公路大跨径连续体系桥梁车桥耦合振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究的连续体系桥梁包括连续梁、连续刚构、连续梁—刚构组合体系三类桥梁结构,由于其结构较为相似,在此统称为连续体系桥梁。公路大跨径连续体系桥梁因其具有较大的跨越能力、成熟的施工技术和良好的经济性等优点,得到了广泛应用。但由于跨径的增大,结构的纤细化,车桥耦合振动问题引起学术界和工程界的广泛关注,对公路大跨径连续体系桥梁车桥耦合振动及其影响分析研究具有十分重要的理论意义和工程实用价值。
     到目前为止,对于公路复杂体系桥梁车桥耦合振动及其影响因素分析方面的研究还尚未成熟。随着有限元技术的发展和大型结构分析软件的日臻成熟,结合高性能计算机,研究一种基于既有有限元分析软件的通用车桥耦合振动数值分析方法,以实现对任何复杂结构桥梁在任意复杂车队行驶工况下的车桥耦合振动分析,已成为可能。本文结合西部交通建设科技项目《高墩大跨桥梁车桥耦合振动及其影响分析研究(200831881232)》,主要研究内容、研究方法和研究成果有:
     (1)提出了一种适于公路桥梁车桥耦合振动数值分析算法:利用强大的有限元通用软件ANSYS,对车辆、桥梁分别独立进行建模,根据车辆模型特性以及车桥接触位移协调条件来求解任意时刻车桥之间相互作用力,并利用APDL编程语言在任意时刻施加于桥梁及车辆相关节点,基于ANSYS单一环境实现了车桥耦合振动问题的数值求解。通过与既有文献结果的对比及实桥试验验证了该方法在匀速、匀变速、桥面不平整等工况下的可行性。
     (2)基于本文提出的数值算法,开发了公路桥梁车桥耦合振动响应分析系统。该系统只需输入车辆参数及工况整体参数,即可后台调用ANSYS软件计算出任意复杂结构体系桥梁的车桥耦合振动响应,计算完成后自动进行数据处理并生成结果EXCEL图表。系统可同时考虑车辆模型参数(车轴数、弹簧参数、质量参数等)、车辆行驶参数(匀速行驶、匀变速行驶、多车辆以不同速度行驶等)、桥面平整度参数(各种等级桥面)的变化。此分析系统已获得国家计算机软件著作权登记。
     (3)针对不平整桥面的模拟及评价问题、MIDAS与ANSYS的模型转化问题、时程响应曲线的冲击系数分析问题、车内人员在振动环境下的舒适性评价问题等车桥耦合振动研究相关问题,分别开发了相关分析软件并申请计算机软件著作权登记,以满足研究需要,提高工作效率。
     (4)以高墩大跨连续刚构桥为背景,应用已开发的车桥耦合振动响应分析系统,研究了车桥耦合振动中的车体质量、车辆竖向振动基频、车辆数量、桥面平整度等级、车辆行驶速度、车辆行驶加速度等参数独立变化时,桥梁主梁及桥墩控制截面的挠度冲击系数、弯矩冲击系数、竖向加速度峰值以及车辆竖向加速度峰值的变化规律。
     (5)以4座大跨连续体系桥梁的结构尺寸为原型,虚拟了32座跨径80~200m,墩高0~100m的连续体系桥梁。通过正交试验,对单车辆行驶过桥工况和多车辆行驶过桥工况分别进行了桥梁控制截面的挠度冲击系数、弯矩冲击系数、竖向加速度峰值以及车辆的竖向加速度峰值的敏感性参数分析。给出了总跨数、墩高、中跨跨径、桥面平整度等级、桥墩构造、车辆行驶速度、车辆竖向振动基频、车辆行驶间隔时间(单车辆行驶工况不考虑)、车道间错位(单车辆行驶工况不考虑)等影响因素对桥梁各项动态响应参数的影响及其变化规律。
     (6)对14座桥梁在不同车速、不同桥面平整度等级下的车桥耦合振动响应进行了分析计算,根据计算结果进行了主梁冲击系数、桥墩冲击系数、主梁跨中竖向加速度峰值、车辆驾驶员处竖向加速度峰值等计算公式的数值回归。各回归公式中除桥梁结构的基频外,考虑了对耦合振动影响明显的桥面平整度参数,弥补了现行规范中对桥面平整度参数考虑不足的情况。提出了单车辆对墩顶顺桥向位移及墩底弯矩的激扰频率计算方法和多车辆作用下的车流激扰频率计算方法,可对桥墩是否与车辆(车流)发生共振进行定性的判断。
Long-span continuous series bridge which includes the continuous girder bridge,continuous rigid frame bridge and continuous girder-frame bridge has been studied in thispaper. Due to the ability of long span, well established construction technique andcost-effective, long-span continuous series bridge has being widely adopted in civilengineering practice. However, as the span distance increases, the full structure tends to beslim and unstable thus the coupled vibration between vehicles and highway long span bridgebecomes more pronounced. The coupled vibrations were of great interests for both academicsand engineers recently and the study of these coupled vibrations has much significantmeaning not only to the engineering practice but also in the research levels.
     Currently, the study of the coupled vibrations in the complex structure bridge and theanalytical work of the influencing factors are premature in engineering practice. However,under the help of the advancing computer technique, some numerical methods could beeffectively used in modeling those complex structures. Among those numerical methods, onefinite element method (FEM)-ANSYS could be easily used to model any coupled vibrationsin complex structure bridge under hybrid traffic loadings. This research is part of the project(200831881232). The results of this are presented below:
     (1) A numerical solution was established which was found very practical to analyze thecoupled vibrations between Vehicles and Highway Long-Span Continuous Series Bridge. TheFEM software ANSYS was utilized to model the vehicles and bridges. Based on the boundarycondition from the special properties of modeled vehicles and the relative distance betweenvehicles and bridge, the force between vehicles and bridge could be easily calculated at anytime during complex traffic loadings. APDL program could effectively assists modeling andadding analytical nods to the vehicle bridge element thus the coupled vibrations could benumerically solved by ANSYS software only. By comparing with the literature andexperimental data, this method could be applied to constant speed vehicles, constantaccelerating speed vehicle loadings and uneven surface roughness bridge conditions.
     (2) An analytical coupled vibration system was developed based on the numericalsolution from ANSYS. In this system, only the vehicle and bulk construction coefficients areneeded in order to carry out the coupled vibration analysis. Once these two coefficients aredetermined, the system will call and run ANSYS and produce results in EXCEL file when theanalysis is complete. This system also incorporates the influence from vehicle properties (the number of axles, spring properties, and weight), the speed of vehicles, and the surfaceroughness of the bridge. The developed analytical system has been patented by Chinasoftware bureau.
     (3) Besides the analytical system mentioned above, other analytical softwares have beendeveloped so that to solve some evaluation problems from the uneven surface roughnessbridge, the transformation between MIDAS model and ANSYS model, the impact analysis inthe time distance domain and the degree of comfortable of drivers during driving. Thosesoftwares also patented and commercialized to help engineers in practice.
     (4) By using the developed analytical system, the coupled vibration influencing factorssuch as the weight of the vehicle, the frequency, the number of traffics, the surface roughnessof the bridge, the speed of the vehicle, and the acceleration speed were extensively studied.The moment impact coefficients of the major span, peek vertical acc and their variation werealso studied which have great significance in studying the coupled vibrations.
     (5)4Long-Span Continuous Series Bridge were adopted as prototype and32bridgeswhose span between80-200m and pier height between0-100m were modeled. The sensitivityof the moment impact coefficients of the major span, peek vertical acc and their variationwere analyzed and how the spans, pier height, surface roughness, vehicle speed, the verticalvibration frequency and traffic time difference influence the coupled vibrations were studiedand summarized.
     (6) Coupled vibration analysis was carried out for14different existing bridges underdifferent surface roughness and different traffic conditions. The moment impact coefficientsof the major span, pier and peek vertical acc empirical calculation equations were achievedfrom regression analysis. In the regression, the major surface roughness coefficients wereincluded which enriched the current standard because the standard cannot account for themajor surface roughness effects. Finally, a solution to calculate the displacement of the pierand moment under both mono traffic loading and complex traffic loading conditions weredeveloped which could be effectively used to evaluate the occurrence of resonance betweenvehicles and bridges.
引文
[1]陈密.高墩大跨连续刚构关键技术研究[D].成都:西南交通大学,2005.
    [2]李国豪.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,2003.
    [3]李小珍,强士中.列车-桥梁耦合振动研究的现状与发展趋势[J].铁道学报,2002,24(5):112-119.
    [4] Cantieni R. Dynamic load tests on highway bridges inSwitzerland [R].60years Experience of EMPAReport No.211,1983.
    [5]徐日昶.林区公路桥梁车辆荷载动力作用的试验研究[J].东北林业大学学报,1993,26(4):16-20.
    [6]吴启宏.动力系数的影响因素的试验研究[J].中国公路学报,1991,4(2):27-34.
    [7]丁南宏,林丽霞,孙迎秋.公路连拱桥在单车荷载下振动的理论试验研究[J].兰州交通大学学报,2005,24(3):28-32.
    [8]项贻强,胡蜂强,朱卫国.V型墩预应力连续刚构桥结构动力分析和试验研究[J].中国市政工程,2003,101(1):19-22.
    [9]宋一凡.公路桥梁动力学[M].北京:人民交通出版社,2006.
    [10]林梅,肖盛燮.桥梁车辆振动分析理论评述[J].重庆交通学院学报,1998,17(3):1-8.
    [11]王少钦,岳祖润,马骎.车辆对桥梁动力作用简化方法的研究[J].石家庄铁道学院学报,2005,18(3):47-51.
    [12]常春伟.高速铁路车-线-桥系统动力分析—桥上列车走行性研究[D].铁道部科学研究院,1997.
    [13] Kolousek V etal.Civil Engineering Structures Subjected to Dynamic Load [M]. SVTL, Bratislava,1967:54-58.
    [14] Andersen L, Nielsen S R K, Iwankiewicz R. Vehicle moving along an infinite beam with randomsurface irregularities on a Kelvin foundation[J].Journal of Applied Mechanics,2002:69-75.
    [15] Kawatani M, Kobayashi Y, Takamori K. Non-stationary random analysis with coupling vibration ofbending and torsion of simple girder-bridge under moving vehicle [J]. Structural EngineeringEarthquake Engineering JSCE,1998,15(1):107-114.
    [16] Marchesiello S, Fasana A, Garibaldi L, et al. Dynamic of multi-span continuous straight bridgessubject to multi-degrees of freedom moving vehicle excitation[J]. Journal of Sound andVibration,1999,224(3):541-561.
    [17] Wang T L, Huang D Z. Cable-stayed bridge vibration due to road surface roughness[J]. Journal ofStructural Engineering ASCE1992,188(5):1354-1373.
    [18]李国豪.拱桥振动问题[J].同济大学学报,1956(3).
    [19]单德山,李乔.车桥藕合振动分析的数值方法[J].重庆交通学院学报,1999,18(3).
    [20]夏禾.车-梁-墩体系动力相互作用分析[J].土木工程学报,1993,25(2).
    [21]肖新标,沈火明.移动荷载作用下桥梁的系统仿真[J].振动与冲击,2005,24(1):121-123.
    [22]沈火明,肖新标.求解车桥耦合振动问题的一种数值方法[J].西南交通大学学报,2003,38(6):658-662.
    [23]黄立葵,盛灿花.车辆动荷系数与路面平整度的关系[J].公路交通科技,2006,23(3):27-30.
    [24]周华飞,蒋建群,毛根海.路面不平整引起的车辆动荷载分析[J].中国市政工程,2002,3(99):10-13.
    [25]于清,曹文源.不平整路面上的汽车动荷载[J].重庆交通学院学报,2003,22(4):31-34.
    [26]郭成超,陶向华,王复明.车速和路面不平度特性对车路相互作用的影响[J].华北水利水电学院学报,2004,25(3):42-45.
    [27]刘华,叶见曙,张涛.连续梁在行驶车辆作用下的动态反应[J].交通运输工程学报,2006,6(2):26-30.
    [28]严志刚,盛洪飞,陈彦江.桥面平整度对大跨度钢管混凝土拱桥车辆振动的影响[J].中国公路学报,2004,17(4):41-44.
    [29]陈炎,黄小清,马友发.车桥系统的耦合振动[J].应用数学和力学,2003,19(4):10-13.
    [30]卢胜文.车-桥耦合非线性振动研究[D].天津大学硕士学位论文,2005.
    [31]程保荣,周玉勋.车桥耦合系统动力分析的模态综合技术[J].清华大学学报(自然科学版),2002,42(8):1083-1086.
    [32]王潮海,王宗林.车-桥耦合振动分析的模态综合方法[J].公路交通科技.2006,23(12):76-80,90.
    [33]俞凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005:171-188.
    [34]王解军,张伟,吴卫祥.重型汽车荷载作用下简支梁桥的动力反应分析[J].中南公路工程,2005,30(2):55-62.
    [35] Tan G H, Brameld G H, Thambiratnam D P. Developmentof an analytical model for treating bridge-vehicle Interaction [J]. Engineering Structures,1998,20(l):54-61.
    [36] Huang E, Nowak A. Simulation of dynamic load for bridge [J]. Journal of Structure Engineering,ASCE,1991,117(5):476-484.
    [37] Wang T L, Mshahawy, Huang D Z. Dynamic response ofhighway trucks due to road surface aceroughness [J].Computer&Structures,1993,49(6):1055-1067.
    [38] Wang T L, Huang D Z. Impact analysis of cable-stayed bridge [J]. Computer&Structures,1992,43(5):897-908.
    [39]唐意.桥梁车振伪随机桥面不平度模拟[J].福州大学学报,2003,31(3):326-329.
    [40]赵青.移动双轴汽车荷载作用下梁桥动力特性的数值模拟[J].安徽建筑工业学院学报,2006,14(1):18-20.
    [41] Duczmal Z R. Dynamic non-linear vehicle bridgeinteraction [D].Brishane, Australia: Department ofCivil Engineering, the University of Queensland,1989.
    [42]陈燊,唐意,黄文机.多车荷载下刚架拱桥车振仿真可视化研究[J].工程力学,2005,22(1):218-222.
    [43]赵青,干非.梁桥在多辆车辆荷载作用下的振动分析[J].安徽建筑工业学院学报,2005,13(1):18-20.
    [44]曹源文,梁乃兴,于青.四自由度车辆分析模型分析不平整路面上的行车动荷载[J].公路工程与运输,2005,144(3):59-62.
    [45]袁明.高墩大跨连续刚构桥的车桥系统耦合振动分析[D].长沙:长沙理工大学,2005.
    [46] Moses F. Weight-in-motion system using instrumental bridges[J].TransportationEngineering,ASCE,1979.
    [47]袁向荣,陈恩利,Tommy Hung-tin Chan.由响应识别桥上移动荷载[J].工程力学,1997,14(4).
    [48]蒋培文.基于ANSYS的高墩大跨连续刚构桥车桥耦合振动有限元数值分析方法[D].长安大学硕士论文,2009.
    [49]史奇斌.刚构-连续梁组合体系冲击系数计算方法研究[D].长安大学硕士论文,2010.
    [50]沈火明,肖新标.求解车桥耦合振动问题的一种数值方法[J].西南交通大学学报,2003,38(6):658-662.
    [51]彭献,殷新锋,方志.变速车辆与桥梁的耦合振动及其TMD控制[J].湖南大学学报(自然科学版),2006,26(5):19-21,37.
    [52]赵发章,王解军.阻尼对行车荷载下大跨桥梁振动的影响[J].冰川冻土,2004(4):461-465.
    [53]宋一凡,贺拴海.《弯桥结构动力性能评估分析理论与方法研究》的研究报告.长安大学,2008.
    [54]周新平.基于有限元的弯桥车桥耦合振动分析方法[D].长安大学硕士论文,2006.
    [55]陈榕峰.公路桥梁车桥耦合主要影响因素仿真分析方法研究[D].长安大学硕士论文,2007.
    [56]宋一凡,陈榕峰.基于路面不平整度的车辆振动响应分析方法[J].交通运输工程学报,2007,7(4):39-43.
    [57]王亚堃.大跨度自锚式悬索桥车桥耦合振动数值分析[D].长安大学硕士论文,2008.
    [58]王元丰,许士杰.桥梁在车辆作用下空间动力响应的研究[J].中国公路学报,2000,13(4):38-41.
    [59]丁南宏,林丽霞,钱永久等.双链式悬索桥车桥耦合振动研究[J].兰州交通大学学报,2010,29(1):95-99.
    [60]王雨权,林鸿洸.高速铁路车桥耦合轮轨接触几何关系与接触力的理论推导[J].科学技术与工程,2010,(6):1449-1452,1457.
    [61]王凌波,贺拴海等.基于车桥耦合振动的桥梁检测方法研究[J].郑州大学学报(工学版),2011,32(1),26-29.
    [62]张雄,王天舒.计算动力学[M].清华大学出版社,2007.
    [63]王新敏.ANSYS工程结构数值分析[M].人民交通出版社,2007.
    [64]邓凡平.ANSYS10.0有限元分析自学手册[M].人民邮电出版社,2007.
    [65]博弈创作室. APDL参数化在限元分析技术及其应用实例[M].水利水电出版社,2004.
    [66]曹雪琴.桥梁结构动力分析[M].中国铁道出版社,1987.
    [67]曾攀.有限元分析及应用[M].清华大学出版社,2006.
    [68]彭献,刘子建,洪家旺.匀变速移动质量与简支梁耦合系统的振动分析[J].工程力学,2006,23.
    [69] GB/T4970-1996汽车平顺性随机输入行驶试验方法[S].北京:中国标准出版社.
    [70]常志权,罗虹,褚志刚,邓兆祥.谐波叠加路面输入模型的建立及数字模拟[J].重庆大学学报.2004,27(12).
    [71]星谷胜.随机振动分析[M].常宝琦,译.北京:地震出版社,1979.
    [72]蒋泽汉,谌刚,杨叔子.汽车对桥梁作用力的荷载模型[J].中国公路学报,1993,6(1):40-46.
    [73]米奇克M.汽车动力学(B卷)[M].第二版.陈荫三,译.北京:人民交通出版社,1994.
    [74]汪荣鑫.随机过程[M].第二版.西安:西安交通大学出版社.
    [75]刘里鹏.基于“HWW分析法”的傅里叶变换解析[M].武汉:华中科技大学出版社,2009.
    [76]王宏. matlab6.5及其在信号处理中的应用[M].清华大学出版社.
    [77]金睿,宋健.路面不平整度的模拟与汽车非线性随机振动的研究[J].清华大学学报,1999,39(8):76-79.
    [78]桂水荣,陈水生,唐志军.基于Fourier逆变换法的桥面不平度模拟及测试分析[J].公路工程,2007,32(6):1002-1205.
    [79]刘献栋,邓志党,高峰.基于逆变换的路面不平度仿真研究[J].中国公路学报,2005,18(1):7372.
    [80]陈亚勇. MATLAB信号处理详解[M].人民邮电出版社.2002.
    [81]薛年喜.matlab在数字信号处理中的应用[M].北京:清华大学出版社.
    [82]蔚晓丹.国际平整度指数IRI作为路面平整度评价指标的研究[J].公路交通科技.1999,16(1):9-13.
    [83]楼少敏,王永达,许沧粟.基于路面不平度自功率谱密度函数计算国际不平度指数的研究[J].公路交通科技.2004,24(8):1002-0268.
    [84]吴庆雄,陈宝春,奚灵智.路面平整度PSD和IRI评价方法比较[J].交通运输工程学报,2008,8(1):1671-1637.
    [85] Mechanical Vibration and Shock Evaluation of Human Exposure to Whole一Body Vibration. ISO2631/1一1997.
    [86]万里翔,许明恒.汽车行驶平顺性评价方法的研究.西南交通大学学报[J],2001,36(1).
    [87]夏禾.车辆与结构动力相互作用[M],科学出版社,2002.
    [88]余志生.汽车理论(第4版)[M].北京:机械工业出版社,2006.5.
    [89]陈家瑞.汽车构造(第5版)[M].北京:人民交通出版社,2005.9.
    [90]中华人民共和国国家标准.汽车平顺性随机输入行驶试验法[S].GB/T4970-1996.
    [91]陈南,汽车振动与噪声控制[M],人民交通出版社,2005.
    [92]陈士安,何仁,陆森林.汽车平顺性评价体系[J].江苏大学学报(自然科学版),2006,37,3.
    [93]张黎明.大跨度连续刚构桥车桥耦合振动研究[D].西南交通大学硕士论文,2005.
    [94]徐中明,张志飞,贺岩松.对汽车平顺性评价方法的探讨与建议[J].汽车工程,2010,32(1).
    [95]任焱晞,李青霞,田睿.平顺性评价新、旧国际标准对比分析研究[J].汽车技术,2008,6.
    [96]张志飞,徐中明,贺岩松.汽车平顺性客观评价方法[J].重庆大学学报,2010,33(4).
    [97]唐雪松.汽车行驶平顺性的计算机模拟计算[J].中南汽车运输,1996.9.
    [98]高树新.汽车行驶平顺性评价方法述评[J].汽车技术,1995,12.
    [99]宋一凡,贺拴海.公路桥梁冲击系数的影响因素分析[J].西安公路交通大学学报,2001,2.
    [100]刘菊玖,张海龙.桥梁冲击系数反应谱的理论分析[J].公路,2007,第七期:77-79.
    [101]李玉良,孙福中,李晓红.公路桥梁冲击系数随机自变量的概率分布及冲击系数谱[J].公路,1996,vol.9.
    [102]牛蔚然,邱燕.工程寻优问题的正交分析方法及其应用[J].山东电力技术,2002,(2).
    [103]华中生,唐昊.正交试验设计方法在汽车制动系统试验设计中的应用[J].运筹与管理,2002,(12).
    [104]胡亮,杨大锦.Excel与化学化工试验数据处理[M].北京:化学工业出版社化学与应用化学出版中心,2004,212-257.
    [105]李学斌,余小领,李斌.运用Excel进行正交表的构建[J].河南科技学院学报(自然科学版),2008年12月,36(4):110-113.
    [106]韦勇,阳杰,容一鸣.汽车减震器阻尼系数与悬架系统阻尼比的匹配[J].武汉汽车工业大学学报,2000,22(6):22-25.
    [107]陈魁编.应用概率统计[M].北京:清华大学出版社,2006,(4).
    [108]苏金明,阮沈勇.MATLAB实用教程(第二版)[M].电子工业出版社,2008,2.
    [109]张期星.直线梁桥汽车冲击系数的研究[D].华东交通大学硕士论文,2008.
    [110] JTG D60-2004,公路桥涵设计通用规范[P].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700