新型仿人假手及其动态控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统的单自由度商用假手虽然也是一种典型的生物机电一体化系统,但只能进行简单的抓握,与人手还有很大的差距,远远满足不了残疾人正常生活和工作的需要。目前残疾人假手正朝着多自由度的方向发展,重量轻、体积小、可靠性高、自适应抓握,控制简单和操作灵活是假手的发展趋势。因此,本文结合国家自然科学基金重点项目“新一代仿人型残疾人假手系统及理论的研究”(项目编号:50435040),研制了达到国际领先水平的HIT-DLR新型仿人假手,并进行了单手指的运动学、静力学和动力学分析,动态轨迹跟踪及其柔顺控制的研究。
     HIT-DLR新型仿人假手,外形和人手相似,共有五个手指,十五个活动关节,通过三个步进电机驱动,总重量约为500g。根据欠驱动和耦合原理采用模块化思想设计了假手的手指,手指有很强的运动灵活性和可靠性。设计了由一个电机驱动的三指联动机构,该机构能完成对复杂物体的自适应抓取,同时该机构在外观和运动形式上实现了仿人化设计,具有较高的运动一致性和保持固有位姿的能力;设计了仿人拇指机构,该拇指在一个电机的驱动下,能够沿空间的锥面实现抓握,球轴承的使用使欠驱动原理在空间机构上得到了实现,同时为了保证抓握不同物体的有效性,用ADAMS进行了仿真实验,给出拇指的具体布置位置;设计基于应变测量的、可以互换使用的基关节力矩传感器。基于集成化的思想设计假手的本体结构,实现假手的机构、传感、驱动和微处理器系统的集成,完成了假手的外包装设计,包括假手外观美化设计和假手的机构优化设计。假手的抓取试验和负载实验验证了假手的设计思想。
     进行了食指连杆机构和拇指空间连杆机构的运动学分析,完成手指耦合四连杆的参数设计,确定连杆的机构参数,并在ADAMS虚拟环境下进行了仿真验证。建立假手欠驱动单手指的静力学模型,给出抓握不同物体时驱动力矩和各指节受力之间的关系,使用ADAMS进行了验证,并使用压力传感器进行了实验验证。基于手指,由MATLAB和ADAMS进行了仿真、比较,得到了一致的结果,并进行了实验验证。
     假手的手指控制性能直接影响假手的操作性能,是假手设计的重要一环。单手指可以看作一个小机器人,手指的运动学和动力学分析,也是为手指的控制做准备。在控制方面,首先结合假手的控制系统平台,进行了计算力矩法的轨迹跟踪控制实验,其结果大大减小了PID轨迹跟踪的误差,提高了动态性能,取得了良好的轨迹跟踪效果,消除了在运动控制中扭簧造成的不可控性;由于假手手指只有位置传感器,这就不可避免地给控制带来了的误差,为了减少这种误差,建立了基于假手手指动力学模型的速度观测器,该观测器运用在手指的控制中可以通过手指的位置传感器信号和动力学模型准确的获得速度信号,弥补了假手没有速度传感器的缺点,大大减小了控制误差。加入速度观测器的计算力矩轨迹跟踪算法,进一步减小了跟踪误差;结合了速度观测器的自适应控制器,补偿动力学模型的中的不确定因素,减小了速度误差,使手指的动态控制效果比较理想。
     当假手在完成与环境接触的作业时,手指的柔顺性十分重要,阻抗控制是实现手指主动柔顺的主要方法之一,得到深入研究和广泛应用。本文分别通过基于位置和基于力的阻抗控制对手指基关节的抓握力进行控制,其中在基于力的阻抗控制中同样也使用了速度观测器。基于力的阻抗控制通过动力学补偿不仅可以准确地进行力跟踪,而且把轨迹跟踪和力跟踪结合起来,实现了手指的动态抓握控制。
Although traditional commercial 1-DOF prosthetic hand is a typical biomechatronics system, it can only complete simple grasp which is far different from human hand and can’t satisfy handicapped normal life. Nowadays, the general tendency of prosthetic hand is multi-DOF, light-weight, small-volume, high-reliability, easy control methods and satisfactory manipulative performance. Therefore, based on the key program of National Natural Science Foundation of China (NSFC)“Study on humanoid prosthetic hand system and its theory”(No. 50435040), HIT-DLR Prosthetic Hand II on international top is developed; kinematics, statics and dynamics of index finger are analyzed; dynamic based curve fitting and impedance based force control are researched.
     The biomechatronics HIT-DLR Prosthetic Hand II possesses similar externality of human hand, five fingers and 15 active joints. It’s actuated by 3 step-motors and weight 500g. Based on under-actuated and coupling principle, the fingers are designed with high agility, reliability and modularization idea. The three finger transmission scheme is developed. Actuated by one motor, the scheme can make the mid finger, ring finger and little finger complete auto-adapted grasp for complex shaped objects. It can grasp coherently and stay original posture. The bio-thumb is designed. It can grasp along a cone surface actuated by a motor. The principle of under-actuate is realized in spatial linkages mechanism through using ball bearing. ADAMS simulations are performed for thumb position in order to guarantee its successful grasp for different objects. The calibrated torque sensor with stress-measuring which can interconvert is designed to measure base joint torque. Structure of prosthetic hand is designed with modularization and integration thinking, and the integration of structure, sensor, controlling and driving circuit system of the prosthetic hand is realized. The envelop designation is accomplished. It includes external perfection and mechanism modification. The grasp and loading experiments verify the designation ideas.
     Kinematics of linkages of index finger and spatial linkages of thumb are analyzed. The parameters design of coupling linkages are completed, decided and simulated in ADAMS. The statics model of index finger is constructed in order to determine the relationship between actuation torque and the support force from phalanges, which is verified through ADAMS simulation and experiments. Based on virtual spring approach, the dynamic analysis of under-actuated finger is achieved. The index finger is dynamically modeled in this way. Coherent results are obtained through MATLAB and ADAMS simulation. Experiments are performed to verify the dynamic analysis.
     As one of key issues of prosthetic hand, the performance of finger control plays an important role in the hand manipulation. A finger may be treated as a small robot, and the theories about robot kinematics and dynamics are also prepared for the finger control. Based on the platform of prosthetic hand control system, Experiments of curve fitting using computed torque have been performed. The experiments has eliminated the uncontrollable character in PID control, reduced fitting errors greatly, improved its dynamic performance and achieved good results. On the other hand, control with only signals of position sensors must brings out errors. To reduce control errors, a velocity observer based on dynamic model of the finger has been established and used in improving computed torque curve fitting algorithm. To complement the uncertain factors of dynamic model, the adaptive controller with velocity observer has been designed. Velocity errors have been reduced and ideal results of dynamic control have been achieved.
     When prosthetic hand works, the finger compliance is very important. As one of main ways realizing compliance, the impedance control is studied deeply and implemented widely. Position and force based impedance control have been researched through the base joint sensors. Therefore, the grasp force of finger’s phalanges can be controlled through its base joint torque control. The velocity observer has been used in impedance control. Compensated with inverse dynamic equation, the force based impedance control can not only realize accurate force tracking, but achieve finger’s dynamic control by the combination of curve fitting and force tracking.
引文
1陈光.我国残疾人用品生产和供应概况及发展趋势. 2001年中国残疾人康复论坛专家论文集. 2001(7):12~17
    2王新宪.中国残疾人康复事业的现状与展望. 2001年中国残疾人康复论坛专家论文集. 2001.(7):1~6
    3 http://www.ottobock.de
    4 C.S.Lovchik, M.A.Difler. The Robonaut Hand: A Dextrous Robotic Hand for Space. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1999: 907~912
    5 H. Liu, J. Butterfass. A New Control Strategy for DLR’s Multisensory Articulated Hand. IEEE Control Systems. 1999,19(2): 47~54
    6 J. Butterfass, H. Liu. DLR-Hand II: Next Generation of a Dextrous Robot Hand, Proceedings of the IEEE ICRA, Seoul, Korea, 2001: 413~428
    7 N.Dechev, S.Naumann. Multiple Finger, Passive Adaptive Grasp Prosthetic Hand. Mechanism and Machine theory. 2001, 36 :1157~1173
    8 M.C.Carrozza, P.Dario.etc. An Actuator System for a Novel Biomechatronic Prosthetic Hand. Proceedings of the IEEE ICRA, San Fransicso, CA,1996, (2):57~64
    9姜明文,王人成,王敬章等.基于多通道肌电信号小波变换的人手运动识别.中国康复医学杂志. 2006, 21(1): 22~24
    10 Wang Zhiyu, Li Yina, Wang Hong, Wang Xu. Research of Complexity of Specific Evoked EEG Signals. Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 2005: 1~4.
    11宋超.多自由度假手语音控制系统的研究.哈尔滨工业大学硕士论文. 2006:65
    12 R.Tomovic,G.M.Boni. An Adaptive Artificial Hand. IRE Transactions on Automatic Control. 1962,7(3):3-10
    13 D.S.Childress. Artificial Hand Mechanisms. In Mechanisms Conference and International Symposium on Gearing and Transmissions, San Fransicso, CA,Oct.1972:238~262
    14 R.Tomovic, G.M.Boni. An Adaptive Artificial Hand. IRE Transactions on Automatic Control. 1962, 7(3):3~10
    15 S. C. Jacobsen, J. E. Wood, D. F. Knutti, K. B. Biggers. The UTAH/MIT Dextrous Hand: Work in Progress. The International Journal of Robotics Research. 1984, 3(4):21~50
    16 M. T. Mason, J. K. Salisbury. Robot Hands and the Mechanics of Manipulation. MIT Press. Cambridge, USA, 1985:3~93
    17 Y. Nakano, M. Fujie, Y. Hosada. Hitachi’s Robot Hand. Robotics Age. Vol.6, No.7, Jul.1984:18~20
    18 A. Caffaz, G. Cannata. The Design and Development of the DIST-Hand Dextrous Gripper. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998:2075~2080
    19 Claudio Melchiorri, Gabriele Vassura. Implementation of Whole-Hand Manipulation Capability in the UB Hand System Design. Advanced Robotics. 1995, 9(5):547~560
    20 S. Haidacher, J. Butterfass, M. Fischer, et al. DLR Hand II: Hard- and Software Architecture for Information Processing, Proceedings of the 2003 International Conference on Robotics and Automation. 2003:684~689
    21 C. S. Lovchik, M. A. Difler. The Robonaut Hand: A Dextrous Robotic Hand for Space. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan. 1999:907~912
    22 Rajiv Doshi, Clement Yehc.The Design and Development of a Gloveless Endoskeletal Prosthetic Hand. Journal of Rehabilitation Research and Development. Vol.35 No.4,Oct. 1998: 388~395
    23 Jingzhou Yang, Esteban Pena Pitarch, Karim Abdel-Malek, Amos Patrick, Lars Lindkvist, A Multi-Fingered Hand Prosthesis. Mechanism and Machine Theory . 39 (2004): 555~581
    24 F. Lotti, P. Tiezzi, C. Melchiorri. Development of UB Hand 3. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, April, 2005:4499~4503
    25 Maria Carrozza, Giovanni Cappiello, A Cosmetic Prosthetic Hand with Tendon Driven. Proceedings of the 2005 IEEE Inter Conference on Robotics and Automation, Barcelona, Spain, April, 2005 :2872~2877
    26 T. Laliberte, C. M. Gosselin. Under-actuation in Space Robotic Hands.Proceedings of the 6th International Symposium on Artificial and Robotics & Automation in Space:I-SAIRAS 2001, Quebec, Canada, June, 2001 : 18~22
    27 T. Laliberte, C. M. Gosselin. Simulation and Design of Underactuated Mechanical Hands. Mechanism and Machine Theory. 1998, (4): 39~57
    28 M. C. Carrozza, F. Vecchi, F. Sebastiani, G. Cappiello, S. Roccella, M. Zecca, R. Lazzarini and P. Dario. Experimental Analysis of an Innovative Prosthetic Hand with Proprioceptive Sensors. Proceedings of the IEEE International Conference on Robotics and Automation, 2003:2230~2235
    29 B. Massa, S. Rosella. Design and Development of an Underactuated Prosthetic Hand. Proceedings of the 2002 IEEE International Conference on Robotics and Automation, Washington. DC, 2002:28~36
    30 L.Zollo, S. Roccella, R. Tucci, B. Siciliano. BioMechatronic Design and Control of an Anthropomorphic Artificial Hand for Prosthetics hand Robotic Applications. Biorob2006, Pisa, Italy, February, 2006:198
    31 http://www.touchbionics.com
    32 R. M. Crowder Local Actuation of Multi~jointed Robotic Fingers University of Southampton. UK, 1998: 202~213
    33李平林,扬小延,黄靖远,李尤祥,刘莹等.一种肌电控制假手的新型自适应增力机构.中国生物医学工程学报. 1996, (4): 28~34
    34郝智秀,申永胜.握取器握力自适应控制.清华大学学报(自然科学版). 1999,39(2): 92~99
    35 Xiaohui Gao, Shicai Shi, Dawei Zhao,etc. HIT Anthropomorphic Robotic Hand and Finger Motion Control. Journal of Harbin Institute of Technology. 2006, 13(1):48~53
    36 ZHAO DaWei, JIN Minghe, JIANG Li, et al. Development of an Underactuated Prosthetic Hand with the Step Motor[J]. High TechnologyLetters, 2006, 12(4): 341-345.
    37 Ying Wu, Thomas S. Huang. Human Hand Modeling, Analysis and Animation in the Context of HCI. IEEE Int'l Conf. Kobe, Japan, 1999:65~66
    38 P. Dario. A Human-like Robotic Manipulation System Implementing Human Models of Sensory-Motor Coordination. Humanoids 2003:88~92
    39 Bergerman. M., Xu. Y. Robust Control of Underactuated Manipulators: Analysis and Implementation. Proceedings of the IEEE Systems, Mans and Cybernetics Conference. 1994:925~930
    40 Lionel Birglen, Clement M. Gosselin. Kinetostatic Analysis of Underactuated Fingers. IEEE Transactions on Robotics and Automation, 2004(2): 20
    41 Lionel Birglen, Clement M. Gosselin. Grasp-State Plane Analysis of Two~Phalanx Underactuated Fingers. Mechanism and Machine Theory. 2006(4): 807~822
    42陶永华.新型PID控制及其应用.机械工业出版社, 2003:1
    43霍伟.机器人动力学与控制.高等教育出版社, 2005:123
    44 D.E.Whitney, J.L.Nevins. What Is the Remote Center Compliance(RCC) and What Can It Do for Robot Sensor, Tactile and Non-Vision? IFS Publication Ltd.1986,2:95
    45 H.Asada, Y.Kakumoto. The Dynamic RCC Hand for High-Speed Assembly. Proceedings of the IEEE International Conference on Robotics and Automation, Philadalphia. 1988:120~125
    46殷跃红,尉忠信,朱剑英.机器人柔顺控制研究. 1998,20(3): 232~240
    47殷跃红.智能机器系统力觉及力控制技术.国防工业出版社, 2001:28~35
    48 Byoung-Ho Kim, Nak Young Chong, Sang-Rok Oh, etc. Intelligent Compliance Control for Robot Manipulators Using Adaptive Stiffness Characteristics. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1999:2134~2139
    49 Omar M. Al-Jarrah, Yuan F. Zheng. Intelligent Compliant Motion Control. IEEE Trans. on Systems, Man and Cybernetics-Part B: Cyberneics. 1998,28(1):116~122
    50刘宏,机器人宏/微操作器系统的研究.哈尔滨工业大学博士学位论文.1993:126~130
    51 Dragoljub Srudilovic, Zarko Cojbasic. Robust Robot Compliant Motion Control Using Intelligent Adaptive Impedance Approach. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1999:2128~2133
    52 D. Lawrence. Impedance Control Stability Properties in Common Implementations. Proceedings of the IEEE International Conference on Robotics and Automation, 1988:1185~1192
    53 G. Morel, P. Bidaud. A Reactive External Force Loop Approach to Control Manipulators in the Presence of Environmental Disturbances. Proceedings of the IEEE International Conference on Robotics and Automation, 1996:1229~1234
    54 G. Morel, E. Malis, S. Boudet. Impedance Based Combination of Visual and Force Control. Proceedings of the IEEE International Conference on Robotics and Automation, Leuven, Belgium, 1998:1743~1748
    55王念峰. HIT-DLR多指灵巧手手指结构设计及其位置控制的研究.哈尔滨工业大学工学硕士学位论文. 2002: 24~28
    56刘伊威. HIT-DLR多指灵巧手基关节优化设计及控制系统研究.哈尔滨工业大学工学硕士学位论文. 2002: 31~33
    57刘英涛.多自由度残疾人假手机构设计及肌电信号控制.哈尔滨工业大学工学硕士学位论文. 2006: 13~15
    58赵大威.多自由度假手控制系统及其抓取力控制的研究.哈尔滨工业大学工学博士学位论文. 2007: 20
    59 P. Dario. A Human-like Robotic Manipulation System Implementing Human Models of Sensory-Motor Coordination. Humanoids 2003:3
    60中华人民共和国国家标准电动上肢假肢通用件GB/T 18027-2000: 6
    61贾文敏.仿人型残疾人假手机构及控制的研究.哈尔滨工业大学工学硕士学位论文. 2005: 32~36
    62张铁.数值分析.冶金工业出版社, 2001:134~136
    63申永胜.机械原理教程.清华大学出版社, 2002: 80~84
    64曹惟庆.连杆机构的分析与综合.科学出版社, 2002: 209
    65张春林.高等机构学.北京理工大学出版社, 2005: 83
    66赵匀.机构数值分析与综合.机械工业出版社, 2005:295
    67 Birglen L,Gosselin C M. On the Force Capability of Underactuated Fingers[A].Proceedings of the 2003 IEEE ICRA, 2003: 1139~114
    68朱蕴璞.传感器原理及应用.国防工业出版社, 2005:111
    69 Interlink electronics. FSR Force Sensing Resistor Integration Guide and Evaluation Parts Catalog: 5
    70 H. Liu, J. Butterfass, S.Knoch, P.Meusel, G. Hirzinger. A New Control Strategy for DLR’s Multisensory Articulated Hand. IEEE Control Systems. 1999,19(2):47~54
    71 James M. Hyde, Mark R. Cutkosky. Controlling Contact Transition. IEEE Control Systems. 1994,14(1):25~30
    72 Y. T. Wang, Y. J. Jan. A Robot-Assisted Finishing System with an Active Torque Controller. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, 2000:1568~1573
    73 Dong Sun, James K. Mills. Advanced Torque Control of Robot Manipulators Driven bu AC Induction Motors. Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, 2000:3537~3542
    74 Y.Xu, J.M.Hollerbach, D. Ma. A Nonlinear PD Controller for Force and Contact Transient Control. IEEE Control Systems. 1995,15(1):15~21
    75姜力.具有力感知功能的机器人灵巧手手指及控制的研究.哈尔滨工业大学博士论文. 2001:65
    76 Byoung, Ho Kim and Shinichi Hirai. Characterizing the Dynamic Deformation of Soft Fingertips and Analyzing Its Significance for Multi-Fingered Operations. Proceedings of the 2004 IEEE International Conference on Robotics & Automation, New Orleans, LA , April 2004
    77 Yoshiro Imai, Akio Namiki, Koichi Hashimoto, etc. Dynamic Active Catching Using a High-speed Multifingered Hand and a High-speed Vision System. Proceedings of the (2004) IEEE International Conference on Robotics & Automation, New Orleans, LA, April 2004
    78 Chappell P H, Kyberd P J. Prehensile Control of a Hand Prosthesis by aMicrocontroller. Biomedical Engineering. 1991,13:363~369
    79 Dechev N, Cleghorn W L, Naumann S. Multiple Finger, Passive Adaptive Grasp Prosthetic Hand. Mechanism and Machine Theory. 2001,36: 1157~1173.
    80洪嘉振.多体系统动力学.高等教育出版社, 2002: 202
    81 Fuhrer, C. , Leimkuhler, B.J. Numerical Solution of Differential-Algebraic Equations for Constrained Mechanical Motion. Numerische Mathematik. 1991, 59:55~69.
    82 Kecskeméthy, A., Krupp, T. and Hiller, M. Symbolic Processing of Multiloop Mechanism Dynamics Using Closed~form Finematic Solutions. Multibody System Dynamics 1997,1(1): 23
    83 Schiehlen, W., Rukgauer, A. and Schirle, Th. Force Coupling Versus Differential Algebraic Description of Constrained Multibody Systems. Multibody System Dynamics. 2000, 4: 317~340
    84 Wang, J. and Gosselin, C. Parallel Computational Algorithms for the Simulation of Closed Loop Robotic Systems. Proceedings IEEE International Conference on Parallel Computing in Electrical Engineering, Trois~Rivieres, Quebec, Los Alamitos, 2000: 34~38
    85 Jiegao Wang, Clement M. Gosselin and Li Cheng. Modeling and Simulation of Robotic Systems with Closed Kinematic Chains Using the Virtual Spring Approach. Multibody System Dynamics. 2002, 7:145~170
    86 Cheng,L. Vibroacoustic Modeling of Mechanically Coupled Structures: Artificial Spring Technique Applied to Light and Heavy Mediums. Journal of Shock and Vibration. 1996,3(3):193~200
    87 Eich-Soellner E., Fuhrer,C. Numerical Methods in Multibody Dynamics. Teubner, Stuttgart, 1998
    88 Yuan J. ,Dickinson,S.M. On the Use of Artifical Springs in the Study of the Free Vibration of Systems Comprised of Straight and Curved Beam. Journal of Sound and Vibration. 1992(153):203~216
    89 M.C.Good, L.M.Sweet and K.L.Strobel. Dynamic Models for Control System Design of Integrated Robot and Drive Systems. Transactions of theASME-Journal of Dynamic Systems, Measurement and Control,Vol.107, 1985:53~59.
    90刘延柱.高等动力学.高等教育出版社, 2001:23
    91 N.Kircanski, A.Goldenberg and S.jia. An experimental study of nonlinear stiffness, hysteresis and friction effects in robot joint with harmonic drives and torque sensors. Proceeding if the Third International Symposium on Experimental Robotics, 1993,1:147~154
    92 Waseem A. Khan, Chin Pei Tang, Venkat N. Krovi. Modular and Distributed Forward Dynamic Simulation of Constrained Mechanical Systems-A Comparative Study. Mechanism and Machine Theory. 2007(42):558~579
    93 C.R.Johnstun,C.C.Smith. Modeling and Design of a Mechanical Tendon Actuation System. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control. 1992,114:253~261
    94 Lionel Birglen, Clement M. and Gosselin. Kinetostatic Analysis of Underactuated Fingers. IEEE Transactions on Robotics and Automation, 2004(2):20
    95张劲夫.高等动力学.科学出版社,2001:85
    96 Jorge Angles(加),余伟刚(译).机器人机械系统原理——理论、方法和算法.机械工业出版社, 2004: 151
    97苏奎峰. TMS320F2812原理与开发.电子工业出版社, 2006:75
    98梅晓榕.自动控制元件及线路.科学出版社, 2007:21:60
    99倪媛.仿人形假手电气系统的研究.哈尔滨工业大学工学硕士论文. 2005: 62
    100俞昌东.仿人型残疾人假手机构及传感器系统的研究.哈尔滨工业大学工学硕士论文. 2007:85
    101赵位华.仿人形假手控制器的研制.哈尔滨工业大学工学硕士论文. 2007
    102付威.基于DSP的仿人性假手控制系统的研究.哈尔滨工业大学工学硕士论文. 2004:78
    103肖继舟.基于DSP的假手控制系统的设计.哈尔滨工业大学工学硕士论文. 2003:96
    104刘伊威,姜力.基于霍尔传感器的机器人灵巧手关节位置的测量系统.信号与控制, 2002,31(7):748~749
    105 James M. Hyde, Mark R. Cutkosky. Controlling Contact Transition. IEEE Control Systems. 1994,14(1):25~30
    106 K. S. Fu, R. C. Gonzalez, C. S. G. Lee. Robotics: Control, Sensing, Vision, and Intelligence. McGraw-Hill Book Company, 1987:149~200
    107郑时雄,谢存禧译,理查德.P.保罗著.机器人操作手:数学、编程和控制.机械工业出版社, 1991:130~134
    108刘兴堂.应用自适应控制.西北工业大学出版社, 2003: 390
    109丛爽.实用运动控制技术.电子工业出版社,2006: 276
    110 M.Eric and W.S.Lu. Manipulator Control with an Exponentially Stable Velocity Observer. The American Control Conference, 1992:1241
    111 George Ellis(美),刘君华(译).控制系统设计指南.电子工业出版社, 2006: 143
    112 Frank L.Lswis. Robot Manipulator Control Theory and Practice. Marcel Dekker Inc, 2000: 350~373
    113 R.Kelly. Control of Robot Manipulators in Joint Space. Springer, 1998: 314~318
    114 M.Eric and W.S.Lu. A Reduced-order Adaptive Velocity Observer for Manipulator Control. Intelligent Compliance Control for Robot Manipulators Using Adaptive Stiffness Characteristics. Proceedings of the IEEE International Conference on Robotics and Automation, Detroit, Michigan, 1993:330
    115倪风雷.空间机械臂关节驱动及控制系统的研究.哈尔滨工业大学博士论文. 2006: 75
    116杨磊.基于指尖传感器的DLR/HIT机器人灵巧手阻抗控制的研究.哈尔滨工业大学博士论文. 2005: 67
    117王喜浩. DLR-HIT仿人灵巧手结构优化设计及其指节力矩控制.哈尔滨工业大学硕士论文. 2004: 47
    118 H.Liu, G. Hizinger. Joint Torque Based Cartesian Impedance Control for the DLR Hand. International Comference on Advanced Intelligent Mechatronics, Atlanta, USA, 1999:695~700
    119谢宗武. HIT-1机器人灵巧手柔顺控制的研究.哈尔滨工业大学博士论文. 2003: 61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700