance and multi-resolution analysis,all of which can make up the defects for traditional finite element to solve the crackproblems and the laminated composite plates. At present, BSWI finite element methodhas been widely used in lots of fields, such as the numerical solution of partialdifferential equations, fault diagnosis, stress analysis of variable load and geometricnonlinear problems, however, the studies of numerical calculation of the fractureparameter, uncertainties analysis and stress analysis of laminated composite plates are less. In view of this, BSWI finite element method is applied to numerical calculationof the structure with cracks and laminated composite plates, a series of novelapproaches are proposed here to improve the numerical calculation accuracy andefficiency.
     BSWI functions have lots of good localized features, which can use fewer unitsand the number of degrees of freedom to maximize the approximation of the unknownfunction, as a result, virtual crack closure technique is proposed by applying BSWIfinite element to numerical calculation of the fracture parameter. Moreover, BSWIfinite element model with cracks is established, the node displacements at crack tip areattached by dummy node to fracture elements, stress intensity factor is calculated byvirtual crack closure technique, comparison the calculated results with those byANSYS shows that the method put forward in this paper is easy to calculate, withhigher accuracy and less elements, provides a new way for engineering fractureanalysis of structure with cracks.
     In order to solve the impact caused by uncertainties of loads and materials inengineering practices for numerical calculation of fracture, fuzzy finite elementmethod based on B-spline wavelet on the interval for structure with cracks is proposedby combining fuzzy theory and BSWI finite element theory with fracture mechanics.The BSWI fuzzy finite element model with cracks is established, the BSWI fuzzyequilibrium equations is deduced, specially, a strategy, Level cutting collection λ andthe interval number decomposition method are adopted to solve the intervalequilibrium equations. The analysis results demonstrate that the proposed method canaccurately reflect changes in structural response with fewer elements, moreover, thisapproach provides a new way for engineering fracture analysis with uncertaintiescomplex structures.
     The appearance and extension of tiny cracks in the structure may lead tocatastrophic accidents. Therefore, predicting the presence of tiny cracks andquantitative identification of parameters has important values to practical engineering.Local stiffness changes of the structure will be caused by emergence of crack,following by the modification of structural dynamics characteristics, based on this,from the view of linear elastic fracture mechanics, the identification model of crackbeam of BSWI finite element is established by using the spring element simulation ofcrack quantitative identification of cracked beam,which is finished by using crack fault diagnosis algorithm of BSWI finite element, the numerical simulation andexperimental study verify the accuracy and feasibility of the algorithm.
     Laminated composite plates have coupling effects of tension-shear, bending-torsion, tension with shear-bending and torsion with the complexity of the edgestress distribution, which are difficult to calculate for the traditional finite element. Tosolve this problem, BSWI finite element methods is combined with the classicallaminated plate theory in this paper, the BSWI finite element method for stressanalysis of classical laminates is proposed. Using the same scale but the differentorder BSWI scaling function tensor product interpolation constructs the element ofBSWI classical laminated plate, so BSWI finite element equilibrium equation of theclassical laminated plate is derived, the numerical simulation verifies the feasibility ofthe algorithm and accuracy.
引文
[1] NAYROLES B, TOUZOT G, VILLON P. Generalizing the finite element method:diffuse approximation and diffuse elements [J]. Computational Mechanics,1992,10(5):307-318.
    [2]曾攀.计算力学中的高精度数值分析新方法[J].中国科学,2000,30(1):39-46.
    [3]栾茂田,田荣,杨庆.广义节点有限元法[J].计算力学学报,2000,17(2):192-200.
    [4]龙驭球.新型有限元引论[M].清华大学出版社,1992.
    [5] CHENG Y K,ZHANG Y X,CHEN W J. A refined nonconforming plane quadrilateralelement [J]. Computers and Structures,2000,78:699-709.
    [6] RUOTOLO R, SURACE C. Damage assessment of multiple cracked beams: numericalresults and experimental validation [J]. Journal of Sound and Vibration (1997)206(4),567-588.
    [7] LEE Y S, CHUNG M J. A study on crack detection using eigenfrequency testdata, Computers and Structures77(2000):327-342.
    [8]舒小平,江永真,史林兴.精确的复合材料层合板有限元模型[J].淮海工学院学报,2003,12(1):8-11.
    [9]张耀强,李强,刘文庆.不同泊松比复合材料的裂纹尖端应力场[J].玻璃钢/复合材料,2003(3).
    [10]项松,王克明,石宏.基于逆多元二次径向基函数的复合材料层合板静力分析[J].工程力学,2009,26(1):167-171.
    [11] LIX Y, LIU D. Generalized laminate theories based on double superposition hypothesis [J]. International Journal for Numerical Methods in Engineering,1997,40(7):1197-1212.
    [12] SCIUVA D M. A third-order triangular multilayered plate finite elementw ith continuous interlaminar stresses [J]. International Journal for NumericalMethods in Engineering,1995,38(1):1-26.
    [13] LEE SANG H, YOON YOUNG C. Numerical predication of crack propagation byan enhanced element-free Galerkin method [J]. Nuclear Engineering and Design,2004,227:257-271.
    [14]陈雪峰.小波有限元理论与裂纹故障诊断的研究[D].西安:西安交通大学,2004.
    [15] SHEN PENGCHENG, WANG JIANGUO. Vibration analysis of flat shells by usingB-spline functions [J].Computers and Structures,1987,25(1):1-10.
    [16] SHEN P C. Stability analysis for plates using multivariable spline elementmethod [J]. Computers and Structures,1992,45(5/6):1073-1077.
    [17] SHEN P.C, HE P.X. Bending analysis of plates and spherical shells bymulti-variable spline element method based on generalized variation principle [J].Computers and Structure,1995,55(1):151-157.
    [18] CHUI C, EWALD Q. Wavelets on a bounded interval[J]. Numerical Methods ofApproximation Theory,1992,1:53-57.
    [19]关履泰.在有限区间带边界条件的小波插值与分解[M].工程数学学报,1995,12(3):1-9.
    [20] QUAK EWALD, WEYRICH NORMAN. Decomposition and reconstruction algorithmsfor spline waveles on a bounded interval[J]. Applied and Computational HarmonicAnalysis,1994,1(3);217-231.
    [21]吕恩林.一种模糊随机有限元法[J].重庆大学学报,1996,19(5):68-75.
    [22] CHEN L, RAO S S. Fuzzy finite-element approach for the vibration analysisof imprecisely-defined systems [J]. Finite Elements in Analysis and Design,1997,27(1):69-83.
    [23] MORLET J, ARENS G, FOURGEAU E,GIARD D. Wave propagation and samplingtheory-2and complex waves [J]. Geophysics,1982,47(2):222-236.
    [24] MEYER Y. Principe d’incertitude bases hilbertiennes et algebras d’ operateurs [J]. Borubaki Seminaire,1985,662(27):1271-1283.
    [25] GROSSMANN A, MORLET J. Dexomposition of hardy functions into square Integrable wavelets of constant shape [J]. SIAM J. Math,1984,15:723-736.
    [26] MALLAT S G. Mutiresolution approximation and wavelet orthonormal bases ofL2(R)[J]. Transactions of the American Mathematical Society,1989,315(1):69-81.
    [27] MALLAT S G. Multiresolution representation and wavelet [D]. Philadelphia,PA:University of Pennsylvania,1988.
    [28] DAUBECHIES I. Orthonormal bases of compactly supported wavelets [J].Communications on Pure and Applied Mathematical Society,1989,3115(1):69-81.
    [29] SWELDENS W. The lifting scheme: a construction of second gendration waveletconstructions [J].SIAM J.Math.Aamal,1997,29(2):511-546.
    [30] SWELDENS W. The Construction and Application of Wavelets in Numericalanalysis [D]. Belgium: Katholieke Universiteit Leuven,1995.
    [31]杨仕友,倪光正.小波伽辽金有限元法及其在电磁场数值计算中的应用[J].中国电机工程学报,1999,19(1):56-61.
    [32]石陆魁,沈雪勤,颜威利.小波插值Galerkin法解二维静态电磁场中的边值问题[J].中国电机工程学报,2000,20(9):13-16.
    [33]刘小靖,王记增,周又和.一种适用于强非线性结构力学问题数值求解的修正小波伽辽金法[J].固体力学学报,2011,32(3):249-257.
    [34]周又和,王记增,郑晓静.小波伽辽金有限元法在梁板结构中的应用[J].应用数学和力学,1998,19(8):697-706.
    [35].吴永青,贾向红,张国雄.小波配置法中对边界处理的改进[J].天津大学学报,2000,33(3):324-327.
    [36] MCWILLIAN S, KNAPPETT D J, FOX C H J. Numerical solution of the stationaryFPK equation using Shannon wavelets [J]. Journal of Sound and Vibration,2000,232(2):405-430.
    [37] VASILYEV O V, BOWMAN C. Second-generation wavelet collocation method forthe solution of partial differential equations [J]. Journal of Computational Physics,2000,165:660-693.
    [38] KO J, KURDILA A J, PILANT M S. A class of finite element methods basedon orthonormal compactly supported wavelets [J]. Computational Mechanics,1995,16:235-224.
    [39] PATTON R D, MARKS P C. One-dimensional finite elements based on theDaubechies family of wavelets [J]. AIAA Journal,1996,34(8):1696-1698.
    [40] CASTRO L, FRETIAS J. Wavelets inhybrid-mixed stress elements [J]. ComputerMethods in Applied Mechanics and Engineering,2001,37(5):3203-3207.
    [41] CHEN W H, WU C W. spline wavelets element method for frame structuresVibration [J]. Computational Mechanics,1995,16(1):11-21.
    [42]向家伟,陈雪峰,荷正嘉等.基于区间B样条小波有限元的裂纹故障定量诊断[J].机械强度,2005,(2):163-167.
    [43]梅树立,张森文,雷廷武. Burgers方程的小波精细积分算法[J].计算力学学报,2003,220(1):49-52.
    [44] GOSWAMI J C, CHAN A K, CHUI C K. On solving first-kind integral equationsusing wavelets on a bounded interval [C]. IEEE Transactions on Microwave Theory&Techniques,2001,49(5):886-892.
    [45] D’HEEDENE S, AMARATUNGA K, CASTRILLON-CANDAS J. Generalized hierarchicalbases: a wavelet-Ritz-Galerkin frame-work for Lagrangian FEM [J]. InternationalJournal for Computer Aided Engineering and Software,2005,22(10):15-37.
    [46] WILLIAMS J R, AMARATUNGA K. Introduction to wavelets in engineering [J].International Journal for Numerical Methods in Engineering,1994,37:2365-2388.
    [47]陈雅琴,张宏光,党发宁. Daubechies条件小波混合有限元法在梁计算中的应用[J].工程力学,2011,28(8):208-214.
    [48]骆志高,范彬彬,郭啸栋,王祥,李举.基于小波有限元对注塑型腔内熔体的三维流动分析[J].中国机械工程,2009,20(10):1244-1247.
    [49] Lilliam Alvarez Díaz, Martín María T, Victoria Vampa. Daubechies waveletbeam and plate finite elements [J]. Finite Elements in Analysis and Design,2009,45(3):200―209.
    [50]徐建新,李顶河,卢翔,卿光辉.基于B样条小波有限元的压电材料层合板灵敏度分析[J].工程力学,2010,27(6):194-201.
    [51]徐建新,李顶河,卢翔,卿光辉.基于B样条小波的复合材料层合板灵敏度分析[J].计算力学学报,2010,27(4):642-647.
    [52]杨胜军,马军星,薛继军,何正嘉.基于小波有限元方法的复印纸张温度场仿真研究[J].系统仿真学报,2002,14(9):1243-1248.
    [53] Schoenberg I J. Contributions to the problem of approximation ofequidistant data by analytic functions [J]. Quarterly of Applied Mathematics,1946,4(1):45-99.
    [54]龙驭球.新型有限元论[M].北京:青华大学出版社,2004.
    [55] CHEUNG Y K, FAN S C, Static analysis of right box girder bridges by splinefinite strip method. Proc, Instn. Civil Engnrs,1983, Part75:311-323.
    [56]秦荣.结构力学的样条函数方法[M].南宁:广西人民出版社,1985.
    [57] CHEN W H.WU C W. Extension of spline wavelets element method to membranevibration analysis [J]. Computional Mechanics.1996,18(1):46-54.
    [58]沈鹏程,何沛祥.计算力学中的样条有限元法的进展[J].力学进展,2000,30(2):191-199.
    [59] CHUI C K, WANG J Z. On compactly supported spline wavelet and a dualityPrinciple [J]. Trans, Amert. Math. Soc.
    [60]徐长发,冯勇. B小波有限元方法数值稳定性分析[J].华中理工大学学报,1996,24(6):105-112.
    [61]杜守军,赵国景.多分辨率样条平面单元[J].工程力学,1999,16(5):33-40.
    [62]关履泰.有限区间截断B样条小波及其消失矩性质[J].中山大学学报,1996,35(3):28-33.
    [63]关履泰.在[0,1]区间的自由节点样条小波[J].工程数学学报,1998,15(3):1-6.
    [64]沈远彤,李宏伟.边界奇异微分方程的区间样条小波求解[J].应用数学,2004,17(2):310-314.
    [65]段继伟,李启光.有限区间内四阶样条小波的构造[J].应用数学和力学,2000,2(4):393-400.
    [66] Finkelstein A, Salesin D H, Multiresolution curves. Computer GraphicsProceedings [C]. In: Annual Conference Series, ACM SIGGRAPH, Orlando, Florida,1994:261-268.
    [67] BERTOLUZZA S, NALDI G, RAVEL J C. Wavelet methods for the numerical solutionof boundary value problems on the interval [J]. Wavelets: Theory, Algorithms, andApplications. London: Academic Press, Inc.,1994.
    [68] GOSWAMI J C, CHAN A K, CHUI C K. On Solving first-kind integral equationsusing wavelets on a bounded interval [C]. IEEE Transactions on Antemmas andPropagation,1995,43:614-622.
    [69]杨胜军.区间B样条小波有限元理论及工程应用研究[D].西安:西安交通大学,2005.
    [70]向家伟,陈雪峰,李兵,何育民,何正嘉.一维区间B样条小波单元的构造研究[J].应用力学学报,2006,23(2):222-227.
    [71]向家伟,陈雪峰,董洪波,何正嘉.薄板弯曲和振动分析的区间B样条小波有限法[J].工程力学,2007,24(2):56-61.
    [72] XIANG J W, CHEN X F, HE Y M, etal. The construction of plane elastomechanicsand Mindlin plate elements of B-spline wavelet on the interval [J]. Finite Elementsin Analysis and Design,2006,42(14-15):1269—1280.
    [73]尤琼,史治宇,罗绍湘.基于小波有限元的移动荷载识别[J].振动工程学报,2010,23(2):188-193.
    [74] QING G.H, QIU J.H, LIU Y.H. A semi-analytical solution for dynamic analysisof plate with piezoe lectric patches [J]. International Journal of Solids andStructures,2006,43(6):1388―1403.
    [75] QING G H, QIU J J, LIU Y H. A semi-analytical solution for dynamic analysisof plate with piezoelectric patches [J]. International Journal of Solids andStructures,2006,43(6):1388―1403.
    [76]贾宝惠,李顶河,徐建新,卿光辉. Hamilton体系下复合材料层合板特征值灵敏度分析研究[J].工程力学,2010,23(1):236-239.
    [77]何正嘉,陈雪峰,李兵,向家伟.小波有限元理论及其工程应用[M].北京:科学出版设,2006.
    [78]陈雪峰,向家伟,董洪波,何正嘉.基于区间B样条小波有限元的转子裂纹定量识别[J].机械工程学报,2007,43(3):123-127.
    [79]黄克中,毛善培.随机方法与模糊数学应用[M].上海:同济大学出版社,1987.
    [80]杨松林.工程模糊论方法及其应用[M].北京:国防工业出版社,1996.
    [81] ZADEH L A. Fuzzy sets [J]. Information and Control,1965,8(3):338-353.
    [82] BROWN C B. A Fuzzy Safety Measure [J]. Journal of the Engineering MechanicsDivision,1979,105(5):855-872.
    [83] BROWN C B, YAO J T P. Fuzzy Sets and Structural Engineering [J]. Journalof Structural Engineering,1983,109(5):1211-1225.
    [84] RAO S S. Multi-objective optimization of fuzzy structural systems [J].International Journal for Numerical Methods in Engineering,1987,24(6):1157-1171.
    [85] WANG G Y, QIU J P. Theory of fuzzy random vibration with fuzzy parameters[J]. Fuzzy Sets and Systems,1990,36(1):103-112.
    [86]韩静.基于模糊理论的工程结构可靠性分析[J].江南大学学报,2008,7(3):371-374.
    [87] GAWRONSKI W. Fuzzy elements [J]. Computers&Structures,1979,10:863-865.
    [88] HANSEN ELDON. Interval Arithmetic in Matrix Computations, Part I [J].Journal of the Society for Industrial and Applied Mathematics: Series B, NumericalAnalysis,1965,2(2):308-320.
    [89] HANSEN ELDON. Interval Arithmetic in Matrix Computations, Part II [J].Journal of the Society for Industrial and Applied Mathematics: Series B, NumericalAnalysis,1967,4(2):1-9.
    [90] VALLIAPPAN S, PHAM T D. Fuzzy finite element analysis of a foundation onan elastic soil medium [J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1993,17(11):771–789.
    [91]王彩华,朱恒山.基于L-R型模糊运算法则的一种结构模糊方程的解法[C].第三届全国模糊分析设计学术会议论文集,1993,35-38.
    [92]王彩华,宋连天.模糊论方法学[M].北京:中国建筑工业出版社,1988.
    [93] HALDAR I, REDDY R K. A random-fuzzy analysis of existing structures [J].Fuzzy Sets and Systems,1992,48(2):201-210.
    [94]索奇峰,谢尚英.桥梁结构动力特性的模糊有限元分析[J].公路交通科技,2010,27(4):56-72.
    [95] CHEN L, RAO S S. Fuzzy finite-element approach for the vibration analysisof imprecisely-defined systems [J]. Finite Elements in Analysis and Design,1997,27:69-83.
    [96]蒋中明,冯树荣,陈胜宏.向家坝水电站岩石高边坡模糊数值分析[J].岩石力学与工程学报,2008,27(2):3968-3972.
    [97] JUANG C H, WEY J L, ELTON D J. Model for Capacity of Single Piles in SandUsing Fuzzy Sets [J]. Journal of Geotechnical Engineering,1991,117(12):1920-1931.
    [98]赖一楠,游斌弟,宋一新,刘献礼.复杂机械结构模糊有限元优化[J].哈尔滨工业大学学报,2009,41(7):164-167.
    [99]雷震宇,陈虬.基于信息熵的模糊随机结构有限元法[J].力学季刊,2001,22(3):340-345.
    [100] LUCA I DE, TERMINI S. A definition of a nonprobabilistic entropy in thesetting of fuzzy sets theory [J]. Information and control,1972,20(4):301-312.
    [101]陈长征,罗跃纲,白秉三,唐忠.结构损伤检测与智能诊断[M].北京:科学出版社,2001.
    [102] ADAMS R D, SHORT D. Vibration testing as a nondestructive test toolfor composite materials [J]. ASTM STP1975,580:159-175.
    [103] BISWAS M, SAMMAN M M. Diagnostic experimental spestral/modal of a highwaybridge[J]. The international Journal of Analytical and Experimental Modal Analysis1990,1:33-42.
    [104] KIM H M, BARTKOWICZ T J. Damage detection and health monitoring of largespace structures [J]. Journal of Sound and Vibration,1993,27(6):12-17.
    [105] PANDEY A K, BISWAS M. Experimental yerification of flexibility differencemethod for locating damage in structures [J]. Journal of Sound and Vibration,1995,184(2):311-328.
    [106] LIU P L. Identification and damage detection of trusses using modal data[J]. Journal of Structural Engineering,1995,121(4):599-607.
    [107] FOX C H J. The location of defects in structures: a comparison of the useof natural frequency and mode shape data[C]. IMAC-X Conference, San Diego, CA,1992,522-528.
    [108] CHAUDHARI T D, MAITI S K. A study of vibration of geometrically segmentedbeams with and without crack [J]. International Journal of Solids and Structures,2000,37:761-779.
    [109]邹剑,陈进,董广明.基于有限元模型单一开裂纹转子的振动分析与无损估计[J].机械工程学报,2004,40(7):29-33.
    [110] OWOLABI G M, SWAMIDAS A S J, SESHADRI R. Crack detection in beams usingchanges in frequencies and amplitudes of freguency response functions [J]. Journalof Sound and Vibration,2003,265:1-22.
    [111]王可,赵斌.基于小波有限元技术的单螺杆压缩机螺杆轴的裂纹识别[J].中国工程机械学报,2011,9(1):112-116.
    [112]李兵,陈雪峰,向家伟,何正嘉.基于小波有限元法的悬臂梁裂纹识别的试验研究[J].机械工程学报,2005,41(5):114-118.
    [113]陈雪峰,李兵,警艳阳,何正嘉.梁类结构多裂纹微弱损伤的小波有限元定量检测方法[J].机械工程学报,2005,41(7):127-130.
    [114]李兵,陈雪峰,王鹏,何正嘉.二类变量区间B样条小波有限元及裂纹诊断研究[J].振动与冲击,2008,27(S):268-270.
    [115]李兵,陈雪峰,何正嘉.工字截面梁轨结构裂纹损伤的小波有限元定量诊断[J].机械工程学报,2010,46(20):58-63.
    [116] BERTOLUZZA S, NALDI G, RAVEL C. Wavelet methods for the numerical solutionof boundary value problems on the interval[C]//CHUI C. K., MONTEFUSCO L., PUCCIOL. Wavelets: Theory, Algorithms, and Applications. London: Academic Press, Inc,1994.
    [117] CHUI C K, QUAK EWALD. Wavelets on a bounded interval [J]. NumericalMethods of Approximation Theory,1992,1:53-57.
    [118] QUAK E, WEYRICK N. Decomposition and Reconstruction algorithms for splinewavelets on a bounded interval [J]. Applied and Computational Harmonic Analysis,1994,1(3):217-231.
    [119]关履泰,曾志贵.截断B样条小波分解[J].中山大学学报论丛,1996,5:154-158.
    [120] SCHWARZ H R. Finite Element Methods [C]. London: Academic Press,1998.
    [121] XIANG J W, CHEN X F, HE Z J et al. The construction of two-dimensionalplane elasticity element using B-spline wavelet on the interval [C]. Proceedingsof the6thInternational Progress on Wavelet Analysis and Active Media Technology,2005,3:1203-1208.
    [122] ZHONG M, ZHANG Y Y. The analysis of dynamic stress intensity factorfor semi-circular surface crack using time-domain BEM formulation [J]. AppliedMathematics and Mechanics,2001,22:1344-1351.
    [123]黎在良,王乘.高等边界元法[M].北京:科学出版社,2008.
    [124] SUN Y Z, WANG J Y, XU J F. Boundary Element Method for the Plane ElasticProblem with Cracks [J]. Journal of Zhong yuan Institute of Technology,2004,15(5):46-54.
    [125]张雄,刘岩,马上.无网格法的理论及应用[J].力学进展,2009,39(1):1-36.
    [126] ATLURI S N, SHEN S. The Meshless Local Petrov-Galerkin (MLPG) Method [C].Forsyth: Tech Science Press,2002.
    [127] Xie D. Damage progression in tailored laminated panels with a cutout anddelamination growth in sandwich panels with tailored face sheets [D]. Clemson:Clemson University,2002.
    [128] Xie D, Biggers Jr S B. Progressive crack growth analysis using interfaceelement based on the virtual crack closure technique [J]. Finite Elements in Analysisand Desigm,2006,42:977-984.
    [129] TADE H, PARIS P C, IRWIN G R. The stress analysis of cracks handbook (3rdedition)[M]. New York: ASME Press,2000.
    [130]中国航空研究院应力.强度因子手册[M].北京:科学出版社,1993,1-25.
    [131] RICE F R, A Path independent integral and the approximate analysis ofstrain concentration by notches and cracks [J]. Journal of Applied Mechanics,1968,35:379-386.
    [132] MOURA B, SHIH C F. A treatment of crack tip contour intergrals [J].Internation Journal of Fracture,1987,35:295-310.
    [133] SHIVAKUMAR K N, RAJU I S. An equivalent domain integral method for threedimensional mixed-mode fracture problem [J]. Engineering Fracture Mechanics.
    [134]解德,钱勤,李长安.断裂力学中的数值计算方法及工程应用[M].北京:科学出版社,2009.
    [135] IRWIN G R. One set of fast crack propagation in high strength steel anda aluminum alloys [J]. Sagamore Research Conference Proceedings,1956,2:289-305.
    [136] RYBICKI E F,KANNINEN M F. A finite element calculation of stress intensityfactors by a modified crack-closure integral [J]. Engineering Fracture Mechanics,1997,9:931-938.
    [137] RAJU I S. Calculation of strain-energy release rates with high-0rder andsingular finite-elements [J]. Engineering Fracture Mechanics,1987,28:251-274.
    [138] ENGELSTAD S P, BERRY O T, RENIERI G D, etal. A high fidelity compositebonded joint analysis validation study-Part I: Analysis [C]. The46THAIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference, AIAA-2005-2166. Austin, Texas. April18-21,2005.
    [139] MABSON F E,DEOBALD L R, Dopker B. Fracture interface elements for theimplementation of the virtual crack closure technique[C]. The48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics&Materials Conference, AIAA-2007-2376.Honolulu, Hawaii. April23-26,2007.
    [140]周立明.不确定性结构的无网格伽辽金法研究[D].长春:吉林大学,2011.
    [141] GRAETTINGER A J, LEE J, REEVES H W. Efficient conditional modeling forgeotechnical uncertainty evaluation [J]. International Journal for Numerical andAnalytical Methods in Geomechanics,2002,26(2):163-179.
    [142] Valliappan S, Pham T D. Fuzzy finite element analysis of a foundation onan elastic soil medium [J]. International Journal for Numerical and AnalyticalMethods in Geomechanics,1993,17(2):771-789.
    [143]彭惠芬,孟广伟,周立明,李峰.含裂纹结构的区间B样条小波模糊有限元分析[J].哈尔滨工业大学学报,2011,43(9):134-138.
    [144]彭惠芬,孟广伟,周立明,李锋.基于小波有限元法的虚拟裂纹闭合法[J].吉林大学学报(工学版),2011,41(5):1364-1368.
    [145]蒋中明,徐卫亚,张新敏.弹性介质模糊有限元控制方程的快速解法[J].工程力学,2006,23(7):25-30.
    [146]赖一楠,游斌弟,宋一新,刘献礼.复杂机械结构模糊有限元优化[J].哈尔滨工业大学学报,2009,41(9):164-168.
    [147]丛明,刘冬,崔冬梅,孟国兴,董欣胜.基于灵敏度分析的大规格床身结构模糊优化设计方法[J].大连理工大学学报,2011,51(3):355-362.
    [148]王晓军,杨海峰,邱志平,宋微波.基于测量数据的不确定性结构分析的模糊理论[J].北京航空航天大学学报,2010,36(8):887-891.
    [149]郑栋梁,李中付,华宏星.结构早期损伤识别技术的现状和发展趋势[J].振动与冲击,2002,21(2):1-10.
    [150]陈长征,罗跃刚,白秉三等.结构损伤检测与智能诊断[J].北京:科学出版社,2001.
    [151]甘文兵.基于有限元和断裂力学的起重机结构故障诊断[D].武汉:武汉科技大学,2010.
    [152]王维民,高金吉,江志农.基于有限元模型的旋转机械故障诊断方法研究[J].振动与冲击,2004,25(4):30-33.
    [153] LELE S P, MAITI S K. Modeling of transverse vibration of short beams forcrack detection and measurement of crack extension [J]. Journal of Solids andStructures,2000,37:761-779.
    [154] KRISMER P G. The defect of disxontimuities on the natural frequency ofbeams [J]. Proceedings of the American Society for Testing and Materials,1944,44:897-904.
    [155] PANDEY A K, BISWAS M, SAMMAN M M. Damage detection from changes in curvaturemode shapes [J].Journal of Sound and Vibration,1985,102(3):301-310.
    [156] CHINCHALKAR S. Determination of crack location in beams using naturalfrequencies [J]. Journal of Sound and Vibration,2001,247(3):417-429.
    [157] DIMAROGONAS A D, PAPADOPOULOS C A. Vibration of cracked shafts in bending[J]. Journal of Sound and Vibration,1983,91(4):583-593.
    [158]陈雪峰,李兵,何正嘉.梁类结构多裂纹微量损伤的小波有限元定量检测方法[J].机械工程学报,2005,41(7):126-130.
    [159] H.TADA, P.C.PARIS, G.R.IRWIN. The Stress Analysis of Cracks Handbook(3rdedition)[M]. New York: ASME Press,2000,1-63,487-492.
    [160] CHINCHALKAR S. Determination of crack location in beams using naturalfrequencies [J]. Journal of Sound and Vibration,2001,247(3):417-429.
    [161] NANDWADA B P, MAITI S K. Detection of the location and size of a crackin stepped cantilever beams based measurements of natural frequencies [J]. Journalof Sound and Vibration,1997,203(3):435-446.
    [162]孙少周,周光明,王新峰.含分层复合材料层板的压缩性能[J].材料科学与工程学报,2011,29(4):601-604.
    [163]徐慧,伍晓赞,程仕平,李燕峰,龙朝辉,邓超生.复合裂纹的应力强度因子有限元分析[J].中南大学学报,2007,38(1):80-83.
    [164]杨洁,李成,贾红雨,苏玉珍.复合材料层合板孔边应力场的有限元计算[J].玻璃钢/复合材料,2009,3:8-12.
    [165]丁锡洪,王鑫伟,彭晓洪.一种适于复合材料层板的有限元分析方法[J].南京航空学院学报,1986,3:25-36.
    [166] METIN A D D. A new shear deformation theory for laminated composite plates[J]. Composite Structures,2009,89:94-101.
    [167] FERREIRA A. J.M. A formulation of the multiquadric radial basis functionmethod for the analysis of laminated composite plates [J]. Composite Structures,59(2003)385-392.
    [168] HAMID R O, SAYYED A M, MOHAMMAD H S. Buckling analysis of laminatedcomposite plates using higher order semi—analytical Finite Strip Method [J]. ApplCompos Mater,2010,17:69-80.
    [169] GHAFFORI E, ASGHARI M, Dynamic analysis of laminated composite platestraversed by a moving mass based on a first-order theory [J]. Composite Structures,2010,92:1865-1876.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700