基于铣削力建模的复杂曲面加工误差补偿研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂曲面由于具有优良的功能特性和表面的美观,被广泛应用于航空航天、汽车零部件、模具的表面设计中。该类表面均要求具有高的尺寸精度和表面质量,一般在多轴CNC机床上进行加工,其半精铣和精铣的过程一般采用球头铣刀进行。表面质量通常用表面精度、表面粗糙度、表面残余应力的性质及其大小和表面加工硬化程度等指标来表征。目前针对复杂曲面精度的研究较少,尤其是涉及到复杂曲面几何特征的由刀具系统的受力变形产生的误差的研究较少。本文通过对复杂曲面几何特征和多轴铣削加工过程运动学的综合分析,深入分析表面精度与曲面曲率、刀具位姿及其它铣削参数(切削速度、轴向切深、径向切深和每齿进给量等)的关系,提出提高表面精度的曲面加工误差补偿方法及高精度走刀路径的选择方式,为复杂曲面多轴加工的精度控制提供科学的依据和可行的方法。
     在分类讨论了复杂曲面法曲率半径的求解方法的基础上,考虑曲率半径和刀具前倾角,对复杂曲面多轴球头铣削过程的铣削力进行了理论建模与仿真。针对多轴球头铣削特点,采用Lee和Altintas的瞬时刚性力模型,建立了刀具-工件接触区域内任意一点的微元铣削力公式;采用解析几何的方法建立了基于曲率半径和前倾角的切入、切出角以及轴向极限位置角的模型,进一步建立了刀具-工件接触区域模型;针对立式5轴加工中心DMU-70V,建立了各相关坐标系之间的转化关系模型,提出了三维整体铣削力模型并采用Matlab实现了仿真,通过仿真结果分析了曲率半径和刀具前倾角对三向铣削力的影响规律,为后续的精度预测与控制提供了可靠的理论依据。
     刀具系统的变形和偏心对铣削力和加工误差有着重要的影响。为求解刀具系统的受力变形,铣削力被简化成为作用在刀具-工件接触区域一点上的集中作用力,X、Y方向上的集中力作用点处的挠度即为刀具受力变形量,区别于传统的两段式悬臂梁刀具受力变形模型,针对球头铣刀的三段式(刀杆、刀具刀刃部分-非球头和球头部分)结构,利用材料力学,建立了球头铣刀三段式悬臂梁刀具受力变形模型;通过比较新的三段式模型、传统两段式模型和使用ANSYS 12.0 Workbench有限元分析软件仿真得到的刀具变形结果,证明新的刀具受力模型与有限元结果较为相近;进行了刀具偏心对铣削力影响的扩展研究,发现刀具偏心不只影响每齿进给量,而且还对刀具有效切削半径和刀具旋转角度有一定的影响;基于三段式悬臂梁球头铣刀变形模型和刀具偏心扩展研究,提出复杂曲面铣削力的扩展模型。
     根据机床坐标系下X、Y方向上集中力作用点处的刀具系统变形量,建立了复杂曲面加工路径上任意一点处工件局部坐标系下法向量方向曲面误差模型;对每一CL数据点,基于复杂曲面多轴加工特点,计算曲面误差,并通过迭代运算,对曲面误差进行补偿,使其满足加工要求。选用典型的正弦曲面进行刀具变形误差建模,并对其刀轨文件进行了离线误差补偿,证实了经过误差补偿后的走刀路径比未补偿的路径与理想路径相近。
     对多轴铣削,除了可以通过基于分析不同走刀路径上的曲面曲率选择最佳的走刀路径方向来减小刀具变形,提高加工精度外,还可以通过对刀具倾角的分析进行选择最佳的刀具位姿来提高加工精度。本文分三种(平面、凸面和凹面)曲面分别讨论了步长和行距与曲率半径之间的关系,以高精度为目标,研究了三种典型走刀路径生成方式(参数线法、截平面法和等残留高度法)的走刀路径方向的选择问题;通过分析刀具前倾角与进给(X)、垂直进给(Y)方向刀具系统变形量和曲面法向误差之间的关系,发现进给(X)方向和垂直进给(Y)方向刀具系统变形量均随着刀具前倾角的增大而先增大后减小,曲面法向误差随着刀具前倾角的增大而增大,因此在满足其它要求的情况下,尽量取小的刀具前倾角值是最优的选择;选取典型复杂曲面进行了新的等残留高度法走刀路径方向的选择实例验证,结果表明本文提出的等残留高度法可以显著减少加工时间,提高加工效率,而且通过优选初始路径,得到最小的曲面误差的加工方向。
Complex surfaces have been widely used in aerospace, automotive and die/mold industries, because of their excellent functional properties and appearence. These kinds of surfaces are required to have high requirements on dimensional precision and surface quality. Multi-axis CNC machine tools are usually used for complex surfaces machining, and ball-end mills are usually used in semi-finish and finish milling processes. The surface quality includes surface precision, surface roughness, surface residual stress and surface work hardening etc. Complex surfaces and especially the surfaces with non-single curvature are seldom investigated. Among them, little overall and systematic research, especially the research on surface error due to cutting force-induced tool deflections has been made, and these surface errors are closely related with the geometric features of complex surfaces. In this dissertation, by analysising the geometric features of complex surfaces and the kinematics of multi-axis ball-end milling process synthetically, the relationships among surface precision, curvature radius, cutter orientation and cutting parameters have been thoroughly analyzed. The error compensation method and tool path direction selection method for high surface precision have been proposed. It is an important foundation subject for precision control in multi-axis ball-end milling.
     The solving methods for curvature radius of complex surfaces are discussed separately. Considering the curvature radius and tool inclination angle, the theoretical-model and simulation of cutting forces on multi-axis ball-end milling of complex surfaces are carried. According to the characteristic of multi-axis ball-end milling, equations to estimate the cutting forces at a differential element on the cutting edge are established based on the instantaneous cutting force model proposed by Lee and Altintas. Start/exit radial immersion angles and limit axial position angles are solved using analytical geometry method taking into account the curvature radius and tool inclination angle, and then contact areas between cutter and workpiece are obtained. The mappings among all related coordinate of DMU-70V vertical machining center are modeled,3-dimensional cutting forces were modeled and simulated using Matlab software. The simulation results show the influence of curvature radius and tool inclination angle on the cutting forces in the X, Y, Z directions. It provides the reliable theoretical basis for the subsequent prediction and control of surface precision.
     The cutting forces are simplified to concentrated forces which act on a point of cutter-workpiece contact area. The deflections of action points of concentrated forces in the X, Y directions are cutting force-induced tool deflections. Different from the traditional two segments cantilever beam tool deflection model, addressing the three parts (shank, flute-non ball-end and ball-end parts) of ball-end mill, three segments cantilever beam tool deflection model was built using materials mechanics method for ball-end mill. The comparison results show that, the tool deflection magnitude calculated by the new three segments method match better with the results of ANSYS 12.0 Workbench method than the results of the traditional two segments. Cutter eccentricity has an important impact on cutting forces through acting on feed per tooth, effective cutting radius and tool rotation angle. Then the extended researches on the cutting force model of complex surfaces were explored based on the three segments cantilever beam tool deflection model and the extended research on cutter eccentricity.
     Based on tool deflection values of the acting point of force in the X, Y directions, for arbitrary point of tool path in the workpiece local coordinate system, the complex surfaces error model in the normal direction was established. After the error modeling, the error compensation was finished using iterative algorithm on every CL point based on the features analysis of multi-axis ball-end milling of complex surfaces. A typical sinusoidal surface was chosen for tool deflection error modeling, and off-line error compensation of the tool path file was finished. The results show that the tool paths after error compensation match better with the designed ones than those without error compensation.
     Different from the case of 3-axis milling, the tool deflection in multi-axis milling could decrease by choosing not only the best tool path direction based on the analysis of curvature radius of different tool path direction, but also the best tool inclination angle. In this dissertation, the relationship between step length and path internal with the curvature radius was discussed separately for three surface types (plane, convex and concave surface). For getting high precision, the selection of tool path direction was discussed for three typical tool path generation methods (iso-parametric, iso-planar and iso-scallop method). Through analyzing the relationship between tool deflections in the X, Y directions and surface normal error with the tool inclination angle, selecting the tool inclination angle as small as possible is best for high suface precision. An example was presented to verify the newly proposed iso-scallop method for tool path generation, the results show that the cutting time could decrease with the new method. For different initial tool paths, the different average curvature radii in the direction perpendicular to the tool path could result in different surface normal errors.
引文
[1].艾兴等.高速切削加工技术[M].北京:国防工业出版社,2003.
    [2].艾兴,刘镇昌,赵军.高速切削技术研究和应用[C].全国生产工程第8届学术大会暨第3界青年学术会议论文集,北京:机械工业出版社,1999:146-149.
    [3].刘战强.高速切削技术的研究与应用[D].济南:山东大学博士后研究工作报告,2001.
    [4].陈日曜.金属切削原理[M].2版.北京:机械工业出版社,1993.
    [5].王先逵.机械加工工艺学(上册)[M].北京:清华大学出版社,1989.
    [6].徐家川,李迪,李旭.汽车车身A级曲面的表示与次数选择[J].汽车技术.2010,(9):58-61.
    [7].段志刚.航空制造业对数控机床设备的需求[J].MM现代制造.
    [8].张西涛.闭式叶盘类零件分体式精铸模具CAD技术研究[D].西北工业大学硕士学位论文,2006:1-4.
    [9].魏培坤,史耀耀,任军学,徐文秀.整体叶盘无干涉五坐标数控抛光轨迹生成算法研究[J].机械制造.2009,47(6):39-42.
    [10].李沪曾,郭重庆,诸乃雄,林建平.高速切削加工技术在模具和模型制造中的应用[J].模具技术.2002,(2):50-52.
    [11].Lee K Y, et al. Simulation of surface roughness and profile in high-speed end milling [J]. Mater.Process.Technol.2001, (113):410-415.
    [12].Mizugaki Y, Hao M, Kikkawa K. Geometric generating mechanism of machined surface by ball-nosed end milling [J]. Ann.CIRP.2001,50(1):69-72.
    [13].Kim B H, Chu C N. Texture prediction of milled surfaces using texture superposition method [J]. Computer-Aided Design.1999, (31):485-494.
    [14].Shafto,G.R. Creep feed grinding[D]. Ph.D thesis, Univ. of Bristol,1975.
    [15].H. Tsuwa and H. Yasui, Micro-structure of dressed abrasive cutting edges [C]. Proceedings of the International Grinding Conference,1972:142-160.
    [16].Snoeys R, Peters J. The significance of chip thickness in grinding [J]. Annals of the CIRP.1974, 23(2):227-237.
    [17].Ferreira P M, Liu C R. An analytical quadratic model for the geometric errors of a machine tool [J]. J Manuf Syst.1989,5(1):51-63.
    [18].Mou J, Liu C R. A method for enhancing the accuracy of CNC machine tools for on-machine inspection [J]. J Manuf Syst.1995,11(4):229-237.
    [19].Sorby K. Inverse kinematics of five-axis machines near singular configurations [J]. International Journal of Machine Tools and Manufacture.2007,47(2):299-306.
    [20].Cho J H, Cho M W, Kim K. Volumetric error analysis of a multi-axis machine tool machining a sculptured surface workpiece [J]. Int J Prod Res.1994,32(2):345-363.
    [21].Jha B K, Kumar A. Analysis of geometric errors associated with five-axis machining centre in improving the quality of cam profile [J]. Int J Mach Tools Manuf.2003,43(6):629-636.
    [22].Lei W T, Hsu Y Y. Accuracy test of five-axis CNC machine tool with 3D probe-ball. Part Ⅱ: errors estimation [J]. Int J Mach Tools Manuf.2002,42(10):1163-1170.
    [23].Lin P D, Ehmann K F. Direct volumetric error evaluation for multi-axis machines[J]. Int J Mach Tools Manuf.1993,33(5):675-693.
    [24]. Lee R S, She C H. Developing a postprocessor for three types of five-axis machine tools [J]. Int J Adv Manuf Technol.1997,13(9):658-665.
    [25].Lin Y, Shen Y. Modelling of five-axis machine tool metrology models using the matrix summation approach [J]. Int J Adv Manuf Technol.2003,21(4):243-248.
    [26].Mahbubur R M D, Heikkala J, Lappalainen K, Karjalainen J A. Positioning accuracy improvement in five-axis milling by post processing [J]. Int J Mach Tools Manuf 1997, 37(2):223-236.
    [27].Tutunea-Fatan O R, Feng H Y. Configuration analysis of five-axis machine tools using a generic kinematic model [J]. Int J Mach Tools Manuf.2004,44(11):1235-1243.
    [28]. Moon S K, Moon Y M, Kota S. Screw theory based metrology for design and error compensation of machine tools [C]. Proceedings of the ASME 2001 Design Engineering Technical Conferences (DETC 2001), Pittsburgh, Pennsylvania,2001.
    [29].Elbestawit M A, Srivasta A K, Veldhuis S C. Modelling geometric and thermal errors in a five-axis CNC machine tool [J]. Int J Mach Tools Manuf.1995,35(9):1321-1337.
    [30].吴昊,杨建国,张宏韬,郭前建.三轴数控铣床切削力引起的误差综合运动学建模[J].中国机械工程.2008,19(16):1908-1911.
    [31].Rahman M. Modeling and measurement of multi-axis machine tools to improve positioning accuracy in a software way [D]. PhD thesis, University of Oulu, Finland,2004
    [32].Fan K, Lin J, Lu S. Measurement and compensation of thermal error on a machining center [C]. Proceedings of the 4th International Conference on Automation Technology, Taiwan, 1996:261-268.
    [33].章青,岳红新,王慧清.四轴加工中心热误差建模及补偿技术研究[J].制造技术与机床.2004,(10):55-58.
    [34].傅建中,姚鑫骅,贺永,沈洪垚.数控机床热误差补偿技术的发展状况[J].航空制造技术.2010,(4):64-66.
    [35].张志飞,刘又午,刘丽冰,张永丹.基于多体理论的五坐标数控机床的热误差建模[J].河北工业大学学报,2000,29(5):23-28.
    [36].Salgado M A, Lopez de Lacalle L N, Lamikiz A, Munoa J, Sanchez J. Evaluation of the stiffness chain on the deflection of end-mills under cutting forces [J]. Int J Mach Tools Manuf. 2005,45(6):727-739.
    [37].Uriarte L, Herrero A, Zatarain M, Santiso G, Lopez de Lacalle L N, Lamikiz A, Albizuri J. Error budget and stiffness chain assessment in a micro-milling machine equipped with tools less than 0.3 mm in diameter [J]. Precision Engineering.2007,31:1-12.
    [38].Armarego E J A, Deshpande N P. Computerized end-milling force predictions with cutting models allowing for eccentricity and cutter deflections [J]. CIRP Annals.1991,40(1):25-29.
    [39]. Lopez de Lacalle L N, Lamikiz A, Sanchez J A, Salgado M A. Effects of tool deflection in the high-speed milling of inclined surfaces [J]. Int J Adv Manuf Technol.2004,24(9-10):621-631.
    [40].Kim G M, Kim B H, Chu C N. Estimation of cutter deflection and form error in ball-end milling process [J]. Int J Mach Tools Manuf.2003,43(9):917-924.
    [41].LOPEZ DE LACALLE L N, LAMIKIZ A, SANCHEZ J A, et al. Toolpath selection based on the minimum deflection cutting forces in the programming of complex surfaces milling[J]. International Journal of Machine Tools & Manufacture.2007,47:388-400.
    [42].Ikua B W, Tanaka H, Obata F, Sakamoto S. Prediction of cutting forces and machining error in ball end milling of curved surfaces-I theoretical analysis[J]. Precis Eng.2001,25(4):266-273.
    [43].Shamoto E, Akazawa K. Analytical prediction of chatter stability in ball end milling with tool inclination [J]. CIRP Annals-Manufacturing Technology.2009,58(1):351-354.
    [44].Merchant M E. Mechanics of the metal cutting process. Plasticity conditions in orthogonal cutting [J]. Journal of applied physics.1945,16:18-324.
    [45].Yamazaki K, Kojima N, Sakamoto C, et al. Real-time model reference adaptive control of 3-D sculptured surfaced machining[J]. Annals of the CIRP.1991,40(1):479-482.
    [46]. Wang W P. Solid modeling for optimization metal removal of three-dimensional NC end milling [J]. Journal of manufacturing systems.1998,7(1):57-65.
    [47].Spence A D, Altintas Y. A solid modeler based milling process simulation and planning system [J]. ASME Journal of Engineering for Industry.1994,116(1):61-69.
    [48].Hosoi T. Cutting action of ball end mill with a spiral edge [J]. Ann CIRP.1977,25(1):49-53.
    [49].尹力.数控铣削加工过程动力学仿真优化技术及应用研究[D].北京航空航天大学博士学位论文,2004.
    [50]. Yang M, Park H. The prediction of cutting force in ball-end milling [J]. International Journal of Machine Tools and Manufacture.1991,31:45-54.
    [51].Tai C C, Fuh K H. A predictive force model in ball-end milling including eccentricity effects [J]. Int J Mach Tools Manuf.1994,34 (7):959-979.
    [52].高庆伟,刘辞英.二刃球头铣刀铣削力建模与仿真研究[J].科学技术与工程.2010,10(20):5031-5033.
    [53].李英松,王敏杰,魏兆成.基于傅立叶级数的球头刀铣削力模型[J].工具技术.2010,44(5):49-54.
    [54].徐超辉,阎兵.一种螺旋刃球头铣刀的高速加工铣削力模型[J].工具技术.2007,41(8):34-37.
    [55].李洪江,庄海军.球头铣刀铣削力仿真技术研究[J].航空精密制造技术,2006,42(1):9-15.
    [56].张臣,周儒荣,庄海军,周来水.基于BP神经网络的球头铣刀铣削力建模与仿真[J].中国机械工程.2005,16(20):1791-1794.
    [57].李水进,金仁成,周云飞,周济,唐小崎,贾瑜.基于能量法的球头铣刀力学建模技术的研究[J].应用科学学报.2000,18(3):246-250.
    [58].Li S J, Zhou Y F, Jin R C, Ji Z. Dynamic force modelling for a ball-end milling cutter based on the merchant oblique cutting theory [J]. Int J Adv Manuf Technol.2001,17:477-483.
    [59].Liu X W, Cheng K, Longstaff A P, Widiyarto M H, Ford D. Improved dynamic cutting force model in ball-end milling Part I:theoretical modelling and experimental calibration [J]. Int J Adv Manuf Technol.2005,26(5):457-465.
    [60].Lee P, Altintas Y. Prediction of ball-end milling forces from orthogonal cutting data [J]. Int J Mach Tools Manuf.1996,36(9):1059-1072.
    [61].Kim G M., et al. Cutting force prediction of sculptured surface ball-end milling using Z-map [J]. International Journal of Machine Tools & Manufacture.2000,40(2):277-291.
    [62]. Jung Y H., et al. Chip load prediction in ball-end milling [J]. Journal of Materials Processing Technology.2001,111(1-3):250-255.
    [63].Bouzakis K D, et al. Determination of the chip geometry, cutting force and roughness in free form surfaces finishing milling, with ball end tools [J]. International Journal of Machine Tools & Manufacture.2003,43(5):499-514.
    [64].Lamikiz A, et al. Cutting force estimation in sculptured surface milling [J]. International Journal of Machine Tools & Manufacture.2004,44(14):1511-1526.
    [65].Guzel B U and Lazoglu I. An enhanced force model for sculptured surface machining [J]. Machining Science and Technology.2004,8(3):431-448.
    [66]. Sim C and Yang M Y. The prediction of the cutting force in ball-end milling with a flexible cutter [J]. Int. J. Mach. Tools Manufact.1993,33(2):267-284.
    [67]. Wang J J J and Huang C Y. A force-model-based approach to estimating cutter axis offset in ball end milling [J]. International Journal of Advanced Manufacturing Technology.2004, 24(11-12):910-918.
    [68].Ikua B W, et al. Prediction of cutting forces and machining error in ball end milling of curved surfaces-Ⅱ Experimental verification [J]. Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology.2002,26(1):69-82.
    [69].Feng H Y and Menq C H. The prediction of cutting forecs in the ball-end milling progress.1. Model formulation and model-building procedure [J]. International Journal of Machine Tools & Manufacture.1994,34(5):697-710.
    [70].Gradisek J, Kalveram M, Weinert K. Mechanistic identification of specific force coefficients for a general end mill [J]. International Journal of Machine Tools & Manufacture.2004,44(4): 401-414.
    [71].Fussell B K, Jerard R B, Hemmett J G. Modeling of cutting geometry and forces for 5-axis sculptured surface machining [J]. Comput Aided Des.2003,35(4):333-346.
    [72].张臣,周儒荣,庄海军,周来水.基于Z-map模型的球头铣刀铣削力建模与仿真[J].航空学报,2006,27(2):347-352.
    [73].Feng H Y, Menq C H. The prediction of cutting forces in the ball-end milling process.2. Cutting geometry analysis and model verification [J]. Int J Mach Tools Manuf.1994, 34(5):711-719.
    [74].Ozturk B, Lazoglu I. Machining of free-form surfaces Part I:Analytical chip load [J]. Int J Mach Tools Manuf.2006,46(7-8):728-735.
    [75]. Lazoglu I.Sculpture surface machining:a generalized model of ball-end milling force system [J]. International Journal of Machine Tools & Manufacture.2003,43(5):453-462.
    [76].Ramesh R, Mannan M A and Poo A N. Error compensation in machine tools- a review. Part Ⅰ: geometric, cutting-force induced and fixture-dependent errors [J]. International Journal of Machine Tools and Manufacture.2000,40(9):1235-1256.
    [77].Ryu S H, Lee H S and Chu C N, The form error prediction in side wall machining considering tool deflection [J]. International Journal of Machine tools and Manufacture.2003,43 (14):1405-1411.
    [78].Armarego E J A and Deshpande N P. Computerized predictive cutting models for forces in end milling including eccentricity effects [J]. Annals of CIRP.1989,38(1):45-49.
    [79].Suh S H, Cho J H, and Hascoet J Y. Incorporation of tool deflection in tool path computation: simulation and analysis [J]. Journal of Manufacturing Systems.1996,15(3):190-199.
    [80].Cho M W and Seo T I. Tool trajectory generation based on tool deflection effects in the flat end milling process-Ⅰ,Ⅱ, KSME International Journal [J].1999,13 (10):738-753, (12):918-930.
    [81].Depince P, Hascoet J Y. Active integration of tool deflection effects in end milling. Part 1: Prediction of milled surfaces [J]. International Journal of Machine Tools & Manufacture.2006, 46(9):937-944.
    [82].Depince P, Hascoet J Y. Active integration of tool deflection effects in end milling Part2.Compensation of tool deflection [J]. International Journal of Machine Tools &Manufacture.2006,46(9):945-956.
    [83].吴琼,张以都,张洪伟,赵晓慈.航空薄壁件与铣刀的加工变形误差补偿研究[J].武汉理工大学学报,2008,30(9):116-119.
    [84].张松,艾兴,李剑峰,刘继刚.高速整体硬质合金铣刀的变形与应力分析[J].中国机械工程,2005,16(18):1681-1684.
    [85].蔡慧林.小尺寸数控铣刀的变形误差与补偿方法研究[J].兰州铁道学院学报,1999,(2):82-84.
    [86].RAO V S, RAO P V M. Tool deflection compensation in peripheral milling of curved geometries [J]. International Journal of Machine Tools & Manufacture.2006,46(15):2036-2 043.
    [87].Kline W A, DeVor R E and Shareef I A. The prediction of surface accuracy in end milling [J]. ASME J. Eng. for Ind.1982,104:272-278.
    [88].Kops L and Vo D T. Determination of the Equivalent diameter of an end mill based on its compliance [J]. Annals of the CIRP.1990,39 (1):93-96.
    [89].Gelvis T, Wu H, Yang J. Progressive development of absolute sensorless compensation system for cutting force induced error. International Journal of Advanced Manufacturing Technology [J].2007,39(5-6):454-461.
    [90].张春梅,狄文辉,李宏德.基于有限元的干式切削立铣刀力学性能分析[J].工具技术,2008,42(10):82-84.
    [91].任翀,侯学元,韩淑华.高速铣削立铣刀切削受力的有限元分析[J].机电工程技术,2008,37(6):22-23.
    [92].董黎敏,朱世和,史津平,郭津津,陈金星,王泽巍.硬质合金立铣刀CAD中的有限元分析[J].机械设计,2003,20(11):40-42.
    [93].周济 数控加工技术[M].北京:国防工业出版社,2002.
    [94].Fussell B K and Srinivasan K. An investigation of the end milling process under varing machining conditions [J]. Transactions of the ASME. Journal of Engineering for Industry.1989, 22(1):27-36.
    [95].Qian, S. Automatic Feed-Rate Control Command Generation-A Step towards Intelligent CNC [J]. Computer in Industry.1993,23(3):199-204.
    [96].Cho M W, Seo T I, Kwon H D. Integrated error compensation method using OMM system for profile milling operation [J]. Journal of Materials Processing Technology.2003,136 (1-3):88-99.
    [97].Cho M W, Seo T I. Machining error compensation using radial basis function network based on CAD/CAM/CAI integration concept. International Journal of Production Research [J].2002,40 (9):2159-2174.
    [98].Lasemi A, Xue D Y, and Gu P H. Review:Recent development in CNC machining of freeform surfaces:A state-of-the-art review [J]. Computer-Aided Design.2010,42(7):641-654.
    [99].Susan X Li and Robert B J.5-axis machining of sculptured surfaces with a flat-end cutter [J]. Computer Aided Design.1994,26(3):165-178.
    [100]. Cho J H, Kim, J W, Kim K. CNC tool path planning for multi-patch sculptured surfaces [J]. International Journal of Production Research.2000,38(7):1677-1687.
    [101]. Pi J, Red E and Jensen G. Grind-free tool path generation for 5-axis surface machining [J]. Computer Integrated Manufacturing systems.1998,11(4):337-50.
    [102]. Chen Z C, Vickers G W and Dong Z. Integrated steepest-directed and iso-cusped tool path generation for three-axis CNC machining of sculptured parts. Journal of Manufacturing Systems [J]. Transactions of Society of Manufacturing Engineers.2003,22(3):190-201.
    [103]. Loney G C, Ozsoy T M. NC machining of free-form surfaces [J]. Computer-Aided Design.1987,19(2):85-90.
    [104]. Sun Y W, Guo D M, Jia ZY, Wang HX. Iso-parametric tool path generation from triangular meshes for free-form surface machining [J]. International Journal of Advanced Manufacturing Technology.2006,28(7-8):721-726.
    [105]. Bobrow J E. NC machine tool path generation from CSG part representations [J]. Computer Aided Geometric Design.1985,17(2):69-76.
    [106]. Elber G, Cohen E. Toolpath generation for freeform surface models [J]. Computer-Aided Design.1994,26(6):490-496.
    [107]. Huang Y and Oliver J H. Non constant parameter NC tool path generation on sculptured surfaces [J]. International Journal of Advanced Manufacturing Technology.1994,9(5):281-290.
    [108]. Ding S, Mannan M A, Poo A N, Yang D C H and Z Han. Adaptive iso-planar tool path generation for machining of free-form surfaces [J]. Comput-Aid Des 2003,35(2):141-153.
    [109]. Kim B H and Choi B K. Guide surface based tool path generation in 3-axis mill:an extension of the guide plane method [J]. Computer-Aided design.2000,32(3):191-199.
    [110]. Feng H Y, Teng Z. Iso-planar piecewise linear NC tool path generation from discrete measured data points [J]. Comput.-Aided Des.2005,37(1):55-64.
    [111]. Tournier C, Duc E. A surface based approach for constant scallop height tool-path generation [J]. Int J Adv Manuf Technol.2002,19(5):318-324.
    [112]. Feng H Y, Li H W. Constant scallop-height tool path generation for three-axis sculptured surface machining [J]. Comput Aided Des.2002,34(9):647-645.
    [113]. Lee E K. Contour offset approach to spiral toolpath generation with constant scallop height [J]. Comput Aided Des.2003,35(6):511-518.
    [114]. Tournier C, Duc E. Iso-scallop tool path generation in 5-axis milling [J]. International Journal of Advanced Manufacturing Technology.2005,25 (9-10):867-875.
    [115]. Suresh, K. and Yang, D.C.H., Constant scallop-height machining of free-form surfaces [J]. ASME Journal of Engineering for Industry.1994,116(2):253-259.
    [116]. 霍颖.基于等残留高度法的五轴NC加工刀位轨迹规划[D].西北工业大学硕士学位论文,2005.
    [117]. Rong Shin Lin, K., Yang D.C.H. Constant scallop-height machining of free-form surface [J]. Journal of engineering for industry.1994,116(2):235-259.
    [118]. 杨君顺,司先才.基于StudioTools车身建模技术研究[J].计算机工程与设计,2006,(1):92-98.
    [119]. 朱心雄等著.自由曲线曲面造型技术[M].北京:科学出版社,2000.
    [120]. 丁宇明.工程微分几何[M].第1版.武汉:武汉水利电力大学,1994.
    [121]. 杨汉林,马江彬.公差配合与形位公差自学读本[M].福州:福建科学出版社,1986.
    [122]. 李绍珍,范波涛,王中豫.工程曲面[M].济南:山东大学出版社,1997.
    [123]. Budak E, Cheng K (ed.). Dynamic analysis and control, In Machining Dynamics-Fundamentals. Applications and Practices [M]. London:Springer,2008:167-231.
    [124]. Kivanc E B and Budak E. Structural modeling of end mills for form error and stability analysis [J]. International Journal of Machine Tools and Manufacture.2004,44(11):1151-1161.
    [125]. Liang S Y, Wang J J J. Milling force convolution modeling for identification of cutter axis offset [J]. Int J Mach Tools Manuf.1994,34(8):1177-1190.
    [126]. Kline W A, DeVor R E. The effect of runout on cutting geometry and forces in end milling [J]. Int J Mach Tool Des Res 1983,23(2-3):123-140.
    [127]. Feng H Y, Meng C H. A flexible ball-end milling system model for cutting force and machining error prediction transactions of the ASME [J]. Journal of Manufacturing Science and Engineering.1996,118(4):461-469.
    [128]. 马万太,王宁生.考虑弹性变形时的球头铣刀切削力模型的研究[J].南京航守航天人学学报,1998,30(6):633-640.
    [129]. 郭厚焜,游全根,曹爱文.基于切削力的铣削加工误差数学模型[J].机床与液压,2007,35(12):58-59.
    [130]. 张发平,王丽,闫学彬.基于CAE和神经网络的切削参数优化[J].机床与液压.2007,35(3):28-29.
    [131]. 马万太,楼佩煌.虚拟制造中基于刀具变形的复杂曲面加工误差预报[J].机械科学与技术,2006,25(1):43-45.
    [132]. 鄢春艳,赖兴余,叶邦彦,李伟光.基于小波神经网络的加工过程自适应控制[J].计算机工程与应用.2006,42(7):214-217.
    [133]. Budak E, Altintas Y. Peripheral milling conditions for improved dimensional accuracy [J].International Journal of Machine Tools and Manufacture.1994,34 (7):907-918.
    [134]. Suh S H, Cho J H, Hascoet J Y. Incorporation of tool deflection in tool path computation: simulation and analysis [J]. Journal of Manufacturing Systems.1996,15 (3):190-199.
    [135]. Lechniak Z, Werner A, Skalski K, Kedzior K. Methodology of offline software compensation for errors in the machining process on the CNC machine tool [J]. Journal of Materials Processing Techniques.1998,76(1-3):42-48.
    [136]. Ratchev S, Govender E, Nikov S. Towards deflection prediction and compensation in machining of low rigidity parts [J]. Proceedings of the Institution of Mechanical Engineers Part B.2002,216(1):129-134.
    [137]. Ratchev S, Liu S, Huang W, Becker A A. Milling error prediction and compensation in machining of low rigidity parts [J]. International Journal of Machine Tools and Manufacture. 2004,44 (15):1629-1641.
    [138]. Raksiri C, Parnichkun M. Geometric and force errors compensation in a 3 axis CNC milling machine [J]. International Journal of Machine Tools and Manufacture.2004,44 (12-13):1283-1291.
    [139]. Liu Z Q, Venuvinod P K. Error compensation in CNC turning solely from dimensional measurements of previously machined parts [J]. Annals of CIRP.1999,48(1):429-432.
    [140]. Lo C C, Hsiao C Y. CNC machine tool interpolator with path compensation for repeated contour machining [J]. CAD.1998,30 (1):55-62.
    [141]. Lo C C and Lin J F. Error compensation for repetitive machining [C]. Proceedings of Pacific Conference on Manufacturing. Jakarta in Indonesia,1994:121-128.
    [142]. Lo C C and Hsiao C Y. A Method of tool path compensation for repeated machining process [J]. International Journal of Machine. Tools and Manufacture.1998,38(3):205-213.
    [143]. Lin R S and Koren Y. Efficient tool-path planning for machining free-form surfaces [J]. ASME Journal of Engineering for Industry.1996,118 (1):20-28.
    [144]. Altintas Y. Manufacturing automation-metal cutting mechanics, machines tool vibration and CNC design [M]. London:Cambrige University Press,2000.
    [145]. Budak E, Altinutas Y. Armarego. Prediction of milling force coefficients from orthogonal cutting data [J]. Transactions of ASME.1996,118(2):216-224.
    [146]. Armarego E J A and Whitfield R C. Computer based modeling of popular machining operations for force and power predictions [J]. Annuals of the CIRP.1985,34 (1):65-69.
    [147]. 刘战强,万熠,艾兴.高速铣削切削力的研究[J].中国机械工程.2003,14(9):734-736.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700