小波有限元理论及其在结构工程中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小波理论是近些年形成和发展迅速的一种数学工具。它在科学技术界引起了越来越多的关注和重视,在工程应用领域,特别是在信号处理、图像处理、模式识别、语音识别、量子物理、地震勘测、流体力学、电磁场、CT成像、机械故障诊断与监控、分形、数值计算等领域,它被认为是近年来在工具及方法上的重大突破。基于小波变换的小波分析技术是正在发展的新的数学分支。虽有学者将小波应用于结构工程中的微分方程求解当中,但是由于Daubechies小波的尺度函数和小波函数均没有明确的表达式,在计算关联系数时则存在一定的困难,利用数值法计算关联系数有不稳定等一些缺点,还限制着其应用的广度。本论文目的就是在对小波理论进行比较系统的研究之后,寻求利用小波求解微分方程的新的方法,发现并选择合理的小波函数与传统的有限元法相结合,创造性地提出用于结构工程的小波有限元法。同时,为了分析由于结构的物理、几何参数和约束条件等不确定性而引发的工程结构性能的不确定性,提出了随机小波有限元法,从而使小波在结构工程中的应用更加全面。
     本论文首先推导了Daubechies尺度函数导数或高阶导数的正确计算结果,给出了它的连续性的判定方式。由于Daubechies小波本身导数的连续性随着支集的增加而增大,解高阶微分方程时,就必须增加支集的长度,这会使计算复杂化。在保证导数的连续性和不增加支集长度的前提下,采用Daubechies尺度函数与B—样条尺度函数的卷积对原方法进行了改进。构造出M—尺度关系,并且证明通常所采用的小波求解微分方程的两尺度关系为其特例,最后利用三尺度样条小波,提出了采用小波伽辽金方法求解问题的方法。
     经常采用的小波Galerkin方法对微分方程边界条件的处理,均是将边界条件作为附加方程补充到整体方程中,从而求解超越方程组得到原方程的解,这导致了求解过程出现的方程组个数与未知量个数不一致。鉴于以上的原因,本文构造了满足
    
    西安建筑科技大学博士学位论文
    区间上边界条件的HermiteB一样条尺度函数基,提出Galerkin法求解格式,并应用
    于弹性地基上有限长梁和板问题,给出了数值结果。给出了B一样条小波函数及其基
    本性质,并提出了B一样条小波与Galerkin方法相结合的求解列式。
     首次提出了一种基于二类、三类变量广义变分原理的全域多变量小波有限元方
    法。首先构造了便于边界条件处理的插值小波基,应用乘积型二元插值小波基来构
    造梁、板、壳的广义变量场函数,通过二类、三类变量广义变分原理建立了多变量
    小波有限元模型。在计算各种变量时,不需要利用其物理关系,也不必求导,可直
    接计算其结果,因而各种变量均有足够的精度。但是这种全域的小波有限元方法仅
    在具有规则形状的区域内求解时才能显示出它的优越性;同时,通过它对结构中的
    梁、板、壳的求解过程可以看出,都是要通过各自的广义变分原理刁.能求得其解,
    通用性较差。
     为此,本文利用小波函数构造通常有限元法中的位移函数,得到了利用小波函
    数表示的形函数,并用小波形函数首次创造性地推导出了分域的小波有限元列式。
    这种分域的小波有限元方法在当前的文献中还未见到。此方法与全域的小波有限元
    方法共同构成了小波有限元法的两种求解思路,可相互弥补各自方法中的不足之处。
     将小波有限元法与Monte Carlo法相结合,首次提出了Monte Carlo随机小波有
    限元法,它兼顾了小波有限元和Monte Carfo模拟的优点,使之可以解决较为复杂的
    随机分析问题和检验其它的随机分析方法。并用它求解了具有不确定性的几何尺寸、
    材料常数及荷载条件的薄板问题。以确定性变量的变分原理为基础,根据随机变量
    的特性,利用摄动二次技术,结合小波形函数,提出了随机变量的变分原理及随机
    小波有限元法。此方法可以有效地将材料、几何形状、外力和位移等边界条件的随
    机变化特性直接引入到有限元公式中。
     最后,本文提出了系统地分析了基岩震动作用下的场地土、基础和结构共同作
    用的随机反应的方法。首先假定土层的剪切模量随深度线性变化,引入结构微分算
    子,利用连续线性系统的随机振动理论,研究了非均匀场地土层地震的动力反应问
    题。然后,利用场地土的随机反应的统计值得到考虑场地土、基础和结构共同作用
    系统的随机动力反应。
Wavelet theory is a mathematic tool that is took shape and developed in recent. It has raised more attentions in engineer fields, specially in signal analysis, images handles, pattern recognition, phonetic recognition, quantum physics, earthquake reconnaissance, fluid mechanics, electromagnetic field, CT imagery, diagnosis and monitoring of machinery defect, fractal, numerical evaluation et al. It is considered as important breakthrough in methods and tools. Wavelet analysis based on wavelet transform is the most perfect combination of functional analysis, Fourier transform, spline analysis, harmonic analysis and numerical analysis at present, it is a new developing branch in mathematic. Although some scholars solved differential equations of structure engineering using wavelet, there have some defects. Such as the scaling function and wavelet function have not definit expression, some troubles existed in calculating connection coefficients, its values is instability in some times and so on. The object of th
    is thesis is to find some new methods solving differential equation. Thesis combines usually finite element method (FEM) and wavelet analysis, wavelet FEM is put forth creativitily for structure engineering. At the same time, in order to analysis some indeterminacy of structure for example physics and geometric parameter, constraint conditions, stochastic wavelet FEM is proponed. Those methods make the applications of wavelet in structure engineering become more extensive.
    At first, this thesis gives right calculation results of derivative of Daubechies scaling function, the determine fashion of continuity is rendered. In solving differential equations, we must increase supported assemble length since the continuity of Daubechies wavelet derivative increases as supported assemble increase, that results in calculation complexly. In guarding the continuity of derivative and not increasing
    
    
    supported assemble, this paper uses convolution of Daubechies and B-spline scale functions to improve original method. M-scale function is constructed, two-scale function, which often is used to solve differential equations, is its special conditions. Three-scaling spline wavelets and wavelet Galerkin method are used to solve some problems.
    Adding boundary conditions in whole equations in the wavelet Galerkin method frequently does with its of differential equations. The result can derive by solving transcendental equation, which make unknow quantity number and the number of system of equation become nonuniformity. For those, this thesis constructions the Hermite B-spline bases scale functions with boundary conditions on the interval. Combining with Garlerkin method, the steps are given to solve differential equation, as an example, it is used to deal with finite-length beam and plate problems. This thesis gives the B-spline wavelet and essential quality of it, proponing the solving array expression of combining B-spline wavelet and Galerkin method.
    This thesis first presents a multivariable wavelet FEM that is based on Hellingger-Reissner and Hu-Washizu variational principle. The interpolating wavelet bases are constructed in order to deal with boundary conditions conveniently at first. Then the wavelet bases of duality in product form are used to construct the generalized field functions of beam, plate and shell. The model of multivariable wavelet FEM is built by Hellingger-Reissner and Hu-Washizu generalized variational principle. In calculating variables, the stress-strain relations and the differential calculation are not implemented, so all kinds of variable have enough precision. But this universe wavelet FEM displays its superiority only in regulation figure fields. Through the processing of solving beam, plate and shell in structure must transit generalized variational principle respective, so the commonality is difference.
    The displacement functions in usually FEM are constructed with wavelet functions, then the form functions expression with wavelet functions. For the first time wavelet FEM of dividing
引文
[1] 彭玉华,小波变换与工程应用,北京:科学出版社,2002.
    [2] [美]崔锦泰,程正兴译,小波分析导论,西安:西安交通大学出版社,1997.
    [3] 秦前清、杨宗凯,实用小波分析,西安:两安电子科技大学出版社,1994.
    [4] 刘贵忠、邸双亮,小波分析及其应用,西安:西安电子科技大学出版社,1992。
    [5] 龙瑞麟,高维小波分析,北京:世界图书出版社,1995。
    [6] 胡昌华、张军波等,基于MATLAB的系统分析与设计—小波分析,西安:西安电子科技大学出版社,1999.
    [7] 冉启文、谭立英,小波分析与分数傅里叶变换及应用,北京:国防工业出版社,2002.
    [8] 郑治真、沈萍等,小波变换及其MATLAB工具的应用,北京:地震出版社,2001.
    [9] I. Daubechies, Orthonormal bases of compactly supported wavelet, Commun. Pure Appl. Math. 1988, 41:906-996.
    [10] B. Z. Steinberg and Y. Leviation. On the use of wavelet expansions in the method of Moment, IEEE Trans. AP 1993.41(5):610-619.
    [11] K.Amaratunga. and J.R. Williams. Wavelets based Green's function approach to 2D, PDES,Engng Cormput, 1993, 10(4):349~367.
    [12] J. R. Williams and K. Amaratunga. Introduction to wavelets in engineering. Internat. J. Numer. Methods Engng. 1994.37(14):2356-2388.
    [13] K. Amaratunga and J. Williams. Wavelet-Galerkin Solution for one- dimensional partial differential -equation. Internat. J. Numer. methods in Engng. 1994. 37 (16): 2703~2716.
    [14] S. Qian and J. Weiss, Wavelets and numerical solution of partial differential equation. J. comp. Phys, 1993,106(1):155~175.
    [15] Golik. W. L. Wavelets for fast solution of electro-magnetic integral equations [J],IEEE. Trans. on Ap. 1998,46(15):618~624
    [16] Shai Dekel. On shift invariant spaces, Wavelets and subdivision in the absence of two-scale refinability. Thesis of Doctor's degree. Tel-Aviv University, February 2000.
    [17] Pascal Auscher, Wavelets with boundary conditions on the interval. Wavelets—Atutorial in Theory and Application. 1997.
    [18] I. Daubechies, Ten lectures on wavelet, capital city press. 1992.
    
    
    [19] I. Daubechies, Orthonormal bases of compactly supported wavelets, variations on a theme. SIAM. J. MATH. ANAL. 1993, 24(2):499~519.
    [20] S. L. H and S. Y. Yand, Wavelet-Galerkin method for solving parabolic equations in finite domains, Finite elements in Anal. and Design, 37(12), 2001,1023~1037.
    [21] Goswani J. C. Chan. A. K. and Chen. C. K, On solving first-kind integral equations using wavelets on a bounded iterval. IEEE Trans. on Antennas and Propagation, 1995, 43(6), 614~622.
    [22] A. Avudainayagam and C. Vani. Wavelet-Galerkin solution of quasilinear hyperbolic conservation equations, Commun. Numer. Meth, Engng 1999, 15,589~601.
    [23] A. Avudainayagam and C. Vani, Wavelet-Galerkin method for integro-differential equations, Appl. Numer. Math. 2000.32, 247~254.
    [24] E. Bacry, S. Mallat and G. Papanicolaou, A wavelet based space-time adaptive numerical method for partial differential equations, Mathematical Modelling and Numerical Analysis. 1992, 26, 793~834.
    [25] V. A. Barker, Computing connection coefficients, Department of Mathematical Modelling, Technical University of Denmark, Lyngby, 1996.
    [26] V. A. Barker, Some computational aspects of wavelets, Department of Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby, 2001.
    [27] S. Bertoluzza, Y. Maday and J. C. Ravel, A dynamically adaptive wavelet method for solving partial differential equations, Comput. Methods Appl. Mech. Engrg. 1994, 116, 293~299
    [28] S. Bertoluzza, and G. Naldi. Some remarks on wavelet interpolation, Math. Appl. Comput. 1994, 13, 13~32.
    [29] S. Bertoluzza, and G. Naldi, A wavelet collocation method for the numerical solution of partial differential equations, Appl. Comput. Harmon. Anal. 1996, 3, 1~9.
    [30] C. Canuto, A. Tabacco and K. Urban, The wavelet element method, Appl. Comp. Harmon. Anal. 1999, 1, 1~52.
    [31] C. Canuto, A. Tabacco and K. Urban, The wavelet element method Ⅱ. Realization and additional features in 2D and 3D, Appl. Comp. Harmon. Anal. 2000, 8, 123~165.
    [32] R. Glowinski, T. W. Pan, R. O. Wells, and X. Zhou, Wavelet and finite element solutions for the Neumann problem using fictitious domains, J. Comput. Phys. 1996, 126,40~51.
    [33] S. Goedecker, Wavelets and their application for the solution of partial differential
    
    equations in physics, Presses Polytechniques et Universitaires Romandes, Lausanne, 1998.
    [34] M. Holmstrom, Solving hyperbolic PDEs using interpolating wavelets, SIAM J. Sci. Comput. 1999, 21,405~420.
    [35] P. Joly, Y. Maday and V. Perrier, Towards a method for solving partial differential equations by using wavelet packet bases, Comput. Methods Appl. Mech. Engng. 1994, 116, 301~307.
    [36] J. Ko, A. J. Kurdila and M. S. Pilant, A class of finite element methods based on orthonormal, compactly supported wavelets, Comput. Mech. 1995, 16, 235~244.
    [37] R. Lippert, T. Arias and A. Edelman, Multiscale computation with interpolating wavelet, J. Comput. Phys. 1998, 140, 278~310
    [38] O. M. Nielsen, Wavelets in scientific computing, Ph.D. Thesis, Technical Report IMM-PHD-1998-43, Department of mathematical modeling, Technical university of Denmark, Lyngby, 1997.
    [39] G. W. Wei, D. S. Zhang, S. C. Althorpe, D. J. Kouri and D. K. Hoffman, Waveletdistributed approximating functional method for solving the Navier-Stokes equation, Comput. Phys. Comm. 1998, 115, 18~24.
    [40] R. O. Wells, Multiscale applications of wavelets to solutions of partial differential equations, J. Comput. Phys. 1995. 120, 33~47.
    [41] R. O. Wells and X. Zhou, Wavelet solutions for the Dirichlet prooblem, Numer. Math. 1995, 70, 379~396.
    [42] E. B. Lin and X. Zhou, Connection coefficients on an interval and wavelet solutions of Burgers equation, J. Comput. Appl. Math. 2001, 135, 67~78.
    [43] O. V. Vasilyev, S. Paolucci, A dynamically adaptive multilevel collocation method for solving partial differential equations in a finite domain, J. Comput. Phys. 1996, 125, 498-512.
    [44] 周又和,王记增,郑晓静.小波伽辽金有限元法在梁结构中的应用.应用数学和力学,1998,19(8):697~705。
    [45] 孙梅,丁丹平,田立新.弱阻尼Kdv方程的小波解.江苏理工大学学报,1999,20(2):88~91。
    [46] 林玉蕊,田立新,刘曾荣.弱阻尼Kdv方程样条小波基下约化形式的弱解.应用数学和力学,1998,19(12):1071~1075。
    [47] 李建平,陈廷槐等.从文献分析看小波理论的发展.重庆大学学报,1997,
    
    20(1):82~87。
    [48] 邓东臬,彭立中.小波分析.数学进展,1991,30(3):294~310。
    [49] 王建忠.小波理论及其在物理和工程中的应用.数学进展,1992,21(3):289~316。
    [50] 吕东辉,庄天戈.基于Bessel函数的小波基的构造与性质.上海交通大学学报,1998,32(1):41~45。
    [51] 柯熙政,吴振森.一类高阶非齐次发展方程的小波基数值分析.数学研究与评论,1998,19(3):587~592。
    [52] 黄建华,杨爱芳.边界层问题的B—样条小波Galerkin数值解.武汉汽车工业大学学报,1999,21(5):99~102。
    [53] 付彪,吴先良,李世雄.小波变换法求电磁波动方程的高频解.安徽大学学报,1999,23(3):58~64。
    [54] 李世雄、刘家琦,小波理论和反演数学基础,北京:地质出版社,1994.
    [55] 金坚明.第二类Fredholm方程的重结点的B样条小波解.西北师范大学学报,2000,36(1):17~21。
    [56] 屈汉章,赵瑞珍,宋国乡.微分方程和连续小波变换.西安电子科技大学学报,2000,27(6):756~760。
    [57] 魏兴昌,梁昌洪.矩阵法结合小波变换快速求解磁场积分方程.西安电子科技大学学报,2000,27(6):705~708。
    [58] 王城,叶取源,何友生.Gaussian小波系在求解N—S方程中的应用.上海交通大学学报,1997,31(12):102~107。
    [59] 刘迎曦,刘晓斌等.弹性力学混合状态方程的小波解法.计算力学学报,1998,15(3):369~372。
    [60] 龙志飞、岑松,有限元法新论—原理、程序、进展,北京:中国水利水电出版社,2001.
    [61] 吴鸿庆、任侠,结构有限元分析,北京:中国铁道出版社,2000.
    [62] I.霍拉德、K.贝尔主编,凌复华译,有限单元法在应力分析中的应用,北京:国防工业出版社,1978.
    [63] 钱伟长.变分法与有限元[M].北京:科学出版社.1980
    [64] 胡海昌.弹性力学的变分原理及其应用[M].科学出版社.1981
    [65] D.R.J.欧文、E.辛顿著,曾国平等译,塑性力学有限元—理论与应用.北京:兵器工业出版社,1989.
    [66] 龙驭球,变分原理、有限元、壳体分析,沈阳:辽宁科学技术出版社,1987.
    
    
    [67] 王勖成、邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1997.
    [68] 丁皓江、何福保,弹性和塑性力学中的有限单元法,北京:机械工业出版社,1989.
    [69] 朱伯芳,有限单元法原理和应用,北京:水利水电出版社,1979.
    [70] 吴长春、卞学鐄,非协调数值分析与杂交元法,北京:科学出版社,1997.
    [71] 钟光珞、赵冬,有限单元法及程序设计,西安:陕西科学技术出版社,1997.
    [72] 龙驭球,有限单元法概论,北京:高等教育出版社,1991.
    [73] 华东水利学院,弹性力学问题的有限单元法,北京:水利水电出版社,1978.
    [74] 李开泰、黄艾香、黄庆怀,有限元方法及其应用,西安:西安交通大学出版社,1988.
    [75] 吴敏哲、赵桂萍,有限单元法,西安:陕西科学技术出版社,1996.
    [76] 徐次达、华伯浩,固体力学有限元理论、方法及程序,北京:水利电力出版社,1983.
    [77] O. C. Zienkiewicz and R. L. Taylor. The finite element method. London: McGRAWHILL Book Company. 1989.
    [78] B. M. Irons and S. Ahmad. Techniques of finite element. Chichester: Eillis Horwood.1980.
    [79] K. Washizu. Variational methods in elasticity and plasticity. Pergamon Press. 1982.
    [80] [美]G.R.布查南著,董文军、谢伟松译,有限元分析,北京:科学出版社,2002.
    [81] J. H. Argyris. Energy theorem and structural analysis. London: Butterworth's. 1960.
    [82] M. J. Turner, R. W. Clough, H. C. Martin and L. C. Toop. Stiffness and deflection analysis of complex structures. J. Aeronaut. Sci. 1956, 23(9).
    [83] R. W. Clough, The finite element method in plane stress analysis. In: Proc. 2nd Conference on Electronic Computation. Pittsburg: ASCE, 1960, 9: 8~9.
    [84] 冯康.基于变分原理的差分格式.应用数学和计算数学,1965,2(4):238~262。
    [85] T. H. H. Pian and K. Sumihara. Rational approach for assumed stress finite element.Int. J. Numer. Mech. Engng. 1984, 20: 1685~1695.
    [86] R. J. Melosh. Basis for derivation of matrics for the direct stiffness method. AIAA J. 1963, 1(7): 1631~1637.
    [87] G. R Bazeley, Y. K. Cheng, B. M. Irons and O. C. Zienkiewicz. Triangular element in bending conforming and nonconforming solution. In: Proc. Conf. Matrix Method in Structural Mechanics. Ohio: WPAFB, 1965, 547~576.
    [88] I. Katili. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate
    
    theory and assumed shear strain fields-Part I: An extended DKT element for thickplate bending analysis. Int. J. Numer. Meth. Engng. 1993, 36:1859~1883.
    [89] I. Katili. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-Part Ⅱ: An extended DKQ element for thickplate bending analysis. Int. J, Numer. Meth, Engng, 1993, 36: 1885~1908.
    [90] 唐立民,陈万吉,刘迎曦.有限元分析中的拟协调元.大连工学院学报,1980,19(2):19~35。
    [91] R. Ayad, G. Dhatt and J. L. Batoz. A new hybrid-mixed variational approach for Reissner-Mindlin plate: The MiSP model. Int. J. Numer. Meth. Engng. 1998, 42: 1149~1179.
    [92] J. Jirousek, A. Wroblewski and B. Szybinski. A new 12 DOF quadrilateral element for analysis of thick and thin plate. Int. J. Numer. Meth. Engng. 1995, 38: 2619~2638.
    [93] 龙驭球,辛克贵.广义协调元.土木工程学报,1987,20(2):1~14。
    [94] 龙志飞,岑松.广义协调元理论与四边形面积坐标方法.徐州:中国矿业大学出版社,2000。
    [95] R. W. Clough and C. P. Johson. A finite element approximation for the analysis of thin shells. Int. J. Solids Struct. 1968. 4: 43~60.
    [96] Chen Wanji and Y. K. Cheung. Refined non-conforming triangular element for analysis of shell structures. Int. J. Nurner. Meth. Engng. 1999, 46: 433~455.
    [97] 龙驭球,赵俊卿.扁壳广义协调曲面矩形元.工程力学,1992,9(1):3~10。
    [98] K. Y. Sze and Dan Zhu. A quadratic assumed natural strain curved triangular shell element. Cornput. Meth. Appl. Mech Engng. 1999, 174, 57~71.
    [99] S. Ahmad, B. M. Irons and O. C. Zienkiewicz. Analysis of thick and thin shell structures by curved finite element. Int. J. Numer. Meth. Engng. 1970, 2: 419~451.
    [100] T. Kerber. Review of shell and plate finite element in light of numerical locking and its remedies. Rech. Aerosp. 1990, 3: 45~76,
    [101] Antes H. Bicubic fundamental splines in plate bending. Int. J. Numer Meth. Engng 1974, 8: 503~511.
    [102] 石钟慈.样条有限元.计算数学,1979,1:50~72。
    [103] 何广乾,周润珍,林春哲.样条函数法在解板壳问题中的应用.建筑结构学报,1981,2(2):1~9。
    [104] 袁驷.样条矩形单元.计算结构力学及其应用,1984,1(2):41~47。
    [105] 王建国,沈鹏程.样条函数法解圆柱壳问题.士木工程力学,1984,17(2):75~
    
    85。
    [106] Sheng Pengcheng and Wang Jianguo. Static analysis of cylindrical shells by using B spline functions. Int. J. Comput. Struct. 1987, 25(6): 809~816.
    [107] 沈鹏程,何沛祥.多变量样条有限元法[J].固体力学学报,1994,15(3):234~243
    [108] 沈鹏程,何沛祥.多变量样条元法分析薄板的弯曲、振动与屈曲[J].合肥工业大学学报,1991,14(4):41~54
    [109] 沈鹏程,沈小璞.基于胡—鹫津原理的多变量样条有限元法分析扁壳问题[J].土木工程学报,1996,29(4):10~20
    [110] 沈鹏程.基于状态空间理论的多变量样条有限元法[J].合肥工业大学学报,1995,18(1):14~21
    [112] 沈鹏程.多变量样条有限元法[M].北京:科学出版社.1997
    [113] 秦荣,计算结构力学,北京:科学出版社,2001.
    [114] 秦荣,结构力学的样条函数方法,广西:广西人民出版社,1985.
    [115] 秦荣,样条边界元法,广西:广西科学技术出版社,1988.
    [116] 李岳生、齐东旭,样条函数方法,北京:科学出版社,1979.
    [117] 李岳生,样条与插值,上海:上海科学技术出版社,1983.
    [118] P.M普伦特,样条函数与变分法,上海:上海科学技术出版社,1982.
    [119] 沈鹏程,结构分析中的样条有限元法,北京:水利水电出版社,1992.
    [120] 刘效尧,样条函数与结构力学,北京:人民交通出版社,1990.
    [121] 孙家昶,样条函数与计算几何,北京:科学出版社,1982.
    [122] 李桂青、李秋胜等,结构动力可靠性理论及其应用,北京:地震出版社,1993.
    [123] 张福范,弹性薄板(第二版),北京:科学出版社,1984.
    [124] 雷小燕,黄茂光.弹性中厚球壳的边界积分方程[J].固体力学学报,1989,10(6):434~443.
    [125] 何福保、沈亚鹏,板壳理论,西安:西安交通大学出版社,1993.
    [126] 王长清,近代解析应用数学基础,西安:西安电子科技大学出版社,2002.
    [127] A.C.爱林根著,程昌钧、余焕然译,连续统力学,北京:科学出版社,1986.
    [128] R.Szilard著,陈太平等译,板的理论和分析,北京:中国铁道出版社,1984.
    [129] G.Deslauriers and S. Dubuc, Symmetric iterative interpolation processes, Constr. Appr 5,49—68,1989.
    [130] S. Dubuc, interpolation through an iterative scheme,J.Math. Anal. Anal. 114, 185—204,1986.
    
    
    [131] S. Goedecker, Wavelets and their application for the solution of partial differential equations in physics, Presses Polytechniques et Universitaires Romandes, Lausanne,1998.
    [132] 马文阁,洛家华,杨仕友.小波—伽辽金有限元模型.辽宁工学院学报,1999,19(5):18~21。
    [133] 杨仕友,倪光正.小波—伽辽金有限元法及其在电磁场数值计算中的应用.中国电机工程学报,1999,19(1):56~61。
    [134] 洛少明,张湘伟.一类基于小波基函数插值的有限元方法.应用数学和力学,2000,21(1):11~16。
    [135] Kyuichiro Washizu. Variational methods in elasticity and plasticity[M]. Second Edition, Pergamon Press. 1975
    [136] 龙志飞.完全无闭锁的厚板矩形单元[J].工程力学,1992,9(1):88~93
    [137] Long Yuqiu, Xie Fei. A universal method for including shear deformation in thin plate element[J]. Int. J. Numer. Meth. Engng. , 1992, 34:171~177
    [138] Timoshenko, S. P. and Krieger, S. W. , Theory of plates and shells, 2nd Ed. [M]. McGraw-Hill, 1959
    [139] 张国祥,刘宝琛.厚板薄板通用的协调矩形单元[J].中国铁道科学,2001 22(2):96~100
    [140] 谢贻权,何福保.弹性和塑性力学中的有限元法[M].北京:机械工业出版社.1981
    [141] D. J. Henwood, Fourier series for a rectangular thick plate with tree edges on an elastic foundation[J]. Int. J. Numer. Meth. Engng. 1982, 18(12): 1801~1820
    [142] 石小平,姚祖康.弹性地基上四边自由矩形厚板的解[J].力学与实践.1982.(2):19~23
    [143] 王建国,黄茂光.弹性地基厚扳的基本解和边界积分方程法[J].土木工程学报,1995.28(2):3~10
    [144] B. Alpert, G. Beylkin, R. Coifman, V. Rokhlin,Wavelet-like bases for the fast solution of second-kind integral equations, SIAM J. Sci. Comput. 14 (1993) 159-184.
    [145] G. Beylkin, On wavelet based algorithms for solving differential equations, in: J.J. Benedetto et al. (Eds.), Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 1993,449-466.
    [146] G. Beylkin, R. Coifman, V. Rokhlin, Fast wavelet transforms and numerical algorithms I, Comm. Pure Appl. Math. 44 (1991) 141-183.
    
    
    [147] M.Q. Chen, C. Hwang, Y. Shih, The computation of wavelet-Galerkin approximation on a bounded interval, Internat. J. Numer. Methods Engng. 39 (1996) 2921-2944.
    [148] Divid. S., On the construction of conforming rectangular plate element, Internat. J. Numer. Methods Engng, 10(1976):925~933
    [149] M.F. Barstein, Applicaton of Probability Methods for Design the Effect of Seismic Forceson Engineering Structures, Proc. 2~(nd) WCEE, pp. 1467~1482, 1960.
    [150] E.Rosenblueth, Probabilistic Design to Resist Earthquake. Proc. ASCE, Vol.90(EM5). pp. 189~219,1964.
    [151] 胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.地震工程研究报告集,1集,pp.33~50,1962.
    [152] 王光远.在非平稳强地震作用下结构反应的分析方法.土木工程学报,1964(1).
    [153] 曾心传,秦小军.土层对地震的随机反应分析.地震工程与工程振动,Vol.18,No.3,pp27~39,1998.
    [154] 李桂青,李秋胜编著.工程结构时变可靠度理论及其应用.科学出版社,2001.
    [155] 李桂青,曹宏等著.结构动力可靠性理论及其应用.地震出版社,1993.
    [156] 黄义,门玉明.结构—地基相互作用系统可靠性分析.陕西科学技术出版社,2000.
    [157] F.E.小理查特,R.D.伍兹等.土与基础的振动.徐攸在等译.中国建筑工业出版社,1976.
    [158] N.N.Ambraseys. On the Shear Response of a Two Dimensional Wedge Subjected to an Arbitrary Disturbance, BSSA, Vo150. pp.45~56,1960.
    [159] J.P.瓦尔夫著.土—结构动力相互作用.吴世明等译.地震出版社,1989.
    [160] 克拉夫R w,彭津J著.结构动力学.王光远等译.科学出版社,1981.
    [161] 欧进萍,王光远著.结构随机振动.高等教育出版社,1998.
    [162] [加]A.P.S塞尔瓦杜雷著,范文田等译,《土与结构共同作用的弹性分析》,铁道出版社,1984。
    [163] Liu, W. K., Belytschko, T. and Mani A., Random field finite element[J], Int. J. Numer. Methods Engng., 23(1986):1831~1845
    [164] Baecher G. B. and Ingra Ingra T.S., Stochastic FEM in settlement predictions[J], J. Geotech. Engng. Div. ASCE, 107(1981):449~463
    [165] Vanmarke E. H. and Grigoriu M., Stochastic Finite element analysis of simple beama[J], J. Engng. Mech. Div. ASCE, 109(1983):1203~1214
    
    
    [166] Deodtis G., Weighted integral method Ⅰ: stochastic stiffness matrix[J], J. of Engng. Mech., 1991. 117(8):1851~1864
    [167] Deodtis G. and Shinozuka M., Weighted integral method Ⅱ: response variability and reliability[J], J. of Engng. Mech., 1991. 117(8): 1865~1877
    [168] 朱位秋、任永坚,基于随机场局部平均的随机有限元法[J],固体力学学报,9(1988):285~293.(W. Q. Zhu and Y. J. Ren, Stochastic finite element method based on local averages of random fields, Acta Mechanica Solida Sinica, 1(3), 1988:261-271)
    [169] 朱位秋、任永坚,随机场局部平均与随机有限元法[J],航空学报,7(1986):604~611
    [170] 朱位秋、吴伟强,基于随机场局部平均的随机有限元法在实特征值问题的应用[J],航空学报,10(2),1989:20~26
    [171] W. Q. Zhu and W. Q. Wu, On the local averages of random fields in stochastic finite element method analysis[J], Acta Mechanica Solida Sinica, 3(1), 1990:27~42
    [172] Righetti R. and Williams K. H., Finite element analysis of random soil media[J], J. Geotech. Engng. Div. ASCE, 114(1988):59~75
    [173] Liu W. K., Variational approach to probabilistic finite element[J], J. of Engng. Mech., 1988. 114(12):213~225
    [174] Liu P. L. and Kiureghian A. D., Finite element reliability of geometrically nonlinear uncertain structures[J],J of Engng Mech., 1988. 117(8): 164~168
    [175] 胡海昌.多自由度结构固有振动理论[M].科学出版社.1987
    [176] 刘宁,卓家寿.基于三维弹塑性随机有限元的可靠度计算[J],水利学报,9(1996):53~62
    [177] 刘宁,卓家寿.三维弹塑性随机有限元迭代计算方法研究[J],河海大学学报,1996.24(1):1~8
    [178] 武清玺,吴世伟等.基于有限元法的重力坝可靠度分析[J],水利学报.1990.1:39~45
    [179] 秦权.随机有限元及其进展Ⅰ:随机场的离散和反应矩的计算[J],工程力学,1994.11(4):1~10
    [180] 秦权.随机有限元及其进展Ⅱ:可靠度随机有限元和随机有限元的应用[J],工程力学,1995.12(1):1~9
    [181] 刘宁,吕泰仁.随机有限元及其应用[J],力学进展,1995.25(1):114~126
    [182] 姚耀武,申超.非线性随机有限元法及其在可靠度分析中的应用[J],岩土工程学报,1996.18(2):37~46
    
    
    [183] 陈虬,刘先斌.随机有限元法及其工程应用[M].西南交大出版社.1993
    [184] 张圣坤.不确定性问题的有限元法及其应用[J],固体力学学报,1987.8(3):277~281
    [185] 张汝清,高行山.随机变量的变分原理及有限元法[J],应用数学和力学,1992.13(5):383~388
    [186] 龚晓南,钱纯.非线性随机过程的有限元分析[J],计算结构力学及其应用,1994.11(1):9~18
    [187] G.I. Schueller, Computational stochastic mechanics-recent advances, Computers & Structures, 79, (2001), 2225-2234
    [188] B. Sudret and A. Der Kiureghian, Stochastic finite element methods and reliability: a state-of-theart report, UCB/SEMM-2000/08, University of California-Department of civil and environmental engineering, Berkeley (2000)
    [189] M. Shinozuka and F. Yamazaki, Stochastic finite element analysis: an introduction, in S.T. Ariaratnam, G.I. Schueller and I. Elishakoff, eds., Stochastic structural dynamics: progress in theory and applications, Elsevier Applied Science Publ. Ltd., Barking, England (1988)
    [190] M. Kleiber and T.D. Hien, The stochastic finite element method: basic perturbation technique and computer implementation, John Wiley & Sons Ltd., Chichester, England (1992)
    [191] W.K. Liu and T. Belytschko. eds., Computational mechanics of probabilistic and reliability analysis, Elmepress International, Lausanne, Switzerland (1988)
    [192] R.G. Ghanem and P.D. Spanos, Stochastic finite elements: a spectral approach, Springer-Verlag, Berlin, Germany (1991)
    [193] R.G. Ghanem and R.M. Kruger, Numerical solution of spectral stochastic finite element systems, Comput. Methods Appl. Mech. Engrg., 129, (1996), 289-303
    [194] G.I. Schueller, On computational procedures for processing uncertainties in structural mechanics, Proc. of the Eur. Conf. on Comp. Mech. ECCM-2001, (2001)
    [195] M. Papadrakakis and A. Kotsopoulos, Parallel solution methods for stochastic finite element analysis using Monte-Carlo simulation, Comput. Methods Appl. Mech. Engrg., 168, (1999), 305-320
    [196] D. Moens and D. Vandepitte, Fuzzy finite element method for frequency response function analysis of uncertain structures, AIAA J., 40 (1), (2002), 126-136
    [197] E. Vanmarcke, Random fields: analysis and synthesis, MIT Press, London,
    
    England (1988)
    [198] G.I. Schueller and C.E. Brenner, Stochastic finite elements-a challenge for material science, in A. Gerdes, ed., Advances in building materials science - research and applications", Aedificatio Pub., Freiburg (1996), pp. 259-281
    [199] B.A. Zeldin and P.D. Spanos, On random field discretization in stochastic finite elements, J. Appl. Mech. (ASME), 65, (1998), 320-327
    [200] 刘宁.可靠度随机有限元法及其工程由于[M].北京:中国水利水电出版社.2001.
    [201] K.Y. Sze and A. Ghali, Hybrid hexahedral element for solids, plates, shells and beams by selective scaling, Int. J. Num. Meth. Engng., 36, (1993), 1519-1540.
    [202] Collins J. D. and Thompson W. T. The eigenvalue problem for structural systems with incertain parameters. AIAA. J. 1969, 7(4): 642~648.
    [203] Takada T. and Shinozuka M. Local integration method in stochastic finite element analysis. Proc. Int. Conf. Strut. Safety and Reliability. 1989, 1073~1080.
    [204] Benaroya H. and Rehak M. Finite element method in probabilistic structural analysis: A selective review. Appl. Mech. Rev. 1988, 41(5): 201~213.
    [205] Lawrence M. A. Basis random variable in finite element analysis. Int. J. Num. Meth. Engng., 1987, 24: 1849~1863.
    [206] 吴世伟,李同春.重力坝最大可能失效模式初探.水利学报,1996,9:53~62。
    [207] 张晓春,杨挺青,缪协兴.摄动随机有限元法在顺层岩质边坡可靠性分析中的应用.岩土工程学报,1999,21(1):71~76。
    [208] 高静怀.小波变换用于高分辨率地震资料处理及瞬时特征分析的理论与方法研究[D].西安:西安交通大学。
    [209] 王永忠.小波分析在偏微分方程数值解中的应用[D].西安:西安交通大学。
    [210] 沈珠江.理论土力学[M].北京:中国水利水电出版社.2000.
    [211] 龚晓南.土工计算机分析[M].北京:中国建筑工业出版社.2000.
    [212] 吴崇试.数学物理方法[M].北京:北京大学出版社.2001.
    [213] 黄义,张引科.张量及其在连续介质力学中的应用[M].北京:冶金工业出版社.2002.
    [214] 黄义,刘增荣.地基结构相互作用系统的参数识别[M].西安:陕西科学技术出版社.2001.
    [215] 胡中雄.土力学与环境土工学[M].上海:同济大学出版社.1997.
    [216] 董建国,赵锡宏.高层建筑地基基础—共同作用理论与实践[M].上海:同济大
    
    学出版社.1996.
    [217]宰金珉,宰金章.高层建筑基础分析与设计—土与结构共同作用的理论与应用[M].北京:中国建筑工业出版社.1994.
    [218]徐芝纶.弹性力学[M].北京:高等教育出版社.1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700