基于同步箝位控制与周期机械波合成的压电马达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压电马达广泛应用于航空航天、生物医疗及其它精密仪器等领域,但其仍然存在效率低、磨损严重等问题。为了有效地解决这些问题,提高压电马达的综合性能,使压电马达在力、速度、效率等方面结合得更好,以及提高滑动摩擦耦合型压电马达的使用寿命,论文首次提出一种同步箝位控制与周期机械波合成的压电马达研究方法。论文的主要工作成果和结论如下:
     目前,电子开关的使用已经相当频繁,但是将机械同步箝位开关应用于压电振子的运动控制从而产生定向位移,这种驱动方式在压电马达领域尚属首例。该控制原理启发于传统电学原件可控硅及其在交流电驱动的直流电机中的应用,类比电学系统和机械系统的相似性,抽象出同步箝位控制压电马达的机械控制系统模型,建立了压电振子的动力学模型。同步箝位控制原理结合了压电超声马达的谐振驱动和尺蠖马达的控制机理两个特点,克服了两者的缺点:压电超声马达工作过程中存在滑动摩擦和尺蠖马达准静态工作频率较低。
     根据同步箝位控制压电马达的机械控制系统及动力学模型,详细阐述和分析了该类型马达的具体工作过程,并给出了空载和带载两种情况下,压电马达每周期内的速度、位移、箝位时间点以及步距的表达式。理论研究了压电马达的性能与驱动频率、驱动振幅、箝位力等参数之间的关系,同时指出了驱动信号与箝位信号之间的相互协调关系对马达性能的影响。
     采用有限元仿真分析法确定马达的结构尺寸,研制了马达样机并进行了性能测试与分析。同步箝位控制型压电马达的无负载步距是5μm,负载能力5N。负载是0.5N时速度可达8.2mm/s。当负载是2N时马达的净效率为18.5%,扣除压电振子在空气中无效损耗后,总效率高达72.5%。实验证明该马达具有良好的综合性能,使压电马达在力、速度、效率方面的综合性能得到提高,初步解决滑动摩擦耦合型压电马达使用寿命受限的问题。
     在任意周期波合成型压电马达的理论研究中,首次提出了基于多级音叉结构的任意周期机械波波形合成方法,波形合成不受阶数和频率比限制,解决了高次谐波匹配阶数受限(已有方法不超过三阶)以及匹配过程复杂的瓶颈问题。系统分析了波形合成的理论基础,研究了波形合成的特点及应用,详细介绍了基于多级音叉频率耦合过程。针对多级音叉本身的特点,结合有限元分析方法设计并研制出三级音叉模型。第一、二、三级音叉的反向共振频率实测值比为1:2.00:2.99,频率耦合的较好。在幅值相同的激振条件下,三个共振模态对应机械品质因数(Q值)分别是5617,4883和3515。基于三级音叉结构,首次合成了近似锯齿波、方波、正弦半波整流和正弦全波整流四种典型谐振波形。
     对任意周期波合成的具体应用进行了研究。根据惯性冲击式压电马达的运行机理,结合有限元分析研究出了谐振锯齿波驱动型压电马达结构,给出了谐振锯齿波合成结构的具体设计方法,制作了马达样机并进行了性能测试与分析。实验测试了压电振子驱动孔处的位移曲线,很好地验证了理论分析。压电马达的无负载速度是26.2mm/s,最大负载能力是1N,实验证明该马达具有良好的综合性能。
The demand for piezoelectric motors in modern scientific and industrial fields has grown because of their simple mechanism, compact structure, ultrahigh accuracy, rapid response, availability in vacuum, and immunity from magnetic interference. Given these advantages, piezoelectric motors have become viable candidates for use inspacecrafts, medical equipments,and among others.In order to achieve a balanced performance in terms of high force, speed and efficiency, and to solve the problem of service life of the sliding friction coupling transmission type piezoelectric motors, a new working principle and prototype development for piezoelectric motors have been explored and researched.The paper proposed a new piezoelectric motor driving theory based on the synchronous clamp control and harmonic vibration synthesis firstly. Themainachievements and conclusionsof the paper are as follows:
     First the synchronous-clamp-controlpiezoelectricmotortheorywas proposed. Althoughtheuseoftheelectronic switchisalready quitefrequent,amachine synchronizationclampswitchapplied in the motion controlof thepiezoelectrictransduceris the first caseintheareaofthe piezoelectricmotor. Thecontrol principlewas inspired fromthetraditionalelectricaloriginalSCRand itsapplication in AC-driven DC motor. According to the resemblance of electricalsystems andmechanical systems, we abstractedthephysical modelofthesynchronized switching controlpiezoelectric motor, and built its dynamic mechanical model. Thesynchronousclamp controlprinciplecombinestwo characteristics, namelythe resonantdriveofthepiezoelectric ultrasonicmotorandthecontrol mechanism of the inchwormmotor, whileweakeningthe disadvantages of bothsliding friction existing in the work process of the piezoelectric ultrasonicmotorandthe low quasi-staticfrequency of the inchworm motor.
     In this paper, the physical model and the dynamics model of piezoelectric motor based on synchronized switching control are represented, and the specific operation process are discussed in detail. In a working cycle of the piezoelectric motor, the expressions of the velocity, the displacement, the clamping time pointand the step with or without load are calculated respectively. We also analyzed the relationship between performances of the motor and the parameters, such as:working frequency, vibration amplitude and clamping force. We also point out that how the phase between the drive signal and the clamp signal influence the performance of the motor.
     The structures of the synchronized switching controlpiezoelectric motor were designed by finite element analysis. A prototype motor was fabricated, test and analyzed. The step size was approximately5μm. The maximum load capacity of the proposed motor reachedup to5N. It reached a maximum speed of8.2mm/s with a load of0.5N. The motor achieved a net efficiency of18.5%with a load of2N.If the power that the vibrator consumeduselessly in the air is subtracted, the mechanism can drive the load with an efficiency of72.5%.The experimental results show that the synchronous switching control piezoelectric motor hasexcellent characteristics.
     In the theoretical study of harmonic vibration combining type of piezoelectric motor, the waveform combining method based on multiple tuning fork structure (MTFS) is proposed for the first time. The theoretical basis of waveform synthesis is analyzed systematically, and the characteristic and the application of waveform synthesis are researched, the frequency coupling process based on MTFS is described in detail. A three level tuning fork is designed and manufactured with the help of ANSYS software, and the proportion ofthe reverse resonance frequencies of first, second and third order is1:2.00:2.99which proves the frequency is well coupled. With the same drive amplitude and corresponding resonant frequency, the Q factors are5617,4883and3515separately. Four typical resonant waveforms, sawtooth wave, square wave, sine half-wave rectifier and sine wave rectifier, are synthesized approximately, which proves the correctness and feasibility of theoretical analysis.
     Based on the theory of harmonic synthesis, the application on harmonic vibration combining piezoelectric motor is studied. According to the mechanism of inertia impact piezoelectric motor, the structure of the harmonic sawtooth waveform driven vibrational piezoelectric actuator is found out using finite element analysis. The detailed design method is given, and prototype of piezoelectric motor is manufactured and the performance is tested. The curves of speed and displacement of piezoelectric transducer were measured, and are well matched with the theoretical analysis. The unloaded speed of piezoelectric motor is26.2mm/s, andthe maximum load capacity reached up tol N. The results of the experiments proved that the proposed piezoelectric motor had a good overall performance.
引文
[1].赵淳生,朱华.2008.超声电机技术的发展和应用[J].机械制造与自动化,2008年03期,1-9.
    [2].张福学,王丽坤.2001.现代压电学(上册)[M].北京:科学出版社.84.
    [3].赵淳生.面向21世纪超声电机技术的研究.中国工程科学,2002,14(2):86-91
    [4]A. L. W. Williams and W. J. Brown.1942. Piezoelectric motor [P]. US Patent No.2439499 (Aug.20,1942)
    [5]Lavrinenko V V, Nekrasov M. Piezoelectric motor[P]. Soviet Patent,217509,1965.
    [6]Yuji Akiyama, Present Status of Ultrasonic Motors in Japan, JEE, Apr.1987.76-80.
    [7]H.V. Barth, Ultrasonic drivenmotor, IBM Technical DisclosureBulletin,16 (7),2263,1973.
    [8]SashidaTandKenjo T, Anintroductionto Ultrasonic Motors, Clarendon Press.Oxford,1993.
    [9]Sashida T. Motor Device Utilizing Ultrasonic Oscillation. US Patent,4562374.1984-5-16.
    [10]S.Ueha, Present status of ultrasonicmotors, IEEE Ultrasonic Symposium,1989.749-753.
    [11]胡敏强.超声电机的研究及其应用[J].微特电机,2000,(5):8-24.
    [12]Scott L. Sharp, Jeffery S.N. Paine, Jonathan D. Blotter. Design of a Linear UltrasonicPiezoelectric Motor[J].Journal of Intelligent Material Systems and Structures21(10): 961-973,2010.
    [13]Dembele Sounkalo, Rochdi Karima. A three DOF linear ultrasonic motor for transport and micropositioning[J].Sensors and Actuators,125(2):486-493,2006.
    [14]Zhaoa Su, Twiefel Jens, Wallaschek Joerq. Design and experimental investigations of high power piezoelectric transducers for a novel squeeze film journal bearing[C]. Proceedings of SPIE-The International Society for Optical Engineering,7288,72881G,2009.
    [15]Friend J R, Satonobu J, Nakamura K, Ueha S, Stutts D S. A single-element tuning fork piezoelectric linear actuator[J].IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control,50(2):179-186,2003.
    [16]Lee Won-Hee, Kang Chong-Yun, Paik Dong-Soo, et al. Butterfly-shaped ultra slim piezoelectric ultrasonic linear motor[J].Sensors and Actuators,168,137-130,2011.
    [17]韩文香基于螺旋电极扭转驱动器的冲击式旋转压电马达[D]合肥,中国科学技术大学,2009.
    [18]曲建俊,张国际,宋宝玉.国内外弯曲旋转微超声马达研究新进展[J].微机电,2005,38(4):72-75.
    [19]周铁英,董蜀湘.环形三叠片超声振子及用其箝位的微动马达.中国发明专利,ZL89109320.1989-12-21.
    [20]冯志华,潘成亮,马玉婷等.一种利用离心力原理实现流体流动的压电陶瓷泵.中国发明专利申请号:200810233989.2008-12-19.
    [21]W.X. Han, Q. Zhang, Y.T. Ma, C.L. Pan, and Z.H. Feng, An impact rotary motor based on a fiber torsional piezoelectric actuator [J], Review of Scientific Instruments,80 (1) (2009) 014701.
    [22]赵宏伟,吴博达,程光明等.高精度压电步进直线驱动器[J].吉林大学学报(工学版),2006,36(3):350-354.
    [23]Giraud, F.; Lemaire-Semail, B.; Aragones, J.; Robineau, J. P.; Audren, J.-T., Stability analysis of an ultrasonic motor for a new wave amplitude control [J]. Industry Applications, IEEE Transactions on 2009,45 (4),1343-1350.
    [24]程光明,杨志刚,曾平.双驱动足回转式压电马达初步研究[J].压电与声光.1995,17(6):15-18.
    [25]程光明,曾平,杨志刚等.超声压电马达矩形复合板振子的耦合振动分析[J].压电与声光.1996,18(6):386-389.
    [26]杨志刚,程光明,郑学澜.矩型板压电振子型超声马达[J].吉林工业大学学报.1994.24(1):31-37.
    [27]陈维山,张帆,刘军考.新型超声换能器式直线驻波马达的研究[J].压电与声光.2004.26(1):24-26,30.
    [28]陈在礼,李有光.新型行波超声电机设计[J].哈尔滨商业大学学报(自然科学版).2007.23(6):669-672.
    [29]李有光,陈在礼,陈维山等.柱面驱动新型行波超声电机的研究[J].西安交通大学学报. 2008.42(11):1391-1393.
    [30]张东华陈在礼李有光.新型行波压电电动机的结构研究及理论分析[J].机械工程学报.2006.42:139-142.
    [31]Liu, Y. X.; Chen, W. S.; Liu, J. K.; Shi, S. J., A High-Power Linear Ultrasonic Motor Using Longitudinal Vibration Transducers With Single Foot. Ieee T Ultrason Ferr 2010,57 (8), 1860-1867.
    [32]易幼平.双向驱动纵扭复合型超声马达理论研究.中南大学.博士学位论文.2004:12-15
    [33]杨淋.纵扭复合型超声电机的研究.南京航空航天大学.博士学位论文.2010:3.
    [34]时运来.新型直线超声电机的研究及其在运动平台中的应用.南京航空航天大学.博士学位论文.2012:2.
    [35]邢继春.旋转惯性压电电机研究.燕山大学.博士学位论文.2012:3.
    [36]张铁民.超声电机快速响应装置的设计与分析[J].现代机械,2000,4:29-31.
    [37]Zheng Wei, Zhao Chunsheng. Test of mechanical characteristics of ultrasonic motor under high temperature condition [J]. Optics and Precision Enginering,2008,16(12):2313-2319.
    [38]郑伟,赵淳生.低温环境下超声电机定子特性[J].南京航空航天大学学报,2009,41(1):1-5.
    [39]芦丹,郑伟,赵淳生.真空环境下超声电机的速度测试与控制[J].光学精密工程,2008,16(7):1218-1222.
    [40]史敬灼,周鲁英.超声电机系统最大效率控制研究现状与展望[J].微电机,2009,2:64-66.
    [41]陈乾伟,黄卫青,赵淳生.超声电机寿命测试的方法研究[J].振动、测试与诊断,2004,1:19-22.
    [42]王彦利。超声波电机梯度摩擦材料设计及匹配行为研究[D]。哈尔滨:哈尔滨工业大学机械设计及理论学科博士学位论文,2011:5-16.
    [43]Qu J J, Zhou N N, Wang Y L. Experimental study of air squeeze effect on high-frequency frictioncontact[J]. Tribology International,2010,43:2190-2195.
    [44]赵淳生.对发展我国超声电机技术的若干建议[J].微电机,2006,39(2):64-67.
    [45]Manuspiya S, Laoratanakul P. Uchino K. Integration of a piezoelectric transformer and an ultrasonic motor[J]. Ultrasonics,2003:83-87.
    [46]Ultra high vacuum system for chemical analysis and thickness measurement. Co. Kyocera,Israel,2000
    [47]T. Taknao, et al., Same Phase drive-type ultrasonic motors using two degenerate Bendingvibrationmodesofadisk,IEEETrans.UFFC.1992,39(2).180-186
    [48]M. Umeda, et al., Doubbell-shaped small sized hybrid ultrasonic motor, Jpn. J. APPI. Phs., 1989,29.191-193
    [49]SQUIGGLE motor overview. http://www.newscaletech.com/downloads.html,2007-6-6.
    [50]Ken Higuchi. Automatic Micro Manipulation System for Cell Manipulation http://www.intellect.Pe.u-tokyo.ac.jp/research/manipulator/manipulator_e.html
    [51]A Ferreira, P Minotti. High-performance load-adaptive speed control for ultrasonic motors[J]. Control Engineering Practice,1998,6(1):1-13.
    [52]Chong-Yun Kang, Kyoung-Ho Yoo, Hyun-Phill Ko, et al. Analysis of driving mechanism fortiny piezoelectric linear motor. [J] Electroceram,2006,17:609-612.
    [53]Oh C H, Choi J H, Nam H J, et al. Ultra-compact, zero-power magnetic latching piezoelectric inchworm motor with integrated position sensor[J]. Sensors and Actuators A:Physical,2010, 158(2):306-312.
    [54]Jorg Wallaschek. Piezoelectric ultrasonic motors [J]. Journal of Intelligent Material Systems andAtructures, Vol.6,1995,71-83.
    [55]Kenji Uchino. Piezoelectric ultrasonic motors:overview [J]. Smart Mater.Struct. A Vol.7, 1998,273-285.
    [56]Takeshi Morita. Miniature piezoelectric motors [J]. Sensors and Actuators. Vol.103, No.3, 2003,291-300.
    [57]陈维山,赵学涛,刘军考等.压电超声波马达发展现状及研究方向[J].电机与控制学报.2006,10(5):498-502.
    [58]SPANNER K. Survey of the various operating principles of ultrasonic piezomotors [C].Presented at the Actuator 2006,10th International Conference on New Actuators, BremenGermany,2006,414-421.
    [59]Jaehwan kim and Jin-Ho Lee. Self-moving cell linear motor using piezoelectric stackactuators [J].Smart Materials and Structures.2005,14:934-940.
    [60].Timothy Galante, Jeremy Framk, Julien Bernard, et al. Lesieutre andGary H. Koopmann. Design, Modeling, and performance of a high force piezoelectricinchworm motor [J]. Journal of Intelligent Material Systems and Structures.1999,10:962-972.
    [61]Sang-Chae Kim and Soo Hyun Kim. Precise rotary motor by inchwrom motion usingdual wrap belts [J].Review of Science Instruments.1999,70(5):2546-2550.
    [62]Weisong Wang, Svetlana Tatic-Lucic, Walter Brown, et al. Precision in-package positioning with a thermal inchworm [J].Sensors andActurators A.2008,142:316-321.
    [63]J. Mendes, M. Nishimura, K. Tomizawa, et al. Printed boardpositioning system using impact drive mechanism [C]. Proceedings of the SICE AnnualConference.1996,1123-1128.
    [64].T. Higuchi, Y. Yamagata, K. Furutani, et al. Precise positioning mechanismutilizing rapid deformation of piezoelectric elements [C]. IEEE.1987,222-226.
    [65]W.X. Han, Q. Zhang, Y.T. Ma, C.L. Pan, and Z.H. Feng, An impact rotary motor based on a fiber torsional piezoelectric actuator, Review of Scientific Instruments,2009,80 (1) 014701.
    [66].Takeshi Morita, Minoru K. Kurosawa, Toshiro Higuchi. A cylindrical micro-ultrasonicmotor (stator transducer size:1.4mm in diameter and 5.0mm long) [J]. Ultrasonics,2000,38:33-36.
    [67].Takefumi Kanda, Akira Makino, Tomohisa Ono, et al. A micro ultrasonic motor using a micro-machined cylindricalbulk PZT transducer [J]. Sensors andActuators A,2006,127:131-138
    [68].Xiangcheng Chu, Long Ma, Longtu Li. A disk-pivot structure micro piezoelectric actuator using vibration mode B11[J]. Ultrasonics,2006,44:561-564.
    [69].Yongrae Roh, Jaehwa kwon and Susung Lee. Development of a new standing wavetype ultrasonic linear motor [C]. Proc. SPIE,2002,4701:345-352.
    [70].Bo Wang, J. Y. Dai, Jifeng Guo. Standing Wave-type bi-directional linear moving ultrasonic motor using plates and weak links [C]. Proc. SPIE,2007,6423:64232G1-8.
    [71].J. T. Leinvuo, S. A. Wilson, R. W. Whatmore, et al. Anew flextensional piezoelectric ultrasonic motor-design, fabrication and characterization [J]. Sensors and ActuatorsA,2007,133: 141-151.
    [1]K. Spanner, Survey of the various operating principles of ultrasonic piezomotors, in:Presented at the ACTUATOR 2006,10th International Conference on New Actuators, Bremen, (2006) 414-421.
    [2]J. Frank, G.H. Koopmann, W. Chen, G.A. Lesieutre, Design and performance of a high force piezoelectric inchworm motor, Smart Structures and Materials 1999:Smart Structures and Integrated Systems, Pts 1 and 2 3668 (1999) 717-723.
    [3]P.E. Tenzer, R. Ben Mrad, A systematic procedure for the design of piezoelectric inchworm precision positioners, IEEE-ASME Transactions on Mechatronics 9(2) (2004) 427-435.
    [4]G. Powers, Q. Xu, J. Smith, The next generation of Inchworm actuators evolves with nanometer resolution, multi-millimeter range and power-off hold, Smart Structures and Materials 2004:Industrial and Commercial Applications of Smart Structures Technologies 5388 (2004) 155-166.
    [5]J. Li, R. Sedaghati, J. Dargahi, D. Waechter, Design and development of a new piezoelectric linear Inchworm(?) actuator, Mechatronics 15 (6) (2005) 651-681.
    [6]T. Morita, R. Yoshida, Y. Okamoto, M.K. Kurosawa, T. Higuchi, A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control 46 (6) (1999) 1439-1445.
    [7]Z.Y. Duan, Q.K. Wang, Development of a novel high precision piezoelectric linear stepper actuator, Sensors and Actuators A-Physical 118 (2) (2005) 285-291.
    [8]W.X. Han, Q. Zhang, Y.T. Ma, C.L. Pan, and Z.H. Feng, An impact rotary motor based on a fiber torsional piezoelectric actuator, Review of Scientific Instruments,80 (1) (2009) 014701.
    [9]Y. Roh, J. Kwon, Development of a new standing wave type ultrasonic linear motor, Sensors and Actuators A-Physical 112 (2-3) (2004) 196-202.
    [10]Y.X.Liu, W.S. Chen, J.K. Liu, S.J Shi, A cylindrical standing wave ultrasonic motor using bending vibration transducer, Ultrasonics 51 (5) (2011) 527-531.
    [11]B. Watson, J. Friend, L. Yeo, Piezoelectric ultrasonic resonant motor with stator diameter less than 250 μm:the Proteus motor, Journal of Micromechanics and Microengineering 19(2) (2009).
    [12]W.S. Kim, C.H. Yun, S.K. Lee, Nano positioning of a high power ultrasonic linear motor, Japanese Journal of Applied Physics 47(7) (2008) 5687-5692.
    [13]Q. Zhang, C. L. Pan, Y. T. Ma, F.R. Kong, Z. H. Feng, Piezoelectric rotary motor based on active bulk torsional element with grooved helical electrodes, IEEE-ASMETransactions on Mechatronics 17(2) (2012)260-268.
    [14]T.G Park, D.S Jeong, M.H. Kim, T.K. Song, A study on the rotary-type ultrasonic motor using a longitudinal-torsional vibration converter, Materials Chemistry and Physics 98 (1) (2006) 1-4.
    [15]D. Sun, S. Wang, J. Sakurai, K.-B. Choi, A. Shimokohbe, S. Hata, A piezoelectric linear ultrasonic motor with the structure of a circular cylindrical stator and slider, Smart Materials and Structures 19 (4) (2010) 045008.
    [16]K.F. Hii, R.R. Vallance, M.P. Menguc, Design, operation, and motion characteristics of a precise piezoelectric linear motor, Precision Engineering 34 (2) (2010) 231-241.
    [17]E.L. Owen, SCR is 50 years old, IEEE Industry Applications Magazine 13 (6) (2007) 6-10.
    [18]张福学主编,王丽坤副主编.现代压电学(上册),北京:科学山版社,2001,84-90.
    [19]IEEE Standard on Piezoelectricity.The Institute of Electrical and Electronic Engineers,Inc. 1988.
    [20]Y. Tong and B. H. Li.An accurate continuous calibration system for high voltage currenttransformer.Review of Scientific Instruments.2011,82.
    [21]Owen E L. Fiftieth anniversary of modern power electronics:The Silicon Controlled Rectifier[C]//Electric Power,2007 IEEE Conference on the History of. IEEE,2007:201-211.
    [221刘建芳,杨志刚,赵宏伟,等.新型压电精密步进旋转驱动器[J].吉林大学学报(工学版),2006,36(5):673-677.
    [1]倪振华振动力学[M].合肥:中国科学技术大学出版社.2007,367-376.
    [2]郭兰满,黄迪山,朱晓锦.传递矩阵法分析轴向受力智能梁的振动和稳定性[J].振动.测试与诊断,2011,31(1):78-84.
    [3]Park J, Keller S, Cannan G P, et al. Design and testing of a mesoscale actuator device [R], Active control technology for enhanced performance operational capabilities of military aircraft, land vehicles and sea vehicles, (2001) 18-1-18-6.
    [4]Nishimura T, Hosaka H, Morita T. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer [J]. Ultrasonics,2012,52(1):75-80.
    [5]Li H, Chen Y, Dai L. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy[J]. Applied Physics Letters,2008,92(15): 151903-151903-3.
    [6]Sahin O, Yaralioglu G, Grow R, et al. High-resolution imaging of elastic properties using harmonic cantilevers[J]. Sensors and Actuators A:Physical,2004,114(2):183-190.
    [7]Morita T, Murakami H, Yokose T, et al. A miniaturized resonant-type smooth impact drive mechanism actuator[J]. Sensors and Actuators A:Physical,2012,178:188-192.
    [1]李艳军.也谈“共振”的定义[J].物理教师,2007,1.
    [2]刘恒战.气门弹簧共振断裂的预防[J].机电工程技术,2007,36(7):94-96.
    [3]郭祖培,郭京平.汽车点火综合性能测试台的共振分析及预防措施[J].汽车技术,2000,9:007.
    [4]谭华,胡广.喇叭共振和预防研究[J].电子设计工程,2012,20(15):128-129.
    [5]Uchino K. Piezoelectric ultrasonic motors:overview[J]. Smart Materials and Structures,1998, 7(3):273-285.
    [6]Binnig G, Quate C F, Gerber C. Atomic force microscope[J]. Physical review letters,1986, 56(9):930-933.
    [7]Newton D, Garcia E, Horner G C. A linear piezoelectric motor[J]. Smart materials and structures,1998,7(3):295-304.
    [8]Hagelin P M, Solgaard O. Optical raster-scanning displays based on surface-micromachined polysilicon mirrors[J]. Selected Topics in Quantum Electronics, IEEE Journal of,1999,5(1): 67-74.
    [9]Han W X, Zhang Q, Ma Y T, et al. An impact rotary motor based on a fiber torsional piezoelectric actuator[J]. Review of Scientific Instruments,2009,80(1):014701-014701-5.
    [10]黄长艺,严普强.机械工程测试技术基础(第2版).北京机械工业出版社,2000,13.
    [11]Nishimura T, Hosaka H, Morita T. Resonant-type Smooth Impact Drive Mechanism (SIDM) actuator using a bolt-clamped Langevin transducer[J]. Ultrasonics,2012,52(1):75-80.
    [12]Morita T, Murakami H, Yokose T, et al. A miniaturized resonant-type smooth impact drive mechanism actuator[J]. Sensors and Actuators A:Physical,2012,178:188-192
    [13]Zhong Q, Inniss D, Kjoller K, et al. Fractured polymer/silica fiber surface studied by tapping mode atomic force microscopy[J]. Surface Science Letters,1993,290(1):L688-L692.
    [14]Hillenbrand R, Stark M, Guckenberger R. Higher-harmonics generation in tapping-mode atomic-force microscopy:Insights into the tip-sample interaction[J]. Applied Physics Letters, 2000,76(23):3478-3480.
    [15]Stark R W, Heckl W M. Higher harmonics imaging in tapping-mode atomic-force microscopy[J]. Review of Scientific Instruments,2003,74(12):5111-5114.
    [16]Sahin O, Atalar A. Simulation of higher harmonics generation in tapping-mode atomic force microscopy[J]. Applied Physics Letters,2001,79(26):4455-4457.
    [17]Sahin O, Quate C F, Solgaard O, et al. Resonant harmonic response in tapping-mode atomic force microscopy[J]. Physical Review B,2004,69(16):165416.
    [18]Preiner J, Tang J, Pastushenko V, et al. Higher harmonic atomic force microscopy:imaging of biological membranes in liquid[J]. Physical review letters,2007,99(4):046102.
    [19]Crittenden S, Raman A, Reifenberger R. Probing attractive forces at the nanoscale using higher-harmonic dynamic force microscopy[J]. Physical Review B,2005,72(23):235422.
    [20]Balantekin M, Atalar A. Enhanced higher-harmonic imaging in tapping-mode atomic force microscopy[J]. Applied Physics Letters,2005,87(24):243513-243513-3.
    [21]Lozano J R, Garcia R. Theory of multifrequency atomic force microscopy[J]. Physical review letters,2008,100(7):076102.
    [22]Hillenbrand R, Stark M, Guckenberger R. Higher-harmonics generation in tapping-mode atomic-force microscopy:Insights into the tip-sample interaction[J]. Applied Physics Letters, 2000,76(23):3478-3480.
    [23]Stark M, Stark R W, Heckl W M, et al. Spectroscopy of the anharmonic cantilever oscillations in tapping-mode atomic-force microscopy[J]. Applied Physics Letters,2000,77(20):3293-3295.
    [24]Stark M, Stark R W, Heckl W M, et al. Inverting dynamic force microscopy:From signals to time-resolved interaction forces[J]. Proceedings of the National Academy of Sciences,2002, 99(13):8473-8478.
    [25]Legleiter J, Park M, Cusick B, et al. Scanning probe acceleration microscopy (SPAM) in fluids:Mapping mechanical properties of surfaces at the nanoscale[J]. Proceedings of the National Academy of Sciences of the United States of America,2006,103(13):4813-4818.
    [26]Sahin O, Yaralioglu G, Grow R, et al. High-resolution imaging of elastic properties using harmonic cantilevers[J]. Sensors and Actuators A:Physical,2004,114(2):183-190.
    [27]Ishii T, Shinkoda T, Ueha S, et al. Efficiency improvement of an ultrasonic motor driven with rectangular waveform[J]. Japanese journal of applied physics,1996,35(part 1):3281-3285.
    [28]Ming Y, Richardson R C, Levesley M C, et al. Performance improvement of rectangular-plate linear ultrasonic motors using dual-frequency drive[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,2004,51(12):1600-1606.
    [29]Li H, Chen Y, Dai L. Concentrated-mass cantilever enhances multiple harmonics in tapping-mode atomic force microscopy[J]. Applied Physics Letters,2008,92(15): 151903-151903-3.
    [30]Feldmann, H (1997). "History of the tuning fork. I:Invention of the tuning fork, its course in music and natural sciences. Pictures from the history of otorhinolaryngology, presented by instruments from the collection of the Ingolstadt German Medical History Museum".Laryngo-rhino-otology76(2):116-22.
    [31]黄强先,王毛翠,赵剑,等.石英音叉扫描探针显微镜[J].机械工程学报,2012,48(4):1-5.
    [32]Giessibl F J. High-speed force sensor for force microscopy and profilometry utilizing a quartz tuning fork[J]. Applied physics letters,1998,73(26):3956-3958.
    [33]Todorovic M, Schultz S. Miniature high-sensitivity quartz tuning fork alternating gradient magnetometry[J]. Applied physics letters,1998,73(24):3595-3597.
    [34]刘恒,何晓平,苏伟,等.微机械音叉谐振器动力学分析与仿真[J].传感技术学报,2009,22(3):325-330.
    [35]罗兵,董春生,吴美平.石英音叉陀螺不同谐振频率点性能分析[J].压电与声光,2009,31(3):312-314.
    [36]徐军,尤波,李欣,等.应用石英音叉谐振器的智能温度传感器[J].光学精密工程,2009,17(6):1453-1459.
    [37]姜涛,王安麟,刘广军,等.音叉振动式微机械陀螺输出电容的统计特性分析[J].机械工程学报,2007,43(8):114-118.
    [38]Hida H, Shikida M, Fukuzawa K, et al. Development of self-vibration/detection AFM probe using quartz tuning fork[J]. IEEJ Transactions on Electrical and Electronic Engineering,2009, 4(3):378-385.
    [39]Han S M, Benaroya H, Wei T. Dynamics of transversely vibrating beams using four engineering theories[J]. Journal of Sound and Vibration,1999,225(5):935-988.
    [40]Whitney S. Vibrations of cantilever beams:Deflection, frequency, and research uses[J]. Website:Apr,1999,23:10.
    [41]Castellanos-Gomez A, Agra'it N, Rubio-Bollinger G. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy[J]. Nanotechnology,2009,20(21):215502.
    [1]Higuchi T, Yamagata Y, Furutani K, et al. Precise positioning mechanism utilizing rapid deformations of piezoelectric elements[C]//Micro Electro Mechanical Systems,1990. Proceedings, An Investigation of Micro Structures, Sensors, Actuators, Machines and Robots. IEEE. IEEE, 1990:222-226.
    [2]Mendes J, Nishimura M, Tomizawa K, et al. Printed board positioning system using impact drive mechanism[C]//SICE'96. Proceedings of the 35th SICE Annual Conference. International Session Papers. IEEE,1996:1123-1128.
    [3]Morita T, Yoshida R, Okamoto Y, et al. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator[J]. Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on,1999,46(6):1439-1445.
    [4]Lim K J, Lee J S, Park S H, et al. Fabrication and characteristics of impact type ultrasonic motor[J]. Journal of the European Ceramic Society,2007,27(13):4159-4162.
    [5]Ken Higuchi. Automatic Micro Manipulation System for Cell Manipulation http://www.intellect.Pe.u-tokyo.ac.jp/research/manipulator/manipulator_e.html.
    [6]Han W X, Zhang Q, Ma Y T, et al. An impact rotary motor based on a fiber torsional piezoelectric actuator[J]. Review of Scientific Instruments,2009,80(1):014701-014701-5.
    [7]Qi Z, Liang P C, Ting M Y, et al. Piezoelectric rotary motor based on active bulk torsional element with grooved helical electrodes[J]. Mechatronics, IEEE/ASME Transactions on,2012, 17(2):260-268.
    [8]Morita T, Murakami H, Yokose T, et al. A miniaturized resonant-type smooth impact drive mechanism actuator[J]. Sensors and Actuators A:Physical,2012..
    [9]倪振华振动力学[M].合肥:中国科学技术大学出版社.2007,372

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700