利用酵母双杂交系统鉴定羽衣甘蓝ARC1与结球甘蓝SRK激酶结构域的相互作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自交不亲和性(Self—incompatibility, SI)是一种“钥匙和锁”形式防止开花植物自交的机制,研究比较深入的甘蓝等芸薹属植物的自交不亲和反应从S基因座的两个基因相互识别开始,雄性决定因子SCR (S locus cysteine-rich protein)与雌性决定因子SRK (S locus protein kinase)两个因子的相互识别,相同单倍型的花粉的信号由柱头乳突细胞外传至胞内,THL与SRK相分离并释放至细胞质中,SRK的激酶域随后激活ARC1 (Arm repeat containing),进一步将自交不亲和信号传至EX070A1,再通过后续的级联反应,最终导致自交不亲和。
     本研究利用酵母双杂交系统研究甘蓝自交不亲和反应中S位点受体激酶(SRK)的激酶域与ARC1间的相互作用。以羽衣甘蓝2003a和结球甘蓝E1为材料,利用PCR技术分别分离出羽衣甘蓝的ARC1和结球甘蓝的SRKJ (S位点受体激酶激酶结构域);构建以pGBKT7为载体的ARCla、ARClb、ARClc和ARC1d的重组诱饵质粒;以pGADT7为载体的SRKJ的重组猎物载体,进行了相互作用验证,研究结果为芸薹属植物自交不亲和反应的分子机理提供新内容。
     1.序列的克隆分析
     ①所克隆的羽衣甘蓝ARC1的基因序列长度为1992 bp且不含内含子,与已报道甘蓝的ARCl的cDNA序列具有99.7%的相似度,二者编码的蛋白质序列仅有4个位点的氨基酸差异;②所得的羽衣甘蓝的ARC1基因编码的蛋白质没有信号肽,氨基酸序列存在6个磷酸化位点;;⑧所得的ARC1基因与甘蓝型油菜ARCl的cDNA序列相似度达到99.4%,二者编码的蛋白质在一级结构上的一致性高达到92.9%,存在45个位点的氨基酸差异。④对蛋白的序列分析发现ARC1包含U-box和5个连续重复ARM两个重要的区域,经Blast与Vector NTI分析发现:羽衣甘蓝与甘蓝型油菜U-box区存在5个位点的氨基酸差异,ARM区域有14个位点的氨基酸差异。结球甘蓝的SRK激酶域与羽衣甘蓝SRK激酶域的氨基酸序列的相似性达到91.0%,376个氨基酸序列中存在46个差异氨基酸,而这46个差异氨基酸中有12个为相似性氨基酸。SRK激酶域氨基酸序列存在一个高变区,高变区位于序列第250个氨基酸与270个氨基酸之间。
     2.酵母双杂交重组诱饵质粒的毒性及自激活检测
     Y2HGold [pGBKT7-ARCla]、Y2HGold [pGBKT7-ARClb]、Y2HGold [pGBKT7-ARClc]、Y2HGold [pGBKT7-ARCld]、Y2HGold [pGBKT7-ARCla]和Y2HGold [pGBKT7]转化株在缺陷型SD/-Trp平板上生长状态良好,并且菌斑大小无明显差异;由此表明构建的4组重组诱饵质粒的表达对酵母细胞无毒性作用。另外,pGBKT7-ARC1四个实验组在缺陷型SD/-Trp、SD/-Trp/x-a-gal平板上均能生长、在SD/-Trp/x-a-gal/AbA平板上不生长,其中在SD/-Trp/x-a-gal平板上生长的菌落无明显蓝色出现,说明四个实验组在酵母细胞中没有自激活现象。
     3.酵母双杂交重组猎物质粒的毒性检测
     将pGADT7空载和pGADT7-SRKJ转化Y187,发现空载和重组表达载体在SD/-Leu平板上生长状态良好,由此表明重组表达质粒pGADT7-ARCl成功转入酵母细胞Y187且无毒性作用。
     4.相互作用检测
     三个实验组Y2HGold [pGBKT7-ARCla]xY187 [pGADT7-SRKJ]、Y2HGold [pGBKT7-ARClc]×Y187 [pGADT7-SRKJ]、Y2HGold [pGBKT7-ARCld]×Y187 [pGADT7-SRKJ]同时激活了4种报告基因AURl-C、MELl、HIS3、ADE2;表明羽衣甘蓝ARC1与结球甘蓝的SRK激酶结构域能够发生相互作用,且互作的区域位于连续的臂重复区,其与结球甘蓝ARC1的氨基酸差异不足以引起互作区的正确构象改变。研究结果为芸薹属植物自交不亲和反应的分子机理提供新内容。
Self-incompatibility is fascinating molecular "lock-and-key" mechanisms preventing self-fertilization in flowering plants, cross-incompatibility occurs between different individuals that have the same incompatibility type when Self-incompatibility occurs between the same haploid pollen and pistil. Members of the Brassicaceae family have a SSI (sporophytic SI) system, the SSI response of Brassica oleracea results from Recognition of SRK and self-SCR which are encoded by two genes at S locus, then the response of recognition between stigma and self pollen is transmitted to internal cells. THL is separated from SRK and is released into cytoplasm. At the same time, ARC1 is activated by the kinase domain of SRK. Then the response of ARC1 and SRK is passed to EXO70A1, then the subsequent cascade of reactions ultimately lead to self-incompatibility.
     In this study, a yeast two-hybrid system was used to investigate the interaction between ARC1 and the Kinase Domain of SRK. The sequences of SRK Kinase Domain (SRKJ) and different-length ARCla, ARClb, ARClc and ARC1d of Brassica oleracea were amplified by PCR, then SRKJ was subcloned into pGADT7 and different longth ARC1 were subcloned into pGBKT7 vectors. After sequencing, the plasmids were transformed into the yeast cells, and the interaction between the truncated fragments of ARC1 from Brassica oleracea var. acephala and kinase domain of SRK from Brassica oleracea var. capitata L were tested by Yeast Two-Hybrid System provides some insights into the molecular mechanism of self-incompatibility in Brassica.The results showed:
     1 Cloning and analysis of sequence
     The results indicate that the gDNA, consisting of 1992 bp without introns, encodes a 663 amino acid ORF which has 99.7%similarity to Brassica oleracea var acephala (sequence accession:EU344909), containing a total of four amino acid polymorphisms. It has 45 amino acid differences when compared to B. napus (AF024025), with which it shares a 92.9%similarity. The ARC1 has no signal peptide, but has six phosphorylation sites; Sequence analysis also demonstrated that the ARC1 protein coding region contains U-box and ARM areas. Vector NTITM analysis indicated that there were 5 amino acid differences contained in the U-box region and 14 amino acid differences in the ARM region between the cloned Brassica oleracea var. acephala and Brassica napus. The sequences of Kinase Domain of SRK (SRKJ) was amplified by PCR from Brassica oleracea var. apitata L. the length of SRKJ is 1131bp and encodes 376 amino acid ORF which has 91.0%similarity to Kinase Domain of SRK from Brassica oleracea var acephala, and has 12 similarityamino acid in46 differences amino acid; there is a hypervariable region in Kinase Domain of SRK and located between the sequence of 250 amino acids and 270 amino acids.
     2 The toxicity and Autoactivation detection of recombinant bait plasmids
     The yeast which were transformed by Y2HGold [pGBKT7-ARC1a], Y2HGold [pGBKT7-ARClb]、Y2HGold [pGBKT7-ARClc]、Y2HGold [pGBKT7-ARCld]、Y2HGold [pGBKT7-ARCla] Y2HGold [pGBKT7] were cultured on SD/-Trp plates at 30℃. After three days, there were white clones in the plates. The result showed that the recombinant bait plasmids pGBKT7-ARC1 were confirmed not toxic to yeast. In addition, four experimental groups could grow on SD/-Trp, SD/-Trp/x-a-gal plates but not grow on SD/-Trp/x-a-gal/AbA plates, the colonies did not turn blue on SD/-Trp/x-a-gal plates. The results indicates that the baits were confirmed not activate the expression of reporter genes by the test for autoactivation.
     3 The toxicity detection of recombinant prey plasmid pGADT7-SRKJ
     The empty vector pGADT7 and recombinant prey plasmid pGADT7-SRKJ were transformed into Y187, the yeast of Y187 [pGADT7] and Y187 [pGADT7-SRKJ] grew well on the SD/-Leu plates. The results suggested that recombinant plasmid pGADT7-SRKJwas successfully transformed into Y187 yeast cells and was not toxic to yeast cell Y187.
     4 The interaction detection between different truncated fragments of ARCl and SRKJ
     Three experimental groups Y2HGold [pGBKT7-ARCla]×Y187 [pGADT7-SRKJ], Y2HGold [pGBKT7-ARClc]×Y187 [pGADT7-SRKJ] and Y2HGold [pGBKT7-ARCld]×Y187 [pGADT7-SRKJ] could grow on QDO/x/A nutritional media with transcription activation of the reporter gene AUR1-C, MEL1, HIS3, ADE2, it indicated that there exists interaction between ARC1 from Brassica oleracea var. acephala L and SRK from Brassica oleracea var. capitata L and the interaction domain was located on ARM repeats, and the fifference at amino acid level with the ARC1 of Brassica oleracea var. capitata L is not enough to change the conformation in the interaction region. All above mentioned provides some insights into the molecular mechanism of self-incompatibility in Brassica.
引文
[1]杨红花,秦宏伟.植物白交不亲和机制的研究进展.泰山学院学报,2009,31(3):81-85
    [2]杨继涛.芸鉴属植物白交不亲和行研究进展.陕西农业科学,2008(3):115-121
    [3]Darwin CR The Effects of Cross and Self-Fertilization in the Vegetable Kingdom. John Murray, 1876
    [4]East EM. The distribution of self-sterility in flowing plants. Proc Am Phil Soc.1940,82:449-518
    [5]Bateman, AJ. Self-incompatibility systems in angiosperms. Ⅲ. Cruciferae. Heredity,1955,9:51-68
    [6]程萍,冯仁军,袁克华,张银东.植物白交不亲和性的分子研究.安徽农业科学,2008,36(32):13984-13986
    [7]zhang Lin,Tan Xiao feng. Recent advances in identification of male specificity determinant and its function in S-RNase-medizted gametophytic self-incompatibilityJournal of Forestry Research,2006,17(2):124-128
    [81杨小华.植物配子体白交不亲和性的生物学基础·广西师范大学学报,1999,3(1):95-100
    [9]蓝兴国,于晓敏,李玉华. 配子体白交不亲和信号转导的研究进展.遗传,2005,27(4):677-685
    [10]Vieira J, Fonseca NA, Vieira CP () An S-RNase-based gametophytic self-incompatibility system evolved only once in Eudicots. Journal of Molecular Evolution.2008,61:179-190
    [11]Entani T, Iwano M, Shiba H, Che FS, Isogai A, Takayama S. Comparative analysis of the self-incompatibility (S-) locus region of Prunus mume:identification of a pollen-expressed F-box gene with allelic diversity. Genes Cells,2003,8:203-213
    [12]Hinata K, Watanabe M, Yamakawa S, Satta Y, Isogai A. Evolutionary aspects of the S-related genes of the Brassica self-incompatibility system:synonymous and nonsynonymous base substitutions. Genetics,1995,140:1099-1104
    [13]Boyes DC, Nasrallah ME, Vrebalov J, Nasrallah JB. The selfincompatibility (S) haplotypes of Brassica contain highly divergent and rearranged sequences of ancient origin, Plant Cell,1997, 9:237-247
    [14]Nasrallah ME. Genetic control of quantitative variation in self-incompatibility protein detected by immunodiffusion. Genetics 1974,76:45-50
    [15]Stein JC, Howlett B, Boyes DC. Molecular cloning of a putative receptor protein kinase encoded at the self-incompatibility locus of Brassica oleracea. PNAS,1991,88:8816-8820
    [16]Takayama S, Shimosato H, Shiba H. Direct ligand-receptor complex interaction controls Brassica self-incompatibility. Nature,2001,413:534-538
    [17]Schopfer CR, Nasrallah ME, Nasrallah JB. The male determinant of self-incompatibility in Brassica. Science,1999,286:1697-1700
    [18]Shimosato H, Yokota N, Shiba H, Iwano M, Entani T, Che FS, Watanabe M, Isogai A, Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell.2007,19(1):107-17
    [19]Gu T, Mazzurco M, Sulaman W, Matias DD, and Goring DR. Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase. Proc Natl Acad Sci.1998,95:382-387
    [20]Goring DR, and Walker JC, Self-rejection, a new kinase connection. Science, 2004,303:1474-1475
    [21]杨昆,张贺翠,Richard Converse,朱利泉,杨永军,薛丽琰,罗兵,常登龙,高启国,于小佳.甘蓝白交不亲和信号转导元件ARC1-EXO70A1的相互作用.作物学报,2011,37(12):2136-2144
    [22]赵永斌,朱利泉,王小佳.植物孢子体白交不亲和信号转导功能分子研究进展.生物技术通讯,2004,02:176-178
    [23]Nasrallah JB. Evolution of the Brassica self-incompatibility locus:A look into S-locus gene polymorphism. Proc Natl Acad Sci USA,1994,94:9516-9519
    [24]Stein JC, and Nasrallah JB. A plant receptor-like gene, the S-locus receptor kinase of Brassica oleracea L. encodes a functional serine/threonine kinase.Plant Physiology,1993,101: 1103-1106.
    [25]Rro Fujimoto, Testu Sugimura,Takeshi Nishio,Gene conversion from SLG to SRK resulting in self-compatibility in Brassica rape.FEBS leters,2006,580:525-430
    [26]Kusaba M, Nishio T, Satta Y, Hinata K, Ockendon DJ. Striking sequence similarity in inter-and intra-specific comparisons of class I SLG alleles from Brassica oleracea and Brassica campestris:implications for the evolution and recognition mechanism.Proceedings of the National Academy of Sciences (USA),1997,94:7673-7678.
    [27]Ryo Fujimoto,Tetsu Sugimura,Eigo Fukai,Takeshi Nishio.Suppression of gene expression of a recessive SP11/SCR allele byan untranscribed SP11/SCR allele in Brassica self-incompatibility, Plant Mol Biol,2006,61:577-587
    [28]杨红,朱利泉,张贺翠.利用酵母双杂交系统鉴定甘蓝SCR与SRK胞外域片段间的相互作用.中国农业科学,2011,44(9):1953-1962
    [29]罗兵,薛丽琰,朱利泉,张贺翠,彭一波,陈松,杨红,杨昆,李成琼,王小佳. 利用酵母双杂交法检测甘蓝SCR与SRK之间的相互作用.作物学报,2011,37(4):579-586
    [30]StoneS L., Anderdon EM, Mullen RT, and Goring DR, ARCI is an E3 ubiquitin ligase and promotes the ubiquitination of proteins during the rejection of self-incompatibility Brassica pollen, Plant Cell,2003,15(4):885-898
    [31]Suzukl G, Kai N, Hisrose T. Genomic Organization of the S-hmus:Identification and Characterization of Genes in the SI-/SI/K Re, on of S9 Haplotype of Brassica rapa. Genetics, 1999,153(1):391-400.
    [32]Vincent Castric, Xavier Vekemans. Evolution under strong balancing selection:how many codonsdetermine specificity at the female self-incompatibility gene SRK in Brassicaceael BMC Evolutionary Biology,2007,7:1321-15
    [33]Takasaki T, Hatakeyama K, Suzuki G. The receptor kinase determines self-incompatibility in Brassica stigma. Nature,2000,403:913-916
    [34]Gu T, Mazzurco M, Sulaman W, Matias DD, Goring DR, Binding of an arm repeat protein to the kinase domain of the S-locus receptor kinase, Proc. Natl. Acad. Sci,1998,95(1):382-387
    [35]牛义,王小佳,朱利泉.甘蓝自交不亲和信号传导元件ARCl的体外表达及其与SRK相互作用验证,作物学报,2009,35(7):1202-1208
    [36]Stone SL, Arnoldo M, and Goring DR. A break-down of Brassica self-incompatibility in ARC1 antisense transgenic plants, Science,1999,286:1729-1731
    [37]Groves MR, and Barford D, Topological characteristics of helical repeat proteins, Current Opinion in Structural Biology,1999,9(3):383-389
    [38]Koegl M, Hoppe T, Schlenker S, et al. A novel ubiquitination factor, E4, is involved in multiubiquitin chain assembly. Cell,1999,96:635-644
    [39]王镜岩,朱圣庚,徐长法. 生物化学第三版上册.高等教育出版社,2005,12:207-212
    [40]周岩,何男男,魏琦超,王文洁,薛晓锋,张胜利.同源异形域-亮氨酸拉链蛋白研究.湖北农业科学,2010,49(11):2913-2916
    [41]Hatzfeld M. The armadillo family of structural proteins[J]. Int. Rev. Cytol.,1999,186: 179-224
    [42]杨佳,蓝兴国,李玉华,植物U-box/ARM蛋白.植物生理学通讯,2008,44(6):1216-1222
    [43]Aravind L, Koonin EV. The U box is a modified RING finger:A common domain in ubiqnitination. Curr.Biol.2000,10:132-134
    [44]Ohi MD, Vander Kooi CW, Rosenberg JA。 Chazin WJ, Gould KL, Structural insights into the U-box, a domain associated with multi-ubiquitination. Nat Struct Biol,2003,10:250-255
    [45]Fields S, Song O, A novel genetic system to detect protein-protein interactions. Nature,1989,340 (6230):245-246
    [46]Shayantani Mukherjee, Sampali Bal and Partha Saha,Current science,2001,81(5):458-464
    [47]李向阳,张嘉保,任文郅,刘殿峰,酵母双杂交系统在蛋白质相互作用的应用.中兽医医药杂志,2011,1:26-28
    [48]郜尽,王海伙,李京敬,俞雁,酵母双杂交报告基因β-半乳粮苷酶活性测定方法的研究.上海交通大学学报,2009,02:236-240
    [49]Takuma Kamiya, Teruyo Ojima, Kanoko Sugimoto, Hideo Nakano, Yasuaki Kawarasaki,Quantitative Y2H screening:Cloning and signal peptide engineering of a fungal secretory LacA gene and its application to yeast two-hybrid system as a quantitative reporter, Journal of Biotechnology,2010,146:151-159
    [50]Sirpa Aho, Airi Arffman, Tiina Pummi, and Jouni Uitto, A Novel Reporter Gene MEL1 for the Yeast Two-Hybrid System,Analytical Biochemistry,1997,253:272-27'5
    [51]Watanabe M,Takasaki TT, oriyama KY, amakawa S,Is ogai A, Suzuki A, Hinata K., A high degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatible Brassica campestris L, Plant and Cell Physiology, 1994,35:1221-1229.
    [52]Bower MS, Matias DD, Fernandes CE, Mazzurco M, Gu T, Rothstein SJ, Goring DR, Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S locus receptor kinase, Plant Cell,1996,8(9):1641-50
    [53]Tantikanjana T, Nasrallah ME, Nasrallah and JB, Complex networks of self-incompatibility signaling in the Brassicaceae, Current Opinion Plant Biology,2010,13:-17
    [54]杨洋,高启国,宋明,牛义,唐青林,朱利泉,王小佳.甘蓝白交不亲和决定因子的体外表达和相互作用的检测.园艺学报,2009,36(3):355-362
    [55]蓝兴国,杨佳,赵昕,于凯,李玉花. 羽衣甘蓝授粉过程中柱头蛋白质的泛素化.植物生理学通讯,2010,46(3):228-230
    [56]王茂广.孢子体型自交不亲和反应臂重复蛋白ARCl. 生命科学,2007,2,19(1):86-89
    [57]Buchanan BB. Regulation of CO2 assimilation in oxygenic photosynthesis:the ferredoxin/thioredoxin system. Perspective on its discovery, present status, and future development. Archives of Biochemistry and Biophysics,1991,288:1-9
    [58]王瑞刚,王水平.外源蛋白表达系统及利用植物表达外源蛋白的特点与优势.生物学通报,2003,38(1):11-12
    [59]严晶,霍克克.双分子荧光互补技术及其在蛋白质相互作用研究中的应用.生物化学与生物物理进展.2006,3(6)589-595
    [60]陈菁.双分子荧光互补技术及其在蛋白质相互作用研究中的应用进展.生物医学工程研究,2008,27(4):302-306
    [61]刘东,朱利泉,王小佳.甘蓝白交不亲和信号传导SRK底物ARCl蛋白编码序列的克隆以分析.作物学报,2004,30(5):427-431
    [62]Rubinfeld B, Souza B, Albert I, and Muller O, Chamberlain SH, Masiarz FR, Munemitsu S, Polakis P, Association of the APC gene product with beta-catenin.Science,1993,262(5140): 1731-1734
    [63]Hatzfeld M. The armadillo family of structural proteins. Int. Rev. Cytol.1999,186:179-224.
    [64]Muasil Y, Shin SH, Stone SL. A large complement of the predicted Arabidopsis ARM repeat protein are member of the U-box E3 ubiquitin ligase family. Plant Physiol,2004,134(1):59-66.
    [65]Kyle A. Nordquist, Yoana N. Dimitrova, Peter S. Brzovic, et al. Structural and Functional Characterization of the Monomeric U-Box Domain from E4Bf.Biochemistry.2010, 49:347-355
    [66]高启国,宋明,牛义,杨昆,朱利泉,王小佳.甘蓝自交不亲和信号传导中THL1和SRK相互作用的体外检测.作物学报,2008,34(6):934-943
    [67]Samuel MA, Yee D, Haasen KE, Goring DR.'Self Pollen Rejection Through the Intersection of Two Cellular Pathways in the Brassicaceae:Self-Incompatibility and the Compatible Pollen Response. Self-Incompatibility in Flowering Plants,2008,11:173-191
    [68]Mazzurco M, Sulaman W, Elina H, Cock JM, Goring DR. Further analysis of the interactions between the Brassica S receptor kinase and three interacting proteins(ARCl, THL1 and THL2 in the yeast two—hybrid system. Plant Molecular Biology,2001,4 (3):365—376

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700