甘蓝SRK激酶结构域编码区的克隆及其与MLPK的双色FISH定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芸薹属自交不亲和性由S位点所控制。SRK基因是决定自交不亲和性反应的关键因子,前人已经从芸薹属中的甘蓝、甘蓝型油菜等物种中克隆出SRK基因。SRK基因的变异和表达量都会影响自交不亲和性。SRK基因的胞外域有着较大的多态性,变异常常发生在此编码区。相对于胞外域,激酶结构域的保守型较强。本文专门对SRK基因激酶结构域进行了克隆分析,以期从进化的角度探讨激酶结构域对于自交不亲和性的作用。除此之外,MLPK被证明也是SI反应中必不可少的一个因子,作为SRK下游元件起作用。本文针对这两个基因在SI中的重要性,利用FISH技术将SRK和MLPK进行物理定位,从而探索其在甘蓝基因组中的分布及其拷贝数。得到的主要研究结果如下:
     1.以结球甘蓝263、羽衣甘蓝AY627和甘蓝型油菜S11为材料,采用PCR、RT-PCR等技术,分别对SRK激酶结构域基因组DNA和cDNA进行了扩增、测序和序列分析,并构建了分子进化树。分别获得了1694bp和1307bp的片段、1705bp和1229bp的片段和1606bp和1214bp的片段,分别编码433,407和402个氨基酸。对获得的片段进行比对发现,结球甘蓝263包括5个外显子和4个内含子,羽衣甘蓝AY627和甘蓝型油菜S11包括6个外显子和5个内含子。并且发现结球甘蓝263的内含子少1个,并且有一段70bp左右的插入片段。对已报道的21种SRK基因和本文所克隆的3种材料的序列构建分子进化树,发现三者都与S单倍型的Ⅰ类SRK基因聚在一起,Ⅱ类基因与Ⅰ类基因分为两支,拟南芥与Ⅱ类聚在一起,而萝卜属未形成单独的一支。推导甘蓝26370bp片段的插入有可能是内含子转化而来并导致了自交不亲和性的产生。羽衣甘蓝AY627与甘蓝型油菜S11所获得的片段与预期一致,激酶结构域没有发生片段的插入或缺失,推导导致甘蓝型油菜S11自交不亲和性的原因没有发生在激酶结构域部分。通过进化树飞分析推导出萝卜属与芸薹属的分离晚于SRKⅠ类和Ⅱ类的分离。
     2.在FISH过程中,对甘蓝根尖前中期染色体和DNA纤维的制片进行了一些条件的改变,试图提高FISH效果。在前中期染色体制片中,本文对冷处理时间和酶解时间进行了改变,将冷处理时间定在20h,酶解时间定在90min,制得的染色体图片前中期分裂相较多,并且粘连程度较低,背景也较干净。在DNA纤维制片中,细胞核的提取过程中,控制研磨力度和加入TritonX-100的量进行了改变;DNA纤维制片时,改变了细胞核裂解液的裂解时间。通过以上改变,降低了纤维的缠绕程度。
     3.用经过以上改变条件制得的片子进行FISH。通过对前中期染色体的FISH结果表明,能够分别检测出两种颜色的信号,但是其信号检测率不高,推导其原因是除染色体本身的质量外,探针的单拷贝和小片段特点也是影响其效果的原因,所以本实验只能将SRK和MLPK初步定义在第l号染色体和第3号染色体上。通过对DNA纤维时期的FISH结果,未能检测出明显信号,推测其原因,在制片的过程中,不能从其理化性质来判断其制片的好坏,导致了FISH不甚理想。
Self-incompatibility (SI) is controlled by S-locus in Brassica. SRK gene is the key factor for SI, and was cloned from Brassica oleracea and Brassica napus. The mutation and expression of SRK gene would affect the self-incompatibility. S-domain is polymorphism and often occurs in the coding region. Compared to the S-domain, kinase domain is more conservative. Kinase domain of SRK gene was cloned and analyzed first time, in order to investigate the kinase domain for the role of SI from an evolutionary of view. MLPK was also proved an essential factor in SI and was the role of downstream component of SRK. In the paper, we located the SRK and MLPK genes associated with SI of Brassica oleracea on different extend chromosomes by dual-color FISH. The result showed that:
     1. By PCR and RT-PCR, The gDNA and cDNA fragments of the gene encoding S-locus receptor kinase(SRK) kinase-domain was amplified from Brassica oleracea 263, Brassica oleracea AY627 and Brassica napus. And we constructed a phylogenetic tree of SRK. The lengths of gDNA an d cDNA were 1694 bp and 1307 bp,1705 bp and 1229 bp,1606 bp and 1214 bp, respectively. Sequence analysis indicated that the genomic DNA of Brassica oleracea 263 contained five exons and four introns, encoding 433 amino acids, and both the genomic DNA of Brassica oleracea AY627 and B.napus contained six exons and five introns, encoding 407 and 402 amino acids, respectively. Based both three nucleotide sequences cloned in this study and SRK sequences of twenty-first species released by NCBI, we constructed a phylogenetic tree of SRK. The three sequences were in the same group with classⅠ, and classⅠand classⅡwas divided into two groups. Arabidopsis thaliana and the classⅡwere in the same group, but Raphanus sativus was't formed a single group. By comparing of the three cDNA fragments, we found that there is a 70 bp of DNA insertion in Brassica oleracea 263, which may be one of the cause leading to the phenotype of the SC. We also found there were not any insertion and deletion in Brassica oleracea AY627 and Brassica napus, indicating that the SC of Brassica napus may not be caused by the kinase domain. The analysis of phylogenetic tree indicate that differentiation between Brassica and Raphanus sativus was later than the differentiation between classⅠand classⅡof SI in Brassica.
     2. In the FISH process, we changed some conditions between prometaphase chromosome and DNA fibers. In the prometaphase chromosome. Our research have acquired the most suitable time of cold temperature treatment, which was 20 hours. We use enzyme mixture to treat the prometaphase chromosome for 90min, And we obtained the best cytological target slide without background and with better stretched state. We also changed some conditions to obtain the DNA fibers. Through improved method, such as the different treatment with TritonX-100, we obtained Nuclei with symmetrical. Through these changes,we obtained extended DNA fibers.
     3. Two color hybridization signals were detected on a homologous chromosome, respectively. But the detection rate was low. One hand, the reason may be that the quality of homologous chromosome was not so well. Another hand, the single-copy and small fragments of probe affected the FISH. And SRK and MLPK gene was only located on Chromosome 1 and Chromosome 3, respectly. We couldn't detect the signal on DNA fiber. And the reason may be that the physical and chemical characteristics was undermined.
引文
[1]de Net tan cour t D. In compa tib ili ty in An gio sp erms. Heidelberg, Berlin, New York:Springer Verlag,1977.
    [2]Watanabe M, Suzuki G, Hatakeyama K, Isogai A, Hinata K,1999. Molecular biology of self-incompatibility in Brassica species Plant Biotechnology,16(4):263-272.
    [3]Kusaba M, Nishio T,1999. The molecular mechanism of self-recognition in Brassica self-incompatibility. Plant Biotechnology,16(2):93-102.
    [4]Ockendon D J,1975. Dominance relationships between S-alleles in the stigma of Brussels sprouts(Brassica oleracea var.gemmifera). Euphytica,24:165-172.
    [5]Nou I S, Watanabe M, Isogai A, Hinata K. Comparison of S-alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan. Sex Plant Reprod,1993,6:79-86.
    [6]Schopfer C R, Nasrallah M E, Nasrallah J B. The male determinant of self-incompatibility in Brassica. Science, 1999,286:1697-1700.
    [7]Stein J C, Howlett B, Boyes D C, Nasrallah M E, Nasrallah J B. Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Nat Acad Sci USA,1991,88: 8816-8820.
    [8]Takayama S, Isogai A, Tsukamoto C, Ueda Y, Hinata K, Okazaki K, Suzuki A,1987. Sequences of S-glycoproteins, products of the Brassica campestris self-incompatibility locus.Nature,326:102-105.
    [9]Nasrallah, J. B., Nishio, T.& Nasrallah, M. E. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1991,42:393-422.
    [10]Kishi-Nishizawa N, Isogai K, Watanabe M, Hinata K, Yamakawa S, Shojma S, Suzuki A,1990. Ultrastructure of papilla cells in Brassica campestris revealed by liquid belium rapid-freezing and substritution-fixation method. Plant Cell Physiology,31:1207-1219.
    [11]Nasrallah J B, Kao T H, Goldbergm L, et al. A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea.Nature,1985,318:263-267.
    [12]Stein J C, Howlett B, Boyes D C, Nasarllah M E, Nasarllah J B. Molecular cloning of a putative receptor protein kinase encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA,1991,8:8816-8820.
    [13]Glavin T L, Goring D R, Schafer U, Rothstein S J,1994.Features of the extracellular domain of the S-locus receptor kianse from Brassica Molecular and General Genetics,244:630-637.
    [14]Watanbe M, Takasaki T, Toriyama K, Yamakawa S, Isogai A, Suzuki A, Hinata K,1994. A high degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatible Brassica campestris L.Plant and Cell Physiology,35:1221-1229.
    [15]Kumar V,Trick M,1993.Sequence complexity of the S receptor kinase gene family in Brassica.Mol Gen Genet, 241:440-446.
    [16]Tobias C M, Nasrallah J B,1996. An S-locus-related gene in Arabidopsis encodes a functional kinase and produces two classes of transcripts. Plant J,10:523-531.
    [17]Okazaki K, Kusuba M, Ockendon D J, Nishio T,1999.Characterization of S tester lines in Brassica oleracea: polymorphism of restriction fragment length of SLG homologues and isoelectric points of S-locus glycoproteins. Theoretical and Applied Genetics,98:1329-1334.
    [18]Schopfer C R, Nasrallah M E, Nasrallah J B,1999. The male deteminant of self-incompatibility in Brassica. Science,286:1617-1700.
    [19]Franklin-Tong V E, Franklin F C H,2000. Self-incompatibility in Brassica:the elusive pollen S gene is identified. Plant Cell,12:305-308.
    [20]Suzuki S L, Amoldo M, Goring D R,1999. A breakdown of self-incompatibility in ARC1 antisense transgenic plants.Science,286:1729-1731.
    [21]Ikeda S, Nasrallah J B, Dixit R, Preiss S, Nasrallah M E,1997. An aquaporin-like gene required for the Brassica self-incompatibility response. Science,276:1564-1566.
    [22]Franklin-Tong V E, Franklin C H,2000. Self-incompatibility in Brassica:the elusive pollen S gene is identified Plant Cell,12:305-308.
    [23]Hatakeyama K, Watanabe M, Takasaki T, Ojima K, Hinata K,1998. Dominance relationships between S-alleles in self-incompatible Brassica campestris L. Heredity,80:241-247.
    [24]Yang Y W, Lai K N, Tai P Y, Ma D P, Li W H,1999. Molecular phylogenetic studies of Brassica, Rorippa, Arabidopis and allied genera based on the internal transcribed spacer region of 18S-25S Rdna. Mol Phylogenet Evol,13:455-462.
    [25]Matton D P, Luu D T, Xike Q, Lsublin Q O'Brien M, Maes O, Morse D, Cappadocia M,1999. Production of an S RNase with dual specificity suggests a novel hypothesis for the generation of new S alleles. Plant Cell,11: 2087-2097.
    [26]Matton D P, Luu D T, Morse D, Cappadocia M,2000. Establishing a paradigm for the generation of new S alleles. Plant Cell,12:313-315.
    [27]Uyenoyama M K, Newbigin E,2000.Evolutionary dynamics of dual-specificity self-incompatibility alleles. Plant Cell,12:310-312.
    [28]Murase K, Shiba H, Iwano M, Fang-Sik Che, Watanabe M, Isogai A, Takayama S, A Membrane-anchored protein kinase involved in Brassica self-incompatibility signaling. Science,2004,303:1516-1519.
    [29]Kakita M, Murase K, Iwano M, Matsumoto T, Watanabe M, Shiba H, Isogai A, Takayama S. Two distinc forms of M-locus protein kinase localize to the plasma membrane and interact directly with S-locus receptor kinase to transduce self-incompatibility signaling in Brassica rapa, Plant Cell,2007,19:3961-3973.
    [30]GALL J G, PARDUEML. Molecular hybridization of radioactive DNAto the DNA of cytological preparations[J]. Proc.Natl.Acad.Sci. USA,1969,64:60.
    [31]Langer P R, Waldrop AA, Ward D C.Enzymatic synthesis of biotin-labeled polynucleotides:novel nucleic acid affinity probel. Proc Natl Acad Sci USA,1981,78(11):6633-6637.
    [32]孙梅,刘红林.原位杂交技术及其在动物基因定位上的应用进展.黄牛杂志,2000,26(6):39-43.
    [33]黄梅,袁仕取,朱作言.原位杂交和原位技术在鱼类基因定位中的应用.水生生物学报,2001,25(2):195-201.
    [34]杨易,钟金城.原位杂交技术及其在动物遗传育种中的应用.西南民族学院学报,2002,28(2):219-222.
    [35]史娟.染色体原位杂交的发展及其应用.作物品种资源,1999(1):232-234孙春晓.基因的染色体定位.国外医学:遗传学分册,2000,23(3):120-124.
    [36]杨林,袁爱力.比较基因组杂交的方法与应用.癌症,1998,17(5):397-399
    [37]周晓.比较基因组杂交及应用.国外医学:放射医学和医学分册,1998,22(2):80-83.
    [38]刘蔽,卢光锈.应用荧光原位杂交技术检测人类APPSWF基因在转基因小鼠染色体上的定位及位置效应.遗传学报,2001,28(9):827-831.
    [39]温昱,秦书俭.转基因技术常用的检测方法.锦州医学院学报,2001,22(6):48-50.
    [40]QIN R(覃瑞),WEI W H (魏文辉),Application of BAC-FISH in plant genom research[J]. Progess in Biochemistry and Biophysics(生物化学与生物物理展),2000,27 (1):20-23 (in Chinese).
    [41]RAAP A K. Advances in fluorescence in situ hybridization[J]. Mutat.Res.,1998,400:287-298.
    [42]EKON G R, WOLFER J. Advances in fluorescence in situ hybridization[J]. Current Opinion in Biotechnology, 1998,9:19-24.
    [43]HAN F P(韩方普), HE M Y (何孟元), BU X L (卜秀玲), et al. Characterization of a wheat-wheatgrass translocation line by FISH[J].Acta Botanica Sinica (植物学报),1998,40 (6):500-502 (in Chinese)
    [44]HAN F P(韩方普), HE M Y (何孟元), et al. Variation of the wheatgrass chromosome in wheat-wheatgrass disomic addition line TAI 14 reealed by fluorescence in situ hybridization[J].Acta Botanica Sinica (植物学报),1998.40 (1):33-36 (in Chinese)
    [45]JAN P, OL GA, ALEXANDROVA. Synthesis of pre-rRNA and mRNA is directed to a chromatin-poor compartment in the macronucleus of the spirotrichous ciliate Stylonychia lemnae[J], Chromosoma,2006,14: 2-7.
    [46]CHEN F(陈芳),YINQW(殷勤伟). mRNA of regulation of gene transcription[J]. Chinese Science Bulletin(科学通报),2005,50 (13):1289-1299 (in Chinese).
    [47]GAOZH(高智), et al. Characterzation of genome and chromosome in octoploid wheatgrass amphiploid Zhong2 using fluorescence in situ hybridization and chromosome pairing analysis[J]. Acta Botanica Sinica(植物学报),1999.41 (1):25-28 (in Chinese)
    [48]JELODAR N B, BLACKHALL N W, HARTMANTPV, et al. Intergeneric somatic hybrids of rice (Oryzasativa L. (+) Porteresia coarctata) [J]. Theor.Appl.Genet.,1999,99:570-577.
    [49]DINESH A. Nagegowda, sathishkumar ramalingam and hemmerlin Brassica juncea HMG-GoA synthase: localization of mRNA and protein[J]. Genome,2005,40:406-410.
    [50]Institute of Genetics, the chinese Academy of Sciences. The transference and identification technique of Oryzaeichingeri geneol.http://www. fjkjkf. com/showr.asp?id=1896.2005.8(in Chinese).
    [51]CONCHA LINARES, JUAN GONZALEZ, ESTHER FERRER, et al. The use of double flurescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome special DNA sequence in the genus A vena[J]. Genome,1996,39: 535-542.
    [52]KARINA. Cassia defaria genetic relationships between B razilian species of Molossidae and Phyllostomidae[J]. Geneta,2006,126:1-2.
    [53]NING SH B(宁顺斌), SONG Y CH(宋运淳),WANGL (王玲),et al. Physical mapping of the sequences homologous to disease resistance) (ZHAO X P, SI Y, HANSON R E, et al. Dispersed repetitive DNAhas spread to new genome since polyploidy formation in cotton[J]. Genome Research,1998,8(5):479-492.
    [54]ZHU W SH(朱旺升),XU J(徐晶), et al. Genomic analysis of intergeneric hybrids between Brassica carinata and Orychophragmus violaceus by using in situ hybridization[J]. Acta Bot.Boreal.-Occident.Sin.(西北植物学报),2005,25 (4):662-667 (in Chinese).
    [55]WU J(武军), WANG H(F辉),LIUWH(刘伟华), GISH and SSR analysis of exogenous P chromatin in the new wheat germplasm484[J]. Acta Bot.Boreal.-Occident,Sin(西北植物学报),2006,26 (6):1093-1097 (in Chinese).
    [56]HANSON R E, ZWICK M S, CHOI S D, et al. FISH of a bacterial artificial chromosome[J].Genome,1995,38: 646-651
    [57]ROBER T H, EL ZBIETA W, S YL WIA K. Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var.alboglabra monosomic addition lines [J]. Genome,1999,13 (5):478-485.
    [58]LIU CH(刘朝), YUE W (岳伟), et al. Identification and preliminary analysis of several centromere-associated bacterial artificial chromosome clones from a diploid wheat library[J].Acta Botanica Sinica (植物学报),2006,48 (3):348-358 (in Chinese)
    [59]XIONG ZH Y(熊志勇), et al. Heterozygosity of knob2associated tandem repeat s and knob instability in mitotic chromosomes of Zea (Zeamays L. and Z. di ploperennis Iltis Doebley) [J]. Acta B otanica S inica(植物学报),2005,47 (11):1345-1351 (in Chinese).
    [60]HAN Y H(韩永华), WANG X L (王小兰),LIU LH(刘立华), et al. Comparative physical localization of maize mirl gene in Zea maysL. and Coi x lacrymaj obi L. [J]. Acta Genetica S inica (遗传学报),2004,31(4):335-339(in Chinese).
    [61]ZHAO L J (赵丽娟), LI L J (李立家), QIN R(覃瑞), et al. Location of 45S and 5S rDNA on barley chromosomes and FISH analys is for 5S rDNA on extended DNA fibers[J]. J ournal of Wuhan Botanical Research(武汉植物学研究),2005,23 (1):15-19 (in Chinese).
    [62]YANG G H(杨国华), YINGJ (英加),L I B(李滨),et al. Applications and prospect s of fluorescence in situ hybridization on plant cy2 togenetics and gene mapping[J]. A cta Bot. Boreal.2Occi dent. S in. (西北植物学报),2002,22 (2):421-42 (in Chinese).
    [63]GAO X M(高雪梅). Cloning and RNA in situ hybridization of calmodulin gene in,A l pinia oblongi f olia[J]. Acta Bot. Boreal.2Occi dent.S in. (西北植物学报),2005,25 (9):1730-1734 (in Chinese).
    [64]WANG J(王晶), XIANG F N (向凤宁),XIAG M(夏光敏), et al. Chromosome transferred from couch grass to wheat by asymmetric aomatic hybridization[J]. Science China Ser.C Life Sciences(中国科学.C辑生命科学),2004,34 (2):113-120 (in Chinese)
    [65]STEPHENS J L, et al.Physical mapping of barley genes using an ultrasensitive FISH technique[J]. Genome,2004, 47:179-189.
    [66]CLARKM, et al. Physical mapping of B-hrdein loci on barely chromosome 5 by in situ hybridization[J]. Gempme,1989,32:925-929.
    [67]聂谷华,廖亮等.荧光原位杂交技术及其在植物研究中的应用.西北植物学报,2006,26(12):2596-2601.
    [68]RAAPAK. Advances in fluorescence in situ hybridization[J]. Mutat.Res.,1998,400:287-298.
    [69]STEPHENS J L, et al. Physical mapping of barley genes using an ultrasensitive FISH technique[J].Genome,2004, 47:179-189.
    [70]Hinata K, Isogai A, Isuzugawa K. Manipulation of sporophytic self-incompatibility in plant breeding.In:Williams E G,Knox R B and Clarke A E, Genetic control of self-incompatibility and reproducetive development in flowering plant[M],Kluwer, Dordrecht,1994.102-115.
    [71]Tohru Suzuki, Makoto Kusaba, et al. Characterization of Biassica S-haplotypes lacking S-locus glycoprotein. FEBS Letters 2000,482:102-108.
    [72]蓝兴国,解莉楠,李玉花.芸薹属自交不亲和细胞转到的研究进展[J].植物学通报,2004,21:461-470.
    [73]Nasrallah, M.E. and Wallace, D.H. Heredity,1967,22:519-527.
    [74]Bower M S, M atias D D, Fernandes—carvalho E, Mazzurco M, Gu T, Rothstein A J and Goring D R. Two members of the thioredoxin-h family interact with the kinase domain of a Brassica S-locus receptor kinase [J]. P/ant Cell,1996,8:1641-1650.
    [75]刘东,朱利泉,王小佳.甘蓝自交不亲和信号传导中SRK结合蛋白基因THL1的克隆与序列分析.园艺学报,2003,30(1):56-58.
    [76]刘东,朱利泉,王小佳.甘蓝SRK底物蛋白ARC1编码基因的克隆与序列分析.作物学报,2004,30(5):427-431.
    [77]王茂广,吴俊岩,朱利泉,王小佳.甘蓝自交不亲和信号传导过程中THL2的克隆序列分析.园艺学报,2004,31(3):567-569.
    [78]赵永斌,朱利泉,王小佳.甘蓝MLPK基因的克隆与序列分析.作物学报,2006,32(1):46-50.
    [79]高启国,宋明,牛义,杨昆,朱利泉, 王小佳.甘蓝S一位点受体激酶(SRK)激酶结构域编码区分 子特性及其与类硫氧还蛋(THL 1)相互作用检测.农业生物技术学报,2008,16(5):865-871.
    [80]Hasterok R, Wolny E, Hosiawa M, Kowalczyk M, et al. Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Annals of Botany,2006,97 (2):205-216.
    [81]Kato, A. An improved methed for chromosome counting in maize. Biotech Histochem,1997,72 (5):249-252.
    [82]林瑞阳,宋文芹,李秀兰.植物染色体标本制备的去壁、低渗法及其在细胞遗传学中的意义.遗传学报,1982,9(2):151-159.
    [83]钟筱波,Fransz P F, Wennekes J, vanKammen J A, de Jong H, Zabel P.在植物粗线器染色体和DNA纤维上的荧光原位杂交技术.遗传学报,1998,25(2):142-149.
    [84]Yang K, Qi H Y,Zhu L Q, Wang X J. Localization of S genes on extended DNA fibers (EDFs) in Brassica oleracea by high-resolution FISH. Acta Genet Sin,2006,33 (3):277-284.
    [85]Li L J, Yang J L, Tong Q, Zhao L J, Song Y C. A novel approach to prepare extended DNA in plant.Cytometry Parta,2005,63A (2):114-117.
    [86]Shunsuke Okamoto, Masashi Odashima, Ryo Fujimoto, Yutaka Sato, Hiroyasu Kitashiba, Takeshi Nishio. Self-compatibility in Brassica napus is caused by independent mutations in S-locus genes. The Plant Journal, 2007,50:391-400.
    [87]Tsuchimatsu T, Suwabe K, Shimizu-Inatsugi R, Isokawa S, Pavlidis P, Stadler T, Suzuki G, Takayama S, Watanabe M, Shimizu KK. Evolution of self-compatibility in Arabidopsis by a mutation in the male specificity gene. Nature,2010, (464):1324-1346.
    [88]Houria Hadj-Arab · Anne-Marie Che'vre ·Thierry Gaude · Ve'ronique Chable. Variability of the self-incompatibility reaction in Brassica oleracea L. with S15 haplotype. Sex Plant Reprod,2010,23:141-151.
    [89]HE Yu-tang, MA Chao-zhi, FU Ting-dong and TU Jin-xing. Phylogenetic Analysis on SL G and SRK Genes in Brassica and Raphanus. Agricultural Sciences in China,2005,4(1):7-14.
    [90]王永.甘蓝染色体图谱的构建及SI基因的定位研究:[博士学位论文].重庆:西南大学,2010.38-39.
    [91]李愗学,陈瑞阳.关于植物核型分析的标准化问题[J].武汉植物学研究,1985,3(4):297-302.
    [92]陈晓丹.芸薹属A基因组DNA封阻下的C染色体组分型研究:[硕士学位论文].重庆:西南大学,2008.48-50.
    [93]Jiang J M, Gill B S. Current status and the future of fluorescence in situ hybridization(FISH)in plant genome research. Genome,2006,49:1057-1068.
    [94]FranszP Armstrong S, de Jong JH, parnellLD, van Drunen G, Dean C, Zabel P, Bisseling Jones G H. Integrated cytogenetic map of chromosome alTO 4S of A.thaliana:Structural organiza—tion of heterochromatic knob an d centromere region. Cell,2000,100:367-376.
    [95]Ohmido N, K i K, Akiyama Y de Jong J H, Fukui K. Quanti—fication of total genomic DNA and selected repetitive sequences reveals concurrent changes in diferent DNA families in indica andjaponi- ca rice. Mol Gen Genet,2000, 263:388-394.
    [96]Jackson S A, Cheng Z K, Wang M L, Goodman H M, Jiang J Comparative fluorescence in situ hybridization mapping of a 431 — kb Arabidopsis thaliana bacterial chromosomal duplications in expan sion of the Brassica rapa genome. Genetics,2000,156:833-838 [13]ZhongX B, FranszP F'Wennekes E J, Zabel Van KammenA, de Jong J H. High-resolution mapping on pachytene chromo—omes an d extended DNA fibres by fluorescence in situ hybridi—ation. Plant Mol Biol Rep,1996,14:232-242.
    [97]Fransz P F, Alonso-Blanco C, Liharska T B, Peeters A J M, Zabel P, de Jong J H.High resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibers Plant J,1996,9:421-430
    [98]Logsdon JM.The recent origins of spliceosomal introns revisited.Curr Opin Gena Dev,1998;8(6):637-648.
    [99]Vithana EN, Abu-Safieh L, Allen MJ, Carey A, Papaioannou M, Chakarova C, Al-Maghtheh M, Ebeneer ND, Willis C, Moore AT, Bird AC, Hunt DM, Bhattacharya SS. A human homolog of yeast pre-mRNA splicing gene, PRP31, underlies autosomal dominant retinitis pigmentose on chromosome 19q13.4(RPll). Mol Cell,2001, 8:375-381.
    [100]Mclaughlin ME, Sandbetg MA, Berson EL. Recessive mutation in the gene encoding the beta-subunit of rod phosphodiesterase in patient with retinitis pigmentosa. Nature Genet,1993,4:130-134.
    [101]Prigoda, N.L, A. Nassuth and B. K.Mable, Phenotypic and genotypic expression of self-incompatibility haplotypes in Arabidopsis lyrata suggests unique origin of alleles in different dominance classes. Mol. Biol. Evol. 2005,22:1609-1620.
    [102]陈顺平.FISH中酶消化细胞的几点体会.临床与实验病理学杂志[J]. Clin Exp Pathol 2010 Jan; 26(1):116-117.
    [103]荣小营.甘蓝自交不亲和性信号传导元件MLPK与SSP编码基因的FISH定位研究,[硕士学位论文].《西南大学硕士论文》.2009-05-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700