甘蓝SRK的S域酵母双杂交表达载体的构建及其与SCR作用区段的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芸薹属植物自交不亲和性受单一位点的复等位基因控制,此位点被命名为S位点。它决定柱头表面花粉识别的专一性。S受体激酶基因(S-locus receptor kinase, SRK)和S位点糖蛋白基因(S-locus glycoprotein,SLG)是控制芸薹属植物花柱自交不亲和性的两个关键因子。SRK是自交不亲和专一性的决定因子,SLG仅是辅助因子,而S位点富半胱氨酸蛋白(S-locus cystein-rich protein,SCR)是SRK激酶的配体分子,并且三基因完全连锁。蛋白质是生命功能的物质基础,揭示蛋白与蛋白间的相互作用,已成为揭示蛋白质组复杂体系与蛋白质功能模式的先导。本实验采用酵母双杂交技术检测甘蓝SRK胞外域不同片段与SCR不同片段蛋白间相互作用。通过PCR扩增甘蓝SRK胞外域不同片段序列及SCR不同片段基因编码序列,扩增的片段分别与质粒载体pGADT7和PGBKT7连接,构建pGADT7-eSRKs和pGBKT7-SCRs系列重组载体。检测转化酵母Y2HGold的钓饵质粒是否具有自激活发生以及重组钓饵蛋白的毒性。将pGBKT7和pGADT7的重组质粒分别转化酵母菌株Y2HGold和Y187检测蛋白间是否具有相互作用,通过SD/-Leu-Trp-His-Ade培养基筛选得到pGBKT7-SCRs和pGADT7-eSRKs的阳性克隆,然后用X-a-Gal显色反应鉴定转化到酵母中的两个重组质粒相互作用。主要研究结果总结如下:
     1.不同截短长度的S位点受体激酶胞外域(eSRK)片段的克隆及其结构特征
     以结球甘蓝B3幼叶的gDNA为模板,采用PCR扩增不同片段长度的eSRKs基因。经1%(w/v)琼脂糖凝胶电泳检测,eSRKs的目的片段大小均与引物的理论扩增值大小相符。利用分子克隆技术构建酵母双杂交pGADT7-eSRKs表达载体,DNA测序结果分析表明,pGADT7-eSRKs载体中包含有eSRKs片段且插入的eSRKs片段序列与eSRK28序列完全一致。BLAST在线分析结果表明,eSRKB3编码421个氨基酸,包含了SRK蛋白B-Lectin结构域、SLG结构域和PAN-APPLE结构域,是SRK胞外域的全长;eSRKl包含了eSRK序列的三个高变区域,是编码第5位至第427位氨基酸;eSRK2包含了eSRK序列的两个高变区域,编码第139位至第427位氨基酸;eSRK3包含了eSRK序列的两个高变区域,编码第5位至第273位氨基酸;eSRK4包含了eSRK序列的一个高变区域,编码第5位至第140位氨基酸。
     2.酵母双杂交重组AD质粒的毒性及自激活检测
     将pGADT7空载和pGADT7-eSRKs转化Y187,观察得到Y187 [pGADT7]和Y187 [pGADT7-eSRKs]在SD/-Leu平板上生长状态良好,由此表明重组表达质粒pGADT7-eSRKs成功转入酵母细胞Y187且无毒性作用。此外,Y187[pGADT7-eSRKs]在SD/-Leu平板上呈现生长状态良好的白色菌斑;在SD/-Leu/x-a-gal平板上没有明显蓝色克隆出现。由此可说明pGADT7-eSRKs重组载体在酵母细胞中没有激活报告基因MEL1,无自身的转录激活作用发生。
     3. SCRs与eSRKs片段间相互作用检测
     利用生物信息学分析软件autodocktools对eSRKs与SCRs进行相互作用分析,结果表明eSRKs与SCRs在空间能够相互识别形成融合蛋白。
     试验显示eSRKs与SCRs片段间两两组合的9个试验组均能在DDO平板上出现生长状态良好的菌斑,其中有Y187[pGADT7-eSRKl]xY2HGold[pGBKT7-SCR2和Y187[pGADT7-eSRK4]xY2HGold[pGBKT7-SCR2]2个试验组能在QDO/x/A平板上出现蓝色克隆,激活报告基因AUR1-C、MEL1、ADE2和HIS3的表达。结果显示SRK和SCR具有相互作用,且初步显示其相互作用区域为SRK第一个外显子的第16~421 bp的片段和SCR第1876~2068 bp的片段。
The multiple alleles of a single locus control the self-incompatibility of Brassica, which named as S-locus. It determines the specificity of the pollen recognition which locate in the stigma surface, control S receptor kinase gene(S-locus receptor kinase, SRK)and S locus glycoprotein gene (S-locus glycoprotein,SLG) are Two of the key proteins which control the self-incompatibility in Brassica:the SRK determine the self-incompatibility, SLG only the cofactor. The pollen S locus protein (S-locus cystein-rich protein,SCR) is SRK'S ligands, which is completely linked with two other genes.In this study, using yeast two-hybrid system,the pGADT7-eSRKs and pGBKT7-SCR srecombinant vector were constructed and transformed into yeast Y187 and Y2HGold separately. Our results showed that:
     1. The amplification of different Truncated fragments eSRKs and Sequence Analysis.
     The different Truncated fragments eSRKs were amplified from leaf genomic DNA in Brassica oleracea L.'B3'by PCR and using 1%(w/v) agarose gel electrophoresis, the fragments length are identical with the theory value of primer extension. Then subcloned into pGADT7 and constructed pGADT7-eSRKs plasmids. The DNA sequencing analysis showed that pGADT7-eSRKs plasmids contain eSRKs fragments, and the insertion site and the reading frame are correct.The analysis of BLAS online showed that.the eSRK encodes 421 amino acids, contains B-Lectin domain, SLG domain and PAN-APPLE domain. The eSRKl encodes the 5 to 427 amino acids, which contains three hypervariable region of eSRK sequence; eSRK2 encodes the amino acids between 139 and 427, which contains two hypervariable region of eSRK sequence; eSRK3 encodes the amino acids between 5 and 273, which contains two hypervariable region of eSRK sequence. eSRK2 encodes the amino acids between 5 and 140,which contains one hypervariable region of eSRK sequence.
     2.The toxicity and Autoactivation detection of recombinant AD plasmid pGADT7-eSRKs.
     The empty vector pGADT7 and pGADT7-eSRKs were transformed into Y187, the ransformants of Y187 [pGADT7] and Y187 [pGADT7-eSRKs] grew well on the SD/-Leu plates, while the yeast strain Y187 which was not transformed recombinant plasmid did not grow on SD/-Leu medium.It is suggested that recombinant plasmid pGADT7-eSRKs was successfully transformed into Y187 yeast cells and was not toxic to yeast cell Y187. In addition, the white clones of Y187 [pGADT7-eSRKs] grew well in SD/-Leu plates and the colonies did not turn blue on SD/-Leu/x-a-gal plates. The results indicate that recombinant plasmid pGADT7-eSRKs do not activate the reporter gene MEL1.
     3.The interaction detection between different truncated fragments of SCRs and eSRKs.
     The analysis of bioinformatics autodocktools software shows that SRKs can mutually recognize with SCRs in the space to form a fusion protein.
     The recombinant plasmids were success fully transformed into the diploid yeast mating cell, the two group of Y187 [pGADT7-eSRKl] x Y2HGold [pGBKT7-SCR2] and Y187 [pGADT7-eSRK4] xY2HGold[pGBKT7-SCR2] could emerge significantly blue clones, then remove blue clones on DDO/x/A plates to QDO/x/A plate, after four days, we can find the blue clones on the plate, which may indicate that activate the reporter gene AUR1-C, MEL1, ADE2 and HIS3. The resoults show that the yeast two-hybrid system could be used to study the interaction domain between eSRK and SCR. The results indicated that there existed two kinds of interactions among all interaction assays between SRK and SCR, whose interaction regions span 16-421 bp fragment of the first exon of SRK and 1876~2068 bp fragment of SCR.
引文
[1]De Nettancourt,D.Incompatibility and incongruity in wild and cultivated plants.2ed.Springer Verlag, Berlin. 2001.
    [2]蓝兴国,解莉楠,李玉花.芸苔属自交不亲和细胞信号转导的研究进展.植物学通报,2004,21(4):461-470.
    [3]芦岩,李玉花.芸薹属中自交不亲和反应的信号转导.植物生理学通讯,2005,41(4):547-552.
    [4]朱墨.孢子体自交不亲和的雌雄S决定子及显隐性关系.首都师范大学学报(自然科学版),2005,26(2):63-68.
    [5]乌云塔娜,黄曙光,谭晓风.植物自交不亲和基因研究进展.生命科学研究,2004,6:59-64.
    [6]De Nettancourt D. In compatibility in An giosperms.Heidelberg,BerIin,New York:Springer Verlag,1977.
    [7]McCubbin AG,Kao T-h.Molecular recognition and response in pollen and pistil interactions. Annu.Rev.Cell Dev.Biol,2000,16:333~64.
    [8]Silva NF,Goring DR. Mechanisms of self-incompatibility in flowering plants.Cell.Mol.Life Sci,2001,58: 1988~2007.
    [9]华志明.植物自交不亲和分子机理研究的一些进展.植物生理学通讯,1999,35(1):77-82.
    [10]卢军,李乐玉,陈晓丹,朱利泉,王小佳.芸薹属自交不亲和功能因子及分子机制研究进展.广西农业科学,2007,38(6):601-605.
    [ll]Nou IS,Watanabe M,Isogai A,Hinata KComparison of S-alleles and S-glycoproteins between two wild populations of Brassica campestris in Turkey and Japan.Sex.Plant Reprod,1993,6:79~86.
    [12]Ockendon DJ.The S-allele collection of Brassica oleracea. Acta Hort.2000,539:25~30.
    [13]Stein JC,Howlett B,Boyes DC.Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea.Proc Natl Acad Sci USA,1991,88(19):8816~8820.
    [14]Goring D R,Rothstein S J.The S-locus receptor kinase gene in a self-incompatible Brassica napus line encodes a functional serine/threonine kinase.Plant Cell,1992,4(10):1273-280.
    [15]Nasrallah J B,Kao T H Goldbergm L,et al.A cDNA clone encoding an S-locus-specific glycoprotein from Brassica oleracea,.Nature,1985,318:263~267.
    [16]Stein JC,Nasrallah JB.A plant receptor-like gene,the Slocus receptor kinase of Brassica oleracea L,encodes a functional serine/threonine kinase.Plant Physiol,1993,101(3):1103~1106.
    [17]Takasaki T,Hatakeyama K,Suzuki G,et al.The S receptor kinase determines self-incompatibility in Brassica stigma.Nature,2000,403:913~916.
    [18]Glavin TL,G oring D,Schafer U,Rothstein SJ,Features of the extracellular domain of the S-locus receptor kinase from Brassica.Molecular and General Genetics,1994,244:630~637.
    [19]Watanabe M,Takasaki T,T oriyama K,Y amakawa S,Is ogai A, Suzuki A,Hinata K,Ahigh degree of homology exists between the protein encoded by SLG and the S receptor domain encoded by SRK in self-incompatible Brassica campestris L.Plant and Cell Physiology,1994,35:1221~1229.
    [20]Silva NF,Stone SL,Christie LN,et al.Expression of the S receptor kinase in self compatible Brassica napus cv.Westar leads to the allele-specific rejection of self-incomopatible Brassica napus pollen.Mol Genetics Genomics,2001,265:552~559.
    [21]Takayama S,Shiba H,Iwano M,et al.The pollen determinant of self-incompatibi li ty in Brassica campestris. Proc Natl Acad Sci USA,2000,97(4):1920~1925.
    [22]Pastuglia M.Ruffio-Chable V,Delorme V,et al.A functional S locus anther is not required for the self-incompatibilityres ponse in Brassica oleracea.Plant Cell,1997,9:2065~2076.
    [23]Schopfer CR,Nasrallah ME,Nasrallah JB,et al.The male determinant of self-incompatibility in Brassica. Science,1997,286:1697~1700.
    [24]Schopfer CR, Nasral lah JB. Self-incompatibility:Prospects for a novel putative peptide-signal molecule. Plant Physiol,2000,124(3):935~940.
    [25]Suzuki QKai N,Hirose T,et al.Genomic organization of the S locus identification and characterization of genes region in SLG/SRK of S9 haplotype of Brassica campestris (syn. rapa).Genetics,1999,153:391~400.
    [26]Vanoosthuyse,Miege C,Dumas C,Cock JM.Two large Arabidopsis thaliana gene fami lies are homologous to the Brassica gene superfamily that encodes pollen coat proteins and the male component of the self-incompatibility response.Plant Mol Biol,2001,46:17~34.
    [27]Doughty J,Dixon S,Hiscock SJ,Willis AC,Parkin IA P,Dickinson HG, PCP-Al,a defensin-like Brassica pollen coat protein that binds the S locus glycoprotein,is the product of gametophytic gene expression.Plant Cell,1998, 10:1333~1347.
    [28]SchopferCR,NasrallahJB,Self-incompatibility:prospectsforanovelputativepeptide-signalmolecule.Plant Physiol, 2000,124:935~940.
    [29]Watanabe M,ItO A,Takada Y,Nihomiya C,Kakizaki T,Takahata Y,Hatakeyama K,Hinata K,Suzuki QTakasakv T,Satta Y,Shiba H,Takayama S,Isogai A,Highly divergent sequences of the pollen self-incompatIbili ty (S)gene in class-IS haplotypes of Brassica campestris(syn. rapa).FEBS Lett,2000,473:139~144.
    [30]Kusaba M,Dwyer K,Hendershot J,Vrebalov J,Nasrallah JB,Nasrallah ME,Self-incompati-bilityint hegenus Arabidopsis:haracterization of the S locus in the out-crossing.Alyrata and itsautogamousre ative thaliana.Plant Cell,2001.13:627~643.
    [31]Goring,D.R,T.L.Glavin,U.Schafer,S.J.Rothstein.An S receptor kinase gene in self-compatible Brassica napus has 1-bp deletion.Plant Cell,1993,5:531~539.
    [32]Watanabe,M. T,Ono,K. Hatakeyama,S. Takayama,A.Isogai and K. Hinata. Molecular characterization of SLG and S-related genes in a self-compatible Brassica campestris L.var.yellow sarson.Sex.Plant Reprod,1997, 10:332~340.
    [33]Okazaki,K.,M.Kusaba,D.J.Ockendon and T.Nishio.Characterization of S tester lines in Brassica oleracea polymorphism of restriction fragment length of SLG homologous and isoelec-tric points of S locus glycoproteins. Theor.Appl.Genet,1999,98:1329~1334.
    [34]Shimosato H,Yokota N,Shiba H,Iwano M,Entani T,Che F S,Watanabe M,Isogai A,Takayama S. Characterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility.Plant Cell,2007,19:107~117.
    [35]Cabrillac D,Cock J M,Dumas C.The S-locus receptor kinase is inhibited by thioredoxins and activated by pollen coat proteins.Nature,2001,410:220~223.
    [36]Goring DR and Walker JC.Self-rejection,A new kinase connection.Science,2004,303:1474~1475.
    [37]Nasrallah JB.Cell-Cell signaling in the self-incompatibility response.Current Opinion in Plant Biology,2000, 3:368~373.
    [38]Takayama S,Shimosato H,Shiba H.Direct ligand-receptor complex interaction controls Brassica self-incompatibility.Nature,2001,413:534~538.
    [39]Fields S,Song O.A novel genetic system to detect protein-protein interactions.Nat,1989,340:245~256.
    [40]Causier B,Davies B.Analysing protein-protein interactions with the yeast two-hybrid system.Plant Molecular Biology,2002,50:855~870.
    [41]张莉,黄倢.酵母双杂交系统的改进与研究进展.海洋湖沼通报,2006,1:108-116.
    [42]Golemis,E.A.and Brent,R.Fused protein domains inhibit DNA binding by LexA. Mol.Cell Biol.1992,12: 3006~3014.
    [43]Henn ML,Gibson N,Panisko E.Applications of the Yeast Two-Hybrid System.METHODS,1999,19,330~337.
    [44]朱静仪.酵母双杂交技术的发展.中山大学研究生月刊,2003,23(2):44-51.
    [45]Li JJ,Herskowitz I.Isolation of ORC6,a component of the yeast origin recognition complex by a one-hybrid system.Science,1993,262:1870~1873.
    [46]Liu JD,Wilson TF,Milbrandt J,Johnston M.Identifying DNA2binding sites and analyzing DNA-binding domains using a yeast selection system.Methods,1993,5:125~137.
    [47]梁琳慧,韩忠朝.蛋白质相互作用的研究方法.生命的化学,2005,25(3):255-257.
    [48]Bartel P L,Fields S.Analyzing protien2protein interactions using the two-hybrid system. Methods Enzymol, 1995,254:241-263.
    [49]Clontech MATCHMA KER one-hybrid system user manual(PT103121):3.
    [50]Vidal M,Brachmann RK,Fattaey A,et al.Reverse two-hybrid and one-hybrid systems to detect dissociation of protein-protein and DNA-protein interactions.Proc Natl Acad Sci USA,1996,93(19):10315~10320.
    [51]Nishiyama C,Takahashi K,Ohtake Y,Yokota T,Okumura K,Ogawa H,Ra C.Analysis of transactivation region of EIf-1 byusing a yeast one-hybrid system.Biosci Biotechnol Biochem,2002,66:1105~1107.
    [52]Wei Z,Angerer RC.Angerer LM.Identification of a new seaUrchin ets protein, SpEts4, by yeast one-hybrid screening withthe hatching enzyme promoter.Mol Cell Biol,1999,19:1271~1278.
    [53]sieweke M.Detection Of transcription factor partners with a yeast one hybrid screen.Methods Mol Biol,2000, 130:59~77.
    [54]Huang J,Hou CH,Qian RL.screenmg of genes related to theexpression of human epsilon-globin Gene by using yeast one-hvbrid system.Shengwu huaxue yu shengwu Wuli xuebao,2001,33:246~250.
    [55]Liao MX,Liu DY,Zuo J,Fang FD.Yeast one-hybrid system used to identify the binding proteins for rat glutathione S-tranferase Penhancer I.Biomed Environ Sci,2002,15:36~40.
    [56]Wilson TE,Day ML,Pexton T.Padzett KA,Johnston M,Milbrandt J.In vivo mutational analysis of the NGFI-A zincFingers.J Biol chem,1992,267:3718~3724.
    [57]Vidal M,Legrain P,Yeast forward and reversen-hybrid systems.Nucleic Acids Res,1999,27 (4):923~924.
    [58]Vidal M,Endoh H.Prospect s for drug screening using the reverse two2hybrid system.Trends Biotechnol,1999, 17(9):374~381.
    [59]SenGupta D J,Zhang B.Kraemer B,et al.A three2hybrid system to detect RNA-protein interactions in vivo.Proc Natl Acad Sci USA,1996,93(8):8496~8501.
    [60]SenGupa DJ,Zhang BL,Kraemer B,et al.A three-hybrid system to detect RNA-protein interaction in vivo.Proc Natl Acad Sci USA,1996,93(8):496~501.
    [61]Rho SB,Martinis SA.The b14 group 1 intron binds directly to botbb its protein splicing partners.a Tma synthetase and maturase to facilitate RNA,2000,6(8):82~94.
    [62]Lee EL,Linial ML.Yeast three-hybrid screening of Rous S arcoma vims mutants with randomly mutagenized minimal packaging signals reveals regions important for Gag interactions. Jvirol,2000,74(19):9167~9174.
    [63]Sonoda J,Wharton RP.Recruitment of nanos to bounchback mRNA by pumilio.Genes Dev,1999,13(20): 2704~1712.
    [64]Long RM.GU W,Lorimer E,et al.She2p is a novel RNA-binding protetein that recruits the Myo4p-She3p complex to ASH1 mRNA.EMBO J,2000,19(23):6592~601.
    [65]林建宏,邹柯,审岩.酵母三杂交系统:一种在真核细胞水平研究RNA-蛋白质相互作用的有效方法.医学分子生物学杂志,2005,2(3):181-184.
    [66]Brachmann RK,Boeke JD.Tag games in yeast.The two-hybrid system and beyond Current opinion in Biotechnology,1997,8(5):561~568.
    [67]Osborne MA,Dalton S,Kochan JP.The yeast tribrid system-genetic detection of trans-phosphorylated ITAM-SH2-interaction.Biotechnology,1995,13(13):1474~1478.
    [68]Zhang J,Lautar S.A yeast three2hybrid method to clone ternary protein complex component s.Anal Biochem, 1996,242:68272.
    [69]Putz U,Skehel P,Kuhl D.A t ri2hybrid system for the analysis and detection of RNA-protein interactions. Nucleic Acids Res,1996,24(23):4838~4840.
    [70]Ozenberger BA,Young KH.Functional interaction of ligands and receptors of the hematopoietic superfamily in yeast.Mol Endocrinol,1995,9:1321~1329.
    [71]Licitra J,Liu JO.A three-hybrid system for detecting small ligand-protein receptor interactions.Proc Natl Acad Sci USA,1996,93:12817~12821.
    [72]Belshaw P J,Ho S N.Crabt ree G R,et al.Cont rolling protein association and subcelluar localization with a synthetic ligand that induces heterodimerization of proteins.Pro Natl Acad Sci USA,1996,93:4604~4607.
    [73]Nasralah JB, Kao TH, Chen CH, Goldberg ML,Nasrallah ME.Amino-acid sequence of glycoproteins encoded by three alleles of the S-locus of Brassica oleracea. Nature,1987,326:617~619.
    [74]Sushma Naithani,Thanat Chookajorn,Daniel R.Ripoll and June B.Nasrallah.Tructural modules for receptor dimerization in the S-locus receptor kinase extracellular domain.Pnas,2007,104(29):12211~12216.
    [75]朱利泉,王小佳.利用S位点多态性快速测定甘蓝自交不亲和性及其S等位基因系.植物学报,2000,42(6):595-599.
    [76]杨洋,高启国,宋明,牛义,汤青林,朱利泉,王小佳.甘蓝自交不亲和决定因子的体外表达和相互作用的检测.园艺学报,2009,36(3).
    [77]Kusaba MT, Nishio Y,Satta K,Hinata K,Ockendon D.Striking sequence similarity in inter-and intra-specific comparisons of class Ⅰ SLG alleles from B.rassica oleracea and Brassica campestris: implication foe the evolution and recognition mechanism.PNAS,1997,94:7673~7678.
    [78]Kachroo A,Schopfer CR,Nasrallah ME,Nasrallah JB,Allele-specific receptor-ligand interactions in Brassica self-incompatibility.Science,2001,293:1824-1826.
    [79]Shimosato H,Yokota N,Shiba H,Iwano M,Entani T,Che FS,Watanabe M,Isogai A,Takayama S.Hracterization of the SP11/SCR high-affinity binding site involved in self/nonself recognition in Brassica self-incompatibility. Plant Cell.2007,19(1):107~17.
    [80]Goring DR and Walker JC.Self-rejection,A new kinase connection.Science,2004,303:1474-1475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700