小波随机有限元方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将小波分析方法和随机有限元方法相结合发展了一种用于分析细沟侵蚀模型随机特性的小波随机有限元方法;在时域积分中采用了“精细积分方法”。该工作主要由以下五部分构成:
     第一、研究了拟Shannon小波的性质,构造了求解偏微分方程的拟Shannon小波配置法,同时将外推法引入小波配置法,进一步改善了该方法的计算效率和计算精度。在此基础上,根据区间插值小波的概念,构造了拟Shannon区间小波配置法,数值算例表明该方法不但可以消除边界效应,而且可大幅度提高计算精度。
     第二、在钟万勰院士提出的“精细积分法”的基础上提出了求解非线性结构动力方程的自适应精细积分法。该方法将外推法引入求解结构动力方程的精细时程积分法中,从而使该方法在求解非线性动力方程中可以自适应选取时间步长;需要指出的是,由于考虑了矩阵指数精细算法和外推法算法在时间离散方法上的一致性,在外推过程中,计算工作量基本没有增加;因此,两种方法的结合有效提高了算法的效率和精度。
     第三、将小波配点法和精细积分法相结合提出了求解非线性偏微分方程的自适应插值小波有限元精细积分法。首先基于插值小波变换提出了多层插值小波配置法,该方法相对于原有的多层小波配置法,插值算子构造过程计算量大幅度减少,从而使该方法进一步实用;多层插值小波配置法和自适应精细积分法的结合使求解问题在时间域和空间域实现了全自适应离散;由于自适应小波配置法可以大幅度压缩配点规模,所以即使不使用子域精细积分,计算效率也不会下降很多,从而可避免寻找子域的困难以及可能出现的稳定性问题;另外,在求解偏微分方程时,精细积分方法相对于差分法类方法有更好的稳定性;因此,自适应插值小波有限元精细积分法是一种很有前景的方法。
     第四、作为以上方法的应用,同时为了校核方法的稳定性以及计算精度和效率,构造了求解FPK方程的拟Shannon小波配置法,并给出了具体求解平稳FPK方程的具体步骤。分析了Shannon小波配置法和拟Shannon小波配置法在求解FPK方程中的优缺点。同时将该方法成功应用于具有较大梯度解的流体力学中的Burgers方程的求解中,求解结果显示了该方法在求解非线性偏微分方程方面具有重要前景。
     第五、将随机有限元方法和小波精细积分法相结合提出了对细沟侵蚀模型的统计特性进行分析的小波随机有限元方法。在该方法中,采用了一种拟摄动法对模型中的非线性方程进行线性化,然后采用小波配置法对模型方程进行空间离散,最后用随机有限元方法求得模型中水流速度,水深和泥沙浓度的统计特性,计算结果和Monte Carlo法模拟结果吻合得很好。
The aim of this study is to develop a Wavelet Stochastic Finite Element Method to be applied in solving partial difference equations. This work includes 5 sections as follows:
    A. The properties of Quasi shannon wavelet was studied in this paper, and a wavelet collocation method for partial differential equations was conducted. The extrapolation was used in this method for improving efficiency and accuracy, and the Quasi shannon interval wavelet collocation method was constructed based on the concept of interpolation wavelet transform. This method can handle the problems of complex boundary conditions and improve computation accuracy greatly.
    B. Based on the Precise Integration Method for structural dynamic systems proposed by Zhong Wanxie, an adaptive precise integration method for nonlinear time-invariant structural dynamic systems was proposed in this paper. This method was conducted by combining extrapolation method with precise time-integration method. In this method the nonlinear equations can be discreted in time domain adaptively. It should be pointed out that the discrete method in time domain is identical between the precise computation of the matrix exponential and the extrapolation, so that the combination of them would not increase the computation time. Hence this method can improve accuracy and efficiency of the calculation.
    C. Based on these work upwards, an adaptively wavelet precise time-invariant integration method was proposed in this paper. In this method, an adaptive multilevel interpolation wavelet collocation method for partial difference equations (PDEs) was conducted, in which the time complexity is less than Oleg V's method, and then the adaptive precise integration method was combined with, so that in this method the adaptively discretes both in time domain and physical domain were realized. The sub-domain precise integration method is not necessary in this method due to the collocation points can be reduced greatly in this method. So the difficulties of looking for sub-domain are avoided, and the stability of the method is ensured..
    D. As numerical examples, the Quasi-shannon wavelet collocation for FPK equations was conducted based on the theory of this method. The specific procedures for solving stationary FPK equation, the analysis of the problems raised in this method and the remedies of the problems were presented in this paper. Otherwise, this method was applied into solving Burgers Equation, and the numerical results show that it is a prospective numerical method for nonlinear partial differential equation.
    E. Lastly, the wavelet stochastic finite element method for a stochastic model of soil erosion in a rill was proposed. In this method, a new perturbation technique called linearization-correction method was used to linearize the nonlinear equations in the model, and then the wavelet precise integration method was used to calculate the sensitivity of the response. At last the stochastic perturbation method is used to analyse the variance and expectation of sediment concentration, rate and depth of flow. The calculated result was high agreement with that result of Monte Carlo method.
引文
[1] 程正兴.小波分析算法与应用.西安交通大学出版社,1998
    [2] Daubechies I. Where do wavelets come from? A Personal point of view. Pro IEEE, 1996,84:510-513
    [3] 徐长发.实用偏徵分方程数值解法.武汉:华中理工大学出版社,1990.
    [4] Tingwu Lei, Mark A. Nearing and Kamyar Haghighi. A Model of soil erosion in a rill: temporal evolution and spatial variability.
    [5] 吕涛,石济民,林振宝.分裂外推与组合技巧.科学出版社.1998
    [6] Batge K J, Wilson E L. Numerical Methods in Finite Element Analysis[M]. Engelwood Chiff, NJ:Prentice-Hall, 1976
    [7] Lapidus L, Pinder G F. Numerical Solution of Partial Differential Equations in Science and Engineering[M]. John Wiley & Sons, 1982
    [8] Seldens, W., The construction and application of wavelets in numerical analysis, Doctor thesis, University of South Carolina, 1994.
    [9] Glowinski, R., Lauwton, W., Ravachol, M. And Tenenbaum, E., wavelet solution of linear and nonlinear in one space dimension, in proceedings, 9th international conference on numerical methods in applied sciences and engineering, SIAM, Philadelphia, 1990.
    [10] Brand, A., MultMevel adaptive solutions to boundary value problems, Math. Of comp. 31,333-390,1977
    [11] Liandrat, J., Perrier, V, and Tchamitchian, Ph., Numerical resolution of the regularized Burgers equation using the wavelet transform, technical report CPF 89/p.2320,center of theoretical physics, Mareille, France, 1989.
    [12] Resnikoff, H.L., Foundations of arithmeticum anaylysis,:on compactly supported wavelets with applications to differential equations, Preprint, AWARE, Inc, Cambridge, Massachusetts, 1988.
    [13] Eirola, T., Sobolev characterization of solution of dilation, SIAM J. Math. Anal.23(4),1015-1030,1992.
    [14] Jaffard, S., and Laurencot, P., Spline wavelets for ordinary differential equations to numerical analysis, 第三次中法小波会议论文集,1992.
    [15] Jaffard, S. Wavelet methods for fast resolution of elliptic problems, SIAM J. On numerical analysis 29(4),865-986,1992
    [16] Lorentz, R. A. And Madych, W., Spline wavelets for ordinary differential equations, Gmd-Report, 1990.
    [17] J.C. Xu and W.C. Shann, Galerkin-Wavelet methods for two point boundary value problems Nummer. Math. 63(1),123-144,1992.
    [18] J.Z.Wang, Construction of wavelet bases in sobolev spaces on a finite interval, Report on 1992 summer research conferences of AMS" wavelet and applications", South Hadley, 1992.
    [19] Wei Cai and J.Z.Wang, Adaptive wavelet collocation methods for initial value boundary problems of nonlinear PDE's, preprint, 1993.
    [20] Qian, S. and Weiss, J., Wavelet and the numerical solution of partial differential equations, J. of Comput, Phy.,106,155-175,1993.
    [21] Joly, P., Maday, Y. and Valerrie Perrier, Towards a method for solving differential equations by using wavelet bases,Comput, Methods Appl. Mech. Engrg. 116,301-307,1994.
    [22] Bertoluzza, S., Maday, Y. and Ravel, J.C., A dynamically adaptive wavelet method for solving partial differential equations, Comput. Methods Appl. Mech. Engrg. 116,293-299,1994.
    [23] Fank, W. and Andrew, J., A wavelet Monte Carlo method for turbulent diffusion with many spatial scales, J. of comput. Phy. 113,82-111,1994.
    [24] Dahlke, S. and Weinreich, I., Wavelet-garlerkin methods: an adapted biorthogonal wavelet basis, Constr. Approx.9,237-262,1993.
    [25] Lazaar, S., Ponenti, Pj., Liandrat, J. and Tchamitchian, Ph., Wavelet algorithms for numerical resolution of partial differential equation, Comput. Methods Appl. Mech. Engrg. 116,309-314,1994.
    [26] 徐长发.求解一类具有Hilbert核的奇异积分方程的小波方法,高等学校计算数学学报,2000(1):28-35
    [27] 徐长发.带小波函数的Cauchy主值积分的数值计算.高等学校计算数学学报,1998(2):97-105
    
    
    [28]徐长发.对数型奇异核小波展开的递推算法.华中理工大学学报,1998,26(5):110-112
    [29]熊联欢.求解常系数ODE的Sobolve正交小波有限元法.华中理工大学学报,1997,25(5):76-78
    [30]徐长发,B小波有限元方法及其数值稳定性分析.华中理工大学学报,1996,24(6):105-112
    [31]徐长发.小波有限元逐层校正算法及数值分析.高等学校计算数学学报,1994(3):257-263
    [32]Naoki Saito, Gregory Beylkin, Multiresolution Representations Using the Auto-Correlation Functions of Compactly Supported Wavelets, IEEE Transactions on Signal Processing, Vol.41,No. 12,December 1993.
    [33]Sam Qian, John Weiss, Wavelets and the Numerical solution of partial differential equations, Journal of computational Physics 106.155-175,1993
    [34]Kevin Amaratunga, Hohn R Williams, sam Qian, Hohn Weiss, Wavelet-Galerkin solution for one-dimensional partial differential equations, International Journal for Numerical Methods in Engineering, Vol, 37,2703-2716,1994
    [35]S.Lazaar, Pj.Ponenti, J.Liandrat, Ph.Tchamitchion. Wavelet algorithms for numerical resolution of partial differential equations. Computer Methods in Applied Mechanics and Engineering. 1994,(116):309-314
    [36]Parscal Joly, Yvon Maday, Valerie Pemier. Towards a method for solving partial differential equations by using wavelet packet bases. Comput. Methods Appl. Mech. Engrg. 1994,(116:301-307
    [37]Kevin Amaratunga and John R. williams. Wavelet based Green's function approach to 2DPEDs. Engineering Computations. 1993,10(3):349-367
    [38]Kevin Amaratunga and John R.williams. Wavelet -Galerkin solutions for one-dimensional partial differential equations. International Journal for Numerical Methods in Engineering. 1994,37:2703-2716
    [39]J.R. Williams and K. Amaratunga, Introduction to wavelets in engineering, Intemat. J. Numer. Methods Engrg.,37(14)(1994),2365-2388.
    [40]S.McWilliam, D.J. Knappett and C.H.J.Fox. Numerical solution of the stationary FPK equation using Shannon wavelets. Journal of Sound and Vibration ,2000,232(2),405-430
    [41]S.Bertoluzza, G.Naldi, A Wavelet collocation method for the numerical solution of partial differential equations.Applied and Computational Harmonic Analysis, 1996(3): 1-9
    [42]E.Bacry, S.Mallat, and G.Papanicolaou, "A Wavelet Based Space-Time Adaptive Numerical Method for Partial differential Equations," Math. Mod. Num. Anal., Vol.26,1992, p.793
    [43]R.Glowinski, W.Lawton, M. Ravechol, and E.Tenenbaum, "Wavelet Solutions of Linear and Nonlinear Elliptic, Parabolic and Hyperbolic Problems in One Space Dimension," in Computing Methods in Applied Sciences and Engineering, edited by R.Glowinski and A. Lichnewsky, SIAM: Philadelphia, 1990,p.55;
    [44]Jin-Chao Xu and Wei-Chang Shann, "Galerkin-Wavelet Methods for Two-Point Boundary Value Problems," Nurner.Math. 63(1992),pp.123-144
    [45]A.Latto, and E. Tenenbaum, C.R. Acad. Sci. Paris 311(1990),p903
    [46]R. Schul and H. Wyld, Phys. Rev. A46(1992),p7953
    [47]I.Daubechies, "Two Recent Results on Wavelets: Wavelet Bases for the Interval andBiorthogonal Wavelets Diagonalizing the Derivative Operator," Recet Advances in Wavelet Analysis, L.L. Schumaker and G.Webb(eds.),Academic Press, Inc., 1994:237-258
    [48]J. Liandrat and Ph. Tchamitchian and Faculte Saint Jerome, "Resolution of the 1D Regularized Burgers Equation Using a Spatial Wavelet Approximation," NASA-CR- 187480,Dec. 1990
    [49]S. Lazaar, Pj. Ponenti, J.Liandrat, Ph. Tchamitchian, "Wavelt Algorithms for Nuumerical Resolution of Partial differential Equations," Comput. Methods Appl. Mech., Engrg. 1994,116:309-314
    [50]P.Joly, Yvon Maday, Valerie Perrier, ''Towards a Method for Solving Partial Differential Equations by Using Wavelet Packer Bases,"Comput. Methods Appl. Mech. Engrg. 1994,116:301-307
    [51]S.Qian and J.Weiss, "Wavelets and the Numerical Solution of Partial Differential Equations," J.Comput. Phys. 1993,106:155-175
    [52]C.K.Chui and E.Quak, Wavelets on a Bounded Interval. Wavelets. Numerical Methods in Approximation Theory,D.Braess and L.L.Schumaker(eds.), Birkhauser, Boston, 1992,9:53-75
    [53]L.Andersson, N.Hall, B.Jawerth, and G.Peters, Wavelets on Closed Subsets of Real Line. Recent Advances in Wavelet Analysis, L.L.Schumaker and G. Webb(eds.), Academic Press, Inc., 1994:1-61
    [54]O.V.Vasilyev, W.Paolucci, and M.Sen, A Multilevel Wavelet Collocation Method for Solving Partial Differential Equations in a Finite Domain, J.Comput. Physics. 1995,120:33-47
    [55]陈秉聪,佟金.土壤分形与土壤粘附.世界科技研究与发展,1999(2):34-36
    [56]B.B.Mandelbrot. The Fractal Geometry of Nature. W.H.Freeman, New York, 1982.
    
    
    [57]E.Prefect and B.D.Kay. Applications of fractals in soil and tillage research: a review. Soil & Tillage Res.,1995,36(1): 1-20
    [58]D.Avnir, D. Fari and P.Pfeifer. Surface geometric irregularity of particulate materials: the fractal approach. J.Colloid Interface Sci., 1985,103(1): 112-123
    [59]S.Shibusawa. Fractals in clods formed with rotary tillage. J. Terramechanics, 1992,29(1): 107-115
    [60]S.W.Tyler and S.W.Wheatcraft. Fractal scaling of soil particle size distributions: analysis and limitations. Soil Sci. Soc. Amer. J., 1992,56(2):362-369
    [61]刘顺隆,郑群.计算流体力学.哈尔滨工程大学出版社,1998:3-21
    [62]何吉欢.求解非线性方程的一种线化和校正方法.应用数学和力学,2002,23(3):221~228
    [63]何吉欢.无小参数非线性振动方程的近似方法.中南工学院学报,2000,14(1):7~13
    [64]He J H. Homotopy Perturbation Technique. Computer Methods in Applied Mechanics and Engineering[J], 1999,1 75(1-2):78.
    [65]He JH. Some New Approaches to Duffmg Equation with Strongly and High Order Nonlinearity (Ⅱ) Parametrized Perturbation Technique. Communications in Nonlinear Science and Numerical Simulation[J], 1999,4(1) :81-83.
    [66]He JH. Variational Iteration Method:a Kind of Nonlinear Analytical Technique[J].Inter J non-Linea Mech,1999,34(4): 699-708
    [67]R.Glowinski, A. Rleder, R.O.Wells, Jr., and X.zhou, A wavelet multilevel method for dirichlet boundary value problems in general domains, Technical Report 93-06, Computational Mathematics Laboratory, Rice University,1993.
    [68]E.Bacry, S.mallat,and G.Papanicolaou, A wavelet base I Space-time adaptive numerical method for partial differential equations, Technical Report No.591. Robotics Report No.257,Courant Institute of Mathematical Sciences, New York University, New York, NY,1991
    [69]G.Beylkin, On wavelet-based algorithm for solving differential equations, Department of mathematics, university of colorado, 1992,preprint.
    [70]L.Geengard and V.rokhlin,On the numerical solution of Two-Point Boundary value problems, Technical Report,YALEU/DCS/RR-692,Yale University, new Haven,CT, 1989.
    [71]S.Jaffard,wavelet methods for fast resolution of elliptic problems, SIAM J Numer. Anal.,29(1992),pp.965-986
    [72]J.C.Xu and W.C.shann, Galerkin-wavelet methods for two point boundary value problems, Numer. Math..63 (1992)pp123-142
    [73]刘迎曦,刘晓彬,李守巨等,弹性力学混合状态方程的小波解法.计算力学学报,1998,15(3):369~372
    [74]吴勃英,崔明根.再生核空间中的微分算子样条小波.高等学校计算数学学报,2000,2:183~192
    [75]沈远彤,叶碧泉,弈旭明.用小波-配点法求解一类有奇异性的微分方程.数学杂志,1997,17(4):517~521
    [76]周又和,王记增,郑晓静、小波伽辽金有限元法在梁板结构中的应用.应用数学和力学,1998,19(8):697~706.
    [77]骆少明,张湘伟.一类基于小波基函数插值的有限元方法.应用数学和力学,2000,21(1):11~16
    [78]张平文,刘法启.小波函数值的计算.计算数学,1995(2):173~185.
    [79]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报,1994,34(2):131~136
    [80]钟万勰.暂态历程的精细计算方法.计算结构力学及其应用,1995,12(1):1~6.
    [81]陈奎孚,张森文.精细时程积分法的参数选择.计算力学学报,1998,15(3):301~305.
    [82]张洪武,钟万勰,矩阵指数计算算法讨论.大连理工大学学报,2000,40(5):522~525.
    [83]张森文,曹开彬.计算结构动力响应的状态方程直接积分法.计算力学学报,2000,17(1):94~97
    [84]董聪,丁李粹.动力学系统精细算法的逼近机理与误差上界.计算力学学报,1999,16(3):253~259.
    [85]Zhong Wanxie,Zhu J P and Zhong X X.Aprecise time integration algorithm for non-linear systems.WCCM-3 Extended Abstracts,1:12~17,ChibaJapan,1-5,Aug.,1994.
    [86]赵秋玲.非线性动力学方程的精细积分算法.力学与实践,1998,20(6):24~26
    [87]吕和祥,蔡志勤,裘春航.非线性动力学问题的一个显式精细积分算法.应用力学学报,2001,18(2):34~40.
    [88]裘春航,吕和祥,蔡志勤.在哈密顿体系下分析非线性动力学问题.计算力学学报,2000,17(2):127~132,169
    [89]张询安,姜节胜.结构非线性动力学方程的精细积分算法.应用力学学报,2000,17(4):164~168.
    [90]张森文,曹开彬,陈奎孚.精细积分时域平均法和随机扩阶系统法,力学学报,2000,32(2):191~197
    [91]张森文,曹开彬.随机振动响应计算的精细积分时域平均法,振动工程学报,1999,12(3):367~372.
    [92]曹开彬.精细积分时域平均法和随机参数结构的随机有限元方法研究:[学位论文].北京:中国农业大学,1998.
    
    
    [93]林家浩,张亚辉.受非均匀调制演变随机激励结构响应快速精确计算.计算力学学报,1997,14(1):1~8.
    [94]林家浩,沈为平,宋华茂等.结构非平稳随机响应的混合型精细时程积分.振动工程学报,1995,8(2):127~135.
    [95]钟万勰,朱建平.对差分法时程积分的反思,应用数学和力学,1995,16(8):663~668
    [96]钟万勰.单点子域积分与差分.力学学报,1996,28(2):159~163.
    [97]钟万勰.子域精细积分及偏微分方程的数值解.计算结构力学及应用,1995,12(3):253~260
    [98]强士中,李小珍,王孝国.解变系数偏微分方程的任意差分精细积分法.计算力学学报,1997,14(3):293~297
    [99]李红云,沈为平,胡瓯尔等.一维扩散方程单内点精细积分法.上海交通大学学报,1996,30(3):34~39
    [100]蔡志勤,钟万勰.子域精细积分的稳定性分析.水动力学研究与进展(A辑),1995,10(6):588~593
    [101]顾元宪,陈飙松,张洪武等.非线性瞬态热传导的精细积分方法,2000,40(S1):24~28.
    [102]张洪武,张鹏,钟万勰.获得热传导问题“拟解析解”的精确积分算法[J].力学与实践,1998,20(4):9~11.
    [103]沈为平.扩散方程单内点精细积分法比较研究.计算结构力学及其应用,1996,13(3):359~363.
    [104]陈飙松,顾元宪.瞬态热传导方程的子结构精细积分方法.应用力学学报,2001,18(1):14~18.
    [105]Handa K, Anderson K. Application of finite element methods in statistical analysis of structures. Proc. 3nd Int.Conf. On Struct. Safcty and Reliability Trondheim, Norway(June, 1981):409~417
    [106]Hisada T, Nakagiri S. Stochastic finite element method developed for struct. Safety and reliability. Proc. 3nd Int.Conf. On Struct. Safcty and Reliability Trondbeim, Norway(June, 1981):395~408
    [107]Nakagiri S, Hisada T. Stochastic finite elementmethod applied to struct. Analysis with uncertain parameters. Proc,Int. Conf. On FEM Australia(August 1982):206~211
    [108]Liu W K,et al. Probabilistic finite element methods in nonlinear dynamics. Compt Meth Appl Mech Engrg, 1986,56(1):61~81
    [109]刘宁,吕泰仁.随机有限元及其工程应用.力学进展,1995,25(1):114~126
    [110]戚作涛.非线性随机振动系统对非高斯激励的响应.四川大学学报(自然科学版),1999,36(2):258~261
    [111]马春波,刘勇.统计线性化在工程中的应用.桂林电子工业学院学报,1999,19(4):55~58
    [112]彭解华,陈树年,陈弘武.一类非线性随机系统振动的等效线性化.振动与冲击,1995,1:30~35
    [113]赵雷,陈虬.非线性随机振动的加权线性化方法.西南交通大学学报,1996,31(4):386~392
    [114]赵雷,陈虬.分析非线性随机振动的一种等效线性化方法.应用数学和力学,1997,18(6):513~521
    [115]何吉欢.奇异摄动理论中的人工参数法及其应用.力学与实践,1999,21(1):17~19
    [116]何吉欢.建议一种新的摄动方法.力学与实践,1999,21(5):45~46
    [117]何吉欢.求解非线性方程的一种新的摄动方法.扬州大学学报(自然科学版),2000,3(1):15~18
    [118]何吉欢.无小参数非线性振动方程的近似方法.中南工学院学报,2000,14(1):7~14
    [119]何吉欢.应用一种新的摄动方法求解数学摆的近似解析解.上海理工大学学报,1998,20(4):325~329
    [120]赵雷,陈虬.随机有限元动力分析方法的研究进展.力学进展,1999,29(1):9~18
    [121]张森文,庄表中,欧阳怡等.我国随机振动近10年来的进展.振动与冲击,1997,16(3):1~8
    [122]赵雷,陈虬.动态随机有限元法.地震工程与工程振动.1998,18(1):1~7.
    [123]李杰.随机结构分析的扩阶系统方法(Ⅱ)结构动力分析.地震工程与工程振动,1995,15(4):27~35
    [124]李杰.复合随机振动分析的扩阶系统方法力学学报,1996,28(1):66~75
    [125]李杰.随机结构动力分析的扩阶系统方法.工程力学,1996,13(1):93~102
    [126]李杰,魏星.随机结构动力分析的递归聚缩算法.固体力学学报,1996,17(3):263~267
    [127]姚磊华.地下水水流模型的摄动待定系数随机有限元法.水利学报,1999,7:60~64
    [128]姚磊华.地下水水流模型的Taylor展开随机有限元法.煤炭学报,1996,21(6):566~570
    [129]张森文.用于食品传热分析的随机有限元方法.农业工程学报,1995,11(2):143~148
    [130]何吉欢.求解非线性方程的一种线化和校正方法.应用数学和力学,2002,23(3):221~228
    [131]Tingwu Lei and Mark A. Nearing, Kamyar Haghighi and Vincent F. Bralts. Rill erosion and morphological evolution: A simulation model. Water Resources Research. 1998, 34(11): 3157~3168
    [132]Ming Quayer chen, Chyi hwang, Yen ping shih. The computation of wavelet-galerkin approximation on a bounded interval. International Journal for Numerical Methods in Engineering, 199639:2921~2944
    [133]G.Beylkin. On the representation of operatiors in bases of compactly supported wavelets. SIAM J. Numer. Anal.1992,6(6): 1716~1740
    
    
    [134]G.W.Wei. Quasi wavelet and quasi interpolating wavelets. Chemical Physics Letters. 1998,296:215~222
    [135]万德成,韦国伟.用拟小波方法数值求解Burgers方程. 2000,21(10): 991~2001.
    [136]Wei Cai and Wu Zhang. An adaptive spline wavelet ADI(SW-ADI) method for two-dimensional reaction-diffusion equations. Journal of Computational Physics, 1998,139:92~126.
    [137]Oleg V. Vasilyev and Samuel Paolucci. A fast adaptive wavelet collocation algorithm for multidimensional PDEs.Journal of computational physics, 1997,138:16~56
    第二章
    [1]Glowinski, R.,LawtonW., Ravachol, M. and Tenenbaum, E..Wavelets solution of linear and nonlinear elliptic,parabolic and hyperbolic problems in one space dimension, Computing Methods in Applied Sciences and Enginering. SIAM Philadelphia, 1990,55-120.
    [2]S.Bertoluzza, G.Naldi, A wavelet collocation method for the numerical solution of partial differential equations,Applied and Computational Harmonic Analysis. 1996,3,1-9.
    [3]Oleg V.Vasilyev and Samuel Paolucci. A dynamically adaptive multilevel wavelet collocation method for solving partial differential equations in a finite domain. Journal of computational physics, 1996, t 25:498-512
    [4]Silvia Bertoluzza. Adaptive wavelet collocation method for the solution of burgers equation. Transport Theory and Statistical Physics, 1996,25(3~5):339~352
    [5]Oleg V. Vasilyev, Samuel Paolucci and Mihir Sen. A multilevel wavelet collocation method for xolving partial differential equations in a finite domain. Journal of Computational Physics, 1995,120:33-47
    [6]Wei G W. Quasi wavelets and quasi interpolating wavelets. Chem Phys Lett, 1998,296(6):215-222
    [7]赵松年,熊小云著.子波变换与子波分析.北京:电子工业出版社,1997,51~52.
    [8]Wei G W, Zhang D S, Kouri D J. Lagrange distributed approximating functionals. Phys Rev Lett, 1997,79(5):775~779
    [9]万德成.用拟小波方法数值求解Burgers方程.应用数学和力学,2000,21(10):991~1001
    [10]邱吉宝.加权残值法的理论与应用.北京:宇航出版社,1991:12~13
    [11]徐长发.实用偏微分方程数值解法.武汉:华中理工大学出版社,1990:245~246
    [12]吕涛,石济民,林振宝.分裂外推与组合技巧—并行解多维问题的新技术.北京:科学出版社,1998:166~167
    [13]张新红.求解对流占优方程的内插小波方法:[学位论文).武汉:华中理工大学,1998:18~25
    [14]吕涛.两点边值问题配置解的校正与分裂外推方法.数学进展,1987,16(4):391~396
    [15]Cohen A, Daubechies I., and Vial P.. Wavelets on the interval and fast wavelet transform. Applied and Computational Harmonic Analysis. 1993(1):54~80
    [16]水鹏朗.广义内插小波理论及应用的研究:[学位论文]西安:西安电子科技大学,1998:28~38
    [17]Donoho D.L. and Johnstone I.M., Aadapting to unknown smoothness via wavelet shrinkage, Biometrika,1994(81):425~455.
    [18]Deslauriers,G., and Dubuc,S., Symmetric iterative interpolation processes, Constr. Approx. 1989,5(1):49~68.
    [19]Donoho,D., Interpolating wavelet transform, Department of Statistics, Standford University, 1992,preprint.
    [20]Silvia Bertoluzza. Adaptive wavelet collocation method for the solution of burgers equation. Transport Theory and Statistical Physics, 1996,25(3~5):339~352
    [21]程正兴.小波分析算法与应用.西安:西安交通大学出版社,1998:131~132
    第三章
    [1]钟万勰,杨再石.连续时间LQ控制主要本征对的算法.应用数学和力学,1991,12(1):45~50
    [2]钟万勰.结构动力方程的精细时程积分法.大连理工大学学报,1994,(34)(2):131~136
    [3]Zhong Wanxie,Jianping Zhu and Zhong Xiangxiang.A precise time integration algorithm for momlinear systems[R].Proc of WCCM-3:1994,1:12~17
    [4]赵秋玲.非线性动力学方程的精细积分法.力学与实践,1998,20(6):24~26
    [5]裘春航,吕和详,蔡志勤.在哈密顿体系下分析非线性动力学问题.计算力学学报,2000,17(2):127~132
    [6]张洵安,姜节胜.结构非线性动力方程的精细积分算法.应用力学学报,2000,17(4):164~168
    [7]钟万勰.暂态历程的精细计算方法.计算结构力学及应用,1995,12(1):1~6
    [8]张森文,曹开彬.计算结构动力响应的状态方程直接积分法,计算力学学报,2000,17(1):94~97,118
    [9]钟万勰.子域精细积分及偏微分方程数值解,计算结构力学及其应用.1995,12(3):263~260
    [10]S.Bcrtoluzza,G.Naldi,A wavelet collocation method for the numerical solution of partial differential equations.
    
    Applied and computational harmonic analysis. 1996,3:1-9.
    [11]Wei G W. Quasi wavelets and quasi interpolating wavelets. Chem Phys Lett, 1998,296(6):215-222.
    [12]Zhong Wanxie. On precise time-integration method for structural dynamics. Journal of Dalian University of Technology, 1994,34(2): 131-136
    [13]Zhong Wanxie. Subdomain precise integration method and numerical solution of partial differential equations.Computational Structural Mechanics and Applications. 1995,12(3):253-260
    [14]Zhang Senwen, Cao Kaibin. Direct integration of state equation method for dynamic response of structure. Chinese Journal of Computational Mechanics. 2000,17(1): 94-97,118
    [15]Wan Decheng, Wei Guowei. The study of quasi-wavelets based numerical method applied to burgers' equations.Applied Mathematics and Mechanics. 2000,21 (10):991-1001.
    第四章
    [1]Amaratunga K, Williams J R. Wavelet-Garlerkin solutions for one dimensional partial differential equations.International journal for numerical methods in engineering, 1994,37(16):2703-2716
    [2]Bertoluzza S, Naldi G.A. Wavelet collocation method for the numerical solution of partial differential equations.Applied and computational harmonic analysis, 1996,3:1-9
    [3]Silvia Bertoluzza. Adaptive wavelet collocation method for the solution of burgers equation. Transport Theory and Statistical Physics, 1996,25(3-5):339-352
    [4]Valeriano Comincioli, Giovanni Naldi, Terenzio Scapolla. A wavelet-based method for numerical solution of nonlinear evolution equations. Applied Numerical Mathematics, 2000,33:291-297
    [5]Oleg V. Vasilyev, Samuel Paolucci and Mihir Sen. A multilevel wavelet collocation method for xolving partial differential equations in a finite domain. Journal of Computational Physics, 1995,120:33-47
    [6]Oleg V. Vasilyev and Aamuel Paolucci. A dynamically adaptive multilevel wavelet collocation method solving partial differential equations in a finite domain. Journal of Computational Physics, 1996,125:498-512
    [7]Naoki Saito and Gregory Beylkin, Multiresolution representations using the auto-correlation functions of compactly supported wavelets. IEEE Transaction on Signal Processing, 1995,41 (12):3584-3590
    [8]Wei G W. Quasi wavelets and quasi interpolating wavelets. Chem Phys Lett, 1998,296(6):215-222
    [9]万德成,韦国伟.用拟小波方法数值求解Burgers方程.应用数学和力学.2000,21(10):991-1001.
    [10]钟万勰.子域精细积分及偏微分方程数值解.计算结构力学及其应用.1995,12(3):253-260.
    [11]王祖林,周荫清.用整数小波变换进行无失真SAR图像压缩.北京航空航天大学学报.2000,26(3):252-255.
    [12]Donoho D.L. and Johnstone I.M., Ideal spatial adaptation via wavelet shrinkage, Biometrika, 1994,81:425-455.
    [13]Donoho D.L. and Johnstone I.M., Adapting to unknown smoothness via wavelet shrinkage, J. Amer. Stat. Assoc. 90,pp. 1200-1224, 1995,12.
    [14]Serge Dubuc. Interpolation through an iterative scheme. Journal of Mathematical Analysis and Applications.1986,114: 185-204.
    [15]Gilles Deslauriers and Serge Dubuc. Synunetric iterative interpolation processes, Constructive Approximation,1989,114: 185-204.
    [16]Ewald Quak. Trigonometric wavelets for hermite interpolation, Mathematics of Computation, 1996, 65: 683-722.
    [17]杨锦春,邵可然.插值小波在求解工程电磁场问题中的应用.中国电机工程学报,1999,19(7):19-21.
    [18]刘永亮.求解偏微分方程的动态自适应小波配点法:[学位论文].哈尔滨:哈尔滨工业大学,2000:24~25
    第五章
    [1]R.G.Bhandari and R.E.Sheerer. Random vibrations in discrete nonlinear dynamic systems. Journal Mechanical Engineering Science. 1968,10(2): 168~174
    [2]R.S.Langley. A finite element method for the statistics of non-linear random vibration. Journal of Sound and Vibration. 1985,101(1):41~54
    [3]Wehner, M.F, and Wolfer, W.G., Numerical evaluation of path-integral solutions to the Fokker-Planck equations,Physical Review. 1983, A27:2663~2670
    [4]S.Bertoluzza, G.Naldi. A wavelet collocation method for the numerical solution of partial differential equations.Applied and Computational Harmonic Analysis. 1996,3:1~9
    [5]S.McWilliam,D.J.Knappett and C.H.J.Fox. Numerical solution of the stationary FPK equation using shannon wavelets. Journal of Sound and Vibration. 2000,232(2),405~430
    [6]S.W.Zhang, B.Ellingwood, R. Corotis and JunZhang. Direct integration method for stochastic finite element analysis of nonlinear dynamic response. Structural Engineering and Mechanics. 1995, 3(3): 273~287
    
    
    [7]陈塑寰.随机参数结构的振动理论.吉林:吉林科学技术出版社,1992.235~256
    [8]张森文,A.K.Datta,H.T.Ni.用于食品传热分析的随机有限元方法.农业工程学报,1995,11(2):143~148.
    [9]张科利,张竹梅.坡面侵蚀过程中细沟水流动力学参数估算探讨.地理科学,2000,20(4):326~330.
    [10]张科利,唐克丽.黄土坡面细沟侵蚀能力的水动力学试验研究.土壤学报,2000,37(1):9~15
    [11]邵学军.坡面细沟流速与坡度关系的数值模拟.水土保持学报,2001,15(5):1~5
    [12]邵学军.一维坡面流动的基本理论及数值模拟研究.泥沙研究,1998(3):91~96
    [13]张晴雯,雷廷武,赵军.细沟股流剥蚀率与载沙量以及沟长的耦合关系.水土保持学报,2001,15(2):92~95
    [14]雷廷武,M.A.Nearing.侵蚀细沟水力学特性及细沟侵蚀与形态特征的试验研究.水利学报,2000,(11):49~53
    [15]Tingwu Lei and Mark A.Nearing,Kamyar Haghighi and Vincent F.Bralts.Rill erosion and morphological evolution:A simulation model.Water Resources Research.1998,34(11):3157~3168
    [16]雷廷武,张晴雯,赵军.陡坡细沟含沙水流剥蚀率的试验研究及其计算方法.农业工程学报,2001,17(3):24~27
    [17]雷廷武,M.A.Nearing.水流作用下疏松土壤材料中细沟的再生及其临界剪应力的实验研究.农业工程学报,2000,16(1):26~30
    [18]雷廷武,邵明安,李占斌,王全九.土壤侵蚀预报模型及其在中国发展的考虑.水土保持研究,1999,6(2):162~166
    [19]Chow, V. T., Open-Channel Hydraulics, McGraw-Hill, New York, 1959
    [20]Ellison, W. D., Soil erosion studies, part VI, Soil detachment by surface flow, Agric. Eng., 1947,28:402~405
    [21]Foster, G. R., Modeling the erosion precess, in Hydrologic Modeling of Small Watersheds, edited by C.T. Haan,Am. Soc. Of Agric. Eng., St. Joseph, Mich., 1982: 295~380
    [22]Govers, G., Relationship between discharge, velocity, and flow area for rills eroding loose, non-layered materials,Earth Surf. Processes Landforms, 1992,17:515~528
    [23]Misra, R. K. and C. W. Rose, Application and sensitivity analysis of process based erosion model GUEST, Eru. J.Soil Sci., 47, 593~604,1996
    [24]Morgan, R. P. C., The European soil erosion model: An update on its structure and research base, in Conserving Soil Resources, European Perspectives, edited by R. J. Rickson, pp. 286~299, CAB Int., Wallingford, England,1995.
    [25]Nearing, M. A., A probabilistic model of siol detachment by shallow turbulent flow, Trans. ASAE, 34,81~85, 1991
    [26]盛骤,谢式千,潘承毅.概率论与数理统计.北京:高等教育出版社,1989:125
    [27]张明.非线性随机振动等效线性化的一种推广.西南交通大学学报,1998,33(1):77~81
    [28]何吉欢.求解非线性方程的一种线化和校正方法.应用数学和力学,2002,23(3):221~228
    [29]张森文,陈奎孚.计算非线性系统响应方差的非高斯矩截断方法.北京农业工程大学学报,1992(2)
    [30]张森文,陈奎孚,赵洪辉.多自由度强非线性耦合参激系统随机响应计算方法.力学学报,1993,25(3):362~368
    第六章
    [1]刘福生,马正飞,王晟.化学工程中分形问题的正交配置法.计算物理,2001,18(3):235~240
    [2]压力依赖于地层渗透率的分形油藏的数值研究.西安石油学院学报.2001,16(2):21~24
    [3]Kenneth J.Falconer著,曾文曲,王向阳,陆夷译.分形几何中的技巧.沈阳:东北大学出版社,1999:271~290

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700