高密度MCM-L的散热及热机械可靠性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文结合国内下一代超级计算机中央处理器(CPU)高速度、高密度、高性能封装形式的需要,以某超级计算机CPU拟采用的积层多层有机基板多芯片模块(MCM-L)为研究对象,从散热和热机械可靠性两方面对其进行了较为深入的研究。
     所设计的多芯片模块中有七个芯片,每个芯片都通过1268个面阵排列的PbSn共晶凸点倒装焊接在具有叠层通孔的聚酰亚胺积层多层基板上,芯片下填充底充胶,模块的总功耗为90W,芯片的最大热流密度为30W/cm~2。
     在散热方面,本文拟设计采用双流道铝质水冷板作为该多芯片模块的间接液体冷却手段。为了研究这种水冷板的冷却能力,首先用功率管模拟芯片发热贴装在水冷板上,做了一系列的热测试试验,并采用计算流体力学(CFD)软件对试验过程进行了相应的模拟,对冷板中水的流动、冷板和功率管的温度分布以及系统的热平衡进行了详细的分析。试验和模拟结果的对比一方面验证了CFD模拟的准确性,另一方面推导出了试验中热接触材料的接触热阻(或接触热导)值。然后,通过CFD模拟对多芯片模块在这种水冷板的冷却下的温度分布和热平衡进行了分析,其结果表明水冷板可以使多芯片模块的最高温度达到58.1℃,满足热设计的要求。最后,研究了热接触材料的导热系数和接触热阻、芯片下凸点分布、BGA焊球分布、芯片厚度、芯片之间的间隔和芯片布局以及流体入口的流速和温度等参数对多芯片模块温度的影响。
     在热机械可靠性方面,由于含七个芯片的多芯片模块具有结构对称性,为了节约成本,本文以单个具有多端子的倒装芯片焊接在积层多层有机基板上的FCOB封装形式来研究整个多芯片模块的可靠性。首先设计了采用不同芯片尺寸、底充胶材料和基板类型组合的六种单芯片多端子FCOB样品进行热循环、热冲击试验和失效分析,并将各样品的寿命和失效模式进行了比较分析,以研究芯片尺寸、底充胶材料和基板类型对这种单芯片多端子FCOB封装可靠性的影响,然后采用“整体—局部”有限元模拟对热循环条件下,各组样品焊点的位移、等效应力、等效应变以及应变能密度的变化历程进行了详细的研究,模拟结果较好的解释了热循环过程中出现的相关失效现象。最后,结合热循环测试结果和模拟结果拟合了基于焊点应变能密度的Darveaux总体寿命预测模型中的系数,并采用试验设计和响应面方法分析了各结构参数和材料属性的综合影响,对多端子FCOB的热机械可靠性进行了综合优化。
In order to meet the high speed, high density and high performance requirement of the package of CPU of domestic next generation supercomputer, the thermal dissipation and thermal-mechanical reliability of a kind of build-up laminated Multi-Chip Module (MCM-L) which will be applied in a certain supercomputer was investigated comprehensively in this paper. The module consisted of seven chips with 1268 eutectic solder bumps under each chip, which are mounted on a 224ayer laminated polyimide substrate with build-up layers and stacked vias. Underfill was filled in between the chips and substrate. The total power of the module was 90W and the maximum heat flux was 30W/cm~2.
    In the aspect of thermal dissipation, an aluminum cold plate with inner double flow path was designed as the indirect liquid cooling equipment for the module. In order to determine the cooling ability of the cold plate, a series of similar experiments were conducted firstly: two power devices which could imitate power dissipation of chips were mounted on the top of the cold plate with thermal interface materials, and CFD simulations corresponding to the experiments were performed to get the fluid flow, temperature distribution and heat balance of the cold plate and power devices. The comparisons of the experimental results and simulation results not only evaluated the validity of CFD simulation method but also determined the interfacial thermal resistance of thermal interface materials iteratively. And then CFD simulation was used to investigate the heat transfer and fluid flow of the multi-chip module, the results turned out that the maximum temperature of the module was about 58.1℃, which indicted the cold plate could meet the requirement of thermal design. Based on the CFD simulation, the effects of factors such as thermal conductivity and interfacial thermal resistance of the thermal interface materials, solder bump patterns, solder ball patterns, thickness of the chips, space between chips, flow velocity and liquid inlet temperature on the thermal performance of the module were studied.
引文
[1] 田民波,电子封装工程,北京:清华大学出版社,2003年9月
    [2] Rao R. Tummala, Fundamentals of Microsystems Packaging, New York: McGraw-Hill, 2001
    [3] Charles Ao Harper, Electronic Packaging and Interconnection Handbook (Third Edition), New York: McGraw-Hill, 1997.
    [4] Rao R. Tummala, Eugene J. Rymaszewski and Alan G. Klopfenstein, Microelectronics Packaging Handbook: Semiconductor Packaging (Part Ⅱ), Second Edition, New York: Chapman & Hall, 1997
    [5] Semiconductor Industry Association, 1999
    [6] 于燮康,提升我国半导体封装业发展的动能及方略,电子与封装,2005,Vol.5,No.6,PP.1-7
    [7] 贾松良,微电子封装的现状及发展,电子产品世界,2000,6,pp.38-39
    [8] KeYun Bi, The Development of Semiconductor Packaging Industry in China, Sixth International Conference on Electronics Packaging Technology(ICEPT), 2005, 8, 30, Shenzhen, China, pp. 1-2
    [9] 李枚,微电子封装技术的发展与展望,半导体技术,2000,Vol.25,No.5,PP.1-3
    [10] 朱正涌,半导体集成电路,北京:清华大学出版社,2001
    [11] Rao R. Tummala, Packaging: Past, Present and Future, Sixth International Conference on Electronics Packaging Technology(ICEPT), 2005, 8, 30, Shenzhen, China, pp.3-7
    [12] John H. Lau, Low cost flip chip technologies for DCA, WLCSP, and PBGA assemblies, New York: McGraw-Hill, 2000
    [13] John H. Lau and S. W. Lee, Chip Scale Package: Design, Material, Processes, Reliability, and Applications, New York: McGraw-Hill, 1999
    [14] E. M. Davis, W. E. harding, R. S. Schwartz, et al., Solid Logic Technology: Versatile, High Microelectronics, IBM Journal of Research and Development, 1964,Vol. 8, No. 4: pp. 102-114
    [15] L. F. Miller, Controlled Collapse Reflow Chip Joining, IBM Joumul of Research and Development, 1969, Vol. 13, No. 5, pp. 239-250.
    [16] Ken Gilleo, Underfill Update: NUF, MUF, WUF, and Other Stuff, http://www.flipchips.com/gilleoUF.html
    [17] 况延香,马莒生,迈向新世纪的微电子封装技术,电子工艺技术,2000,Vol.21,No.1,PP.1-6
    [18] Rao R. Tummala, P. Markondeya Raj and Venky Sundaram, Microsystem Packaging from Milli to Microscale to Nanoscale, The Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis(HPD'04), 2004,6,30, Shanghai, China, pp. 1-7.
    [19] Bi Ke Yun, Gao Shang Tong, The Modern Electronic Package Technology. ISEPT'98, Beijing, China, pp.2-5.
    [20] 杨邦朝,张经国,多芯片组件技术(MCM)及其应用,西安:电子科技大学出版社,2001年8月
    [21] 贾松良,胡涛,朱继光,一种新颖的微电子封装-圆片级封装,世界电子元器件,2002,No.2,pp.7-10
    [22] 况延香,朱颂春,现代微电子封装技术,上海:印刷电路、表面贴装杂志社,1999年4月
    [23] 张蜀平,郑宏宇,电子封装技术的新进展.电子与封装,2004,1,pp.7-13
    [24] 胡志勇,两种先进的封装技术SOC和SOP,电子与封装,2004,2,pp.23-27
    [25] 李志民.高密度电子封装的最新进展和发展趋势,世界电子元器件,2004,6,pp.82-84
    [26] Richards B E Lead-free Legislation, NPL, UK: National Physical Laboratory, 2002
    [27] 朱笑鶤,娄浩焕,瞿欣等,电子封装面临无铅化的挑战,电子与封装,2005,5,PP.10-15
    [28] 吴念祖,吴坚,无铅焊接技术及其在应用中存在的问题,电子与封装,2005,5,pp.25-29
    [29] Zwolinski M., Electrical Conductive Adhesives for Surface Mount Solder Replacement, IEEE Trans. on CPMT, 1996, Vol. 19, No. 4, p. 241
    [30] 吴丰顺,郑宗林,吴懿平等,倒装芯片封装材料—各向异性导电胶的研究进展,电子工艺技术,2004,4,pp.1-4
    [31] C. P. Wong, D. F. Balswin, Noflow Underfill for Flip-chip Packages, 1996, U. S. Patent pending, April
    [32] C. P. Wong, S. H. Shi and G. Jifferson, High Performance No-Flow Underfills for Low-Cost Flip-Chip Applications: Material Characterization, IEEE Trans. on CPMT, 1998, Vol. 21, No. 4, pp. 450-458
    [23] 田民波,林金堵,祝大同,高密度封装基板,北京:清华大学出版社,2003
    [34] 史保华,贾新章,张德胜,微电子器件可靠性,西安:电子科技大学出版社,1999年4月,PP.1-4
    [35] 孙青,庄奕琪,王锡吉等,电子元器件可靠性工程,北京:电子工业出版社,2002年10月,pp.48-55
    [36] 邱成悌,蒋全兴,电子设备结构设计原理,南京:东南大学出版社,2001年12月,PP.11-41
    [37] A. Bar-Cohen and A. Kraus, Thermal Analysis and Control of Electronics Equipment, New York: McGraw-Hill/Hemisphere Publishing Corporation, 1983
    [38] W. Nakayama, Thermal Management of Electronics Equipment: A Review of Technology and Research Topics, Advanced in Thermal Modeling of Electronics Component and System, Vol. 1, New York: Hemisphere Publishing Corporation, 1988, pp.1-78.
    [39] John D. Parry, Jukka Rantala, and Clemens J. M. Lasance, Enhanced electronic system reliability-challenges for temperature prediction, IEEE Trans. on CPMT, 2002, Vol. 25, No. 4, pp. 533-538
    [40] J. Sergent, A. Krum, Thermal Management Handbook for Electronics Assemblies, New York: McGraw Hill,1994
    [41] 陶文铨,数值传热学,西安:西安交通大学出版社,2001年
    [42] L. T. Yeh, Review of Heat Transfer in Electronics Equipment, ASME Journal of Electronics Packaging, 1995, Vol. 117, pp. 333-339.
    [43] Chung T. J., Computational Fluid Dynamics, Cambridge, New York: Cambridge University Press, 2002
    [44] Ferziger, Joel H. and Peric M., Computational Methods for Fluid Dynamics, Berlin: Springer-Verlag, 1996.
    [45] Tien-Yu Lee, Application of CFD Technology Electronics Thermal Management, IEEE Trans-CPMT-B, 1995, Vol. 18, No. 3, pp. 511-520.
    [46] Tien-Yu Lee. An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool. IEEE Trans. on Components and Packaging Technologies, 2000, Vol. 23, No. 3, pp.481.
    [47] Z. Johnson, et al, Designed Based Thermal Simulation Methodology for Ball Grid Array Packages, Proc 6th Intersoc. Conf. Thermal Phenom. Electron. Syst. (ITHERM), 1998, pp. 82-87.
    [48] Z. Johnson, et al, "Designed Based Thermal Simulation Methodology for Ball Grid Array Packages", Proc 6th Intersoc. Conf. Thermal Phenom. Electron. Syst. (ITHERM), 1998, pp. 82-87.
    [49] Yogendra Joshi, M. Baelmans, J. Parry et al, Challenges in Thermal Modeling of Electronics at the System Level: Summary of Panel Held at the Therminic 2000, 2001, IEEE Trans. on CPMT, Vol. 24, No. 4, pp. 611
    [50] H I Rosten, J D Parry, J S Addison, et al, Development, Validation and Application of a Thermal Model of a Plastic Quad Flat Pack, Proceedings of 45th Electronic Components and Technology Conference, 1995
    [51] Masazumi Amagai, Mechanical Reliability in Electronic Packaging, Microelectonics Reliability, 2002, Vol. 42, pp. 607-627
    [52] Reichl, Schubert A, Topper M. Reliability of Flip Chip and Chip Size Packages, Microelectonics Reliability, 2000, Vol.40, pp. 1243-1254
    [53] K. C. Norris, and A. H. Landzberg, Reliability of Controlled Collapse Interconnections, IBM Journal of Research and Development, 1969, (5): pp.266-271
    [54] p. A. Tobias, N. A. Sinclair, and A. S. Van, The Reliability of Controlled-Collapse Solder LSI interconnections, ISHM Proc. 1976, pp.360
    [55] John H. Lau, Solder Joint Reliability-Theory and Applications, New York: Van Nostrand Reinhold, 1991
    [56] Robert Darveaux, Solder Joint Fatigue Life Model, In: Design and Reliability of Solders and Solder Interconnections. The Minerals, Metals and Materials Society (TMS), 1997, pp.213-218
    [57] John H. Lau, C. W Seetoh and Z. P. Wang, CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis, ASME Journal of Electronic Packaging, 2000, Vol. 122, No. 9, pp.255-261
    [58] John H. Lau, Y. H. Pao, Solder Joint Reliability of BGA, CSP, Flip-chip and Fine Pitch SMT Assemblies, New York: McGraw Hill, 1997
    [59] John H. Lau, S. W. Ricky Lee, Modeling and Analysis of 96.5Sn-3.5Ag Lead-Free Solder Joint of Wafer Level Chip Sacle Package on Buildup Microvia Printed Circuit Board, IEEE Transactions on Electronics Packaging Manufacturing, 2002,Vol. 25, No.1, pp. 51-55
    [60] 张俊善,材料强度学,哈尔滨:哈尔滨工业大学出版社,2004年2月,pp.180-191
    [61] 姜伟之,赵时熙,工程材料的力学性能,北京:北京航空航天大学出版社,1991年6月,pp.235-252
    [62] Boon Wong, Helling D E, A mechanistic method fox solder joint failure prediction under thermal cycling, ASME Journal of Electronics Packaging, 1990, Vol.112, No.1, pp. 104-109
    [63] Attaxwala A I, Tien J K, Masada G Y, et al.,Confirmation of creep and fatigue damage in Pb/Sn solder joints, ASME Journal of Electronics Packaging, 1992, Vol. 114, No.2, pp. 109-111
    [64] Frear D, Grivas D, Morris J W, et al., A Microstructural Study of the Thermal Fatigue Failures of 60Sn-40Pb Solder Joints, Journal of Electronics Materials, 1988, Vol. 17, No. 2, pp.171-180
    [65] Scott E Popelar, A Parametric Study of Flip Chip Reliability Based on Solder Fatigue Modelling, 1997 International Electronics Manufacturing Technology Symposium, Austin, Texas, October 13-15, 1997, pp. 299-307.
    [66] Kazuhide Doi, Naohiko Hirano, Takashi Okada, et al., Prediction of Thermal Fatigue Life for Encapsulated Flip Chip Interconnection, The International J. Microcircuits and Electronic Packaging, 1990, Vol. 19, No.3, pp. 231-237
    [67] A. Schubert, R. Dudek, D. Vogel et al., Material Mechanics and Mechanical Reliability of Flip Chip Assemblies on Organic Substrates, Advanced Packaging, 1997, July/August. pp. 29-32.
    [68] Vadim Gektin, Avram Bar-Cohen and Jeremy Ames, Coffin-Manson Fatigue Model of Underfilled Flip Chips, IEEE Trans. on CPMT, 1997, Vol. 20, pp. 317-325
    [69] Scott F. Popelar, A Parametric Study of Flip Chip Reliability Based on Solder Fatigue Modelling: Part Ⅱ-Flip Chip on Organic, The 31st International Symposium on Microelectronics, 1998, November 2-4, San Diego, California, pp. 497-504.
    [70] John H. Lau, Thermal Stress and Strain in Microelectronics Packaging, New York: Van Nostrand Reinhold, 1993, pp. 1-77
    [71] 孔祥谦,热应力有限单元法分析,上海:上海交通大学出版社,1999年10月,pp.50-104
    [72] 谢贻权,何福保,弹性何塑性力学中的有限单元法,北京:机械工业出版社,1981年
    [73] John H. Lau, D. Y. R. Chong, Flip chip on Board Solder joint Reliability Analysis Using 2-D and 3-D FEA Models, IEEE Transactions on Advanced Packaging, 2001,Vol. 24, No. 4, pp. 499-506
    [74] John H. Lau, D. Y. R. Chong and T. H. Low, Thermal Cycling Analysis of Flip-Chip Solder Joint Reliability, IEEE Transactions on Components and Packaging Technologies, 2001,Vol. 24, No. 4, pp. 705-712
    [75] Robert Darveaux, Effect of Simulation Methodology on Solder Joint Crack Growth Correlation, 50th Electronics Components and Technology Conference, 2000, May, pp. 1048-1058
    [76] Robert Darveaux, K. Banerji, A. Mawer et al., Reliability of Plastic Ball Grid Array Assembly, in Ball Grid Array Technology, John H. Lau Ed. New York: McGraw Hill, 1995, ch. 13
    [77] Amagai M., Chip Scale Package Solder Joint Reliability, In: Proceedings of the IEEE 36th International Reliability Physics Symposium, Reno, USA,April, 1998, pp.260-268
    [78] Amagai M., Chip Scale Package Solder Joint Reliability and Modeling, Microelectronics Reliability, 1999, Vol. 39, pp.463-477
    [79] Andrew A. O. Tay, Modeling of Interfacial Delamination in Plastic IC Packages Under Hygrothermal Loading, ASME Journal of Electronics Packaging, 2005,Vol. 127, No. 3, pp.268.
    [80] A. A. O. Tay, Y. Ma., T. Nakamura, et al, A Numerical and Experimental Study of Delamination of Polymer-Metal Interfaces in Plastic Packages at Solder Reflow Temperatures, In Proceeding of ITHERM, 2004, 1-4 June, pp.245-252.
    [81] Yu Gu, Toshio Nakamura, Interfacial Delamination and Fatigue Life Estimation of 3D Solder Bumps in Flip chip Package, Microelectronics Reliability, 2004, Vol. 44, pp.471-483.
    [82] 杨邦朝,张经国,多芯片组件技术(MCM)及其应用,西安:电子科技大学出版社,2001年8月
    [83] 田民波,林金堵,祝大同,高密度封装基板,北京:清华大学出版社,2003
    [84] Harvey Ⅰ. Rosten, Clemens J. M. Lasance and John D. Parry, The World Of Thermal Characterization According To DELPHI-Part Ⅰ: Background to DELPHI, IEEE Trans. on CPMT-Part A, 1997, Vol. 20, No. 4, pp. 384-391
    [85] Clemens J. M. Lasance, Harvey Ⅰ. Rosten, and John D. Parry, The World Of Thermal Characterization According To DELPHI-Part Ⅱ: Experimental and Numerical Methods, IEEE Trans. on CPMT-Part A, 1997, Vol. 20, No. 4, pp. 392-398
    [86] Flotherm 4.2 Reference and User's Manuals, Flomerics, 1993
    [87] http://www.icepak.com
    [88] http://www.ansys.com
    [89] http://www.abaqus.com
    [90] Z. Johnson, et al, Thermal Submodeling of the Wire Bond Plastic Ball Grid Array Package, Proc 13th Semiconductor Thermal Means. Manag. Symp. (Semi-Therm), 1997, pp. 1-9
    [91] Tien-Yu Lee, "An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool", IEEE Trans on Component and Packaging Technology, Vol. 23, No. 3 (2000), pp. 481-489.
    [92] J.E. Graebner, Thermal Conductivity of Printing Wiring Boards, Technical Brief, Electronics Cooling Magazine, 1995, Vol. 1, No.2, pp. 27
    [93] Bruce Guenin, Conduction Heat Transfer in a Printed Circuit Board, Electronics Cooling Magazine, 2001, Vol. 2 No. 4, pp. 98
    [94] Yingjun Cheng, Gaowei Xu, Dapeng Zhu, et al., Thermal Analysis for Indirect Liquid Cooled Multi-chip Module Using Computational Fluid Dynamic Simulation and Response Surface Methodology, IEEE Transactions on Components and Packaging Technologies, 2006, Vol. 29, No. 1, pp. 39-46
    [95] Cheng Yingjun, Zhu Wenjie, Zhu Rui, et al., Thermal Analysis for Multichip Module Using Computational Fluid Dynamic Simulation, The Sixth IEEE CPMT Conference on High Density Microsystem Design and Packaging and Component Failure Analysis (HPD'04), 2004,6,30, Shanghai, China, pp.326-330.
    [96] 程迎军,罗乐,蒋玉齐等,多芯片组件散热的三维有限元分析,电子元件与材料,2004,Vol.23,No.5,pp.43-45.
    [97] 徐步陆,电子封装可靠性研究,博士学位论文,中国科学院上海微系统与信息技术研究,2002
    [98] http://www.topline.tv/flipchip.html
    [99] http://www.loctite.com
    [100] M. Pecht, R. Agarwal, P. McCluskey, et al., Electronic Packaging Materials and Their Properties, Florida: CRC Press LLC, 1999
    [101] 张群,倒装焊及相关问题的研究,博士学位论文,中国科学院上海微系统与信息技术研究,2001
    [102] 孙青,庄奕琪,王锡吉等,电子元器件可靠性工程,北京:电子工业出版社,2002年10月,pp.48-55
    [103] D. Suryanarayana, R. Hsiao, T. E Gall, et al., Flip chip solder bump fatigue enhanced by polymer encapsulation, IEEE Trans. on CHMT, 1991,Vol. 14, pp.218-223
    [104] Yingjun Cheng, Gaowei Xu, Dapeng Zhu, et al., Thermo-mechanical Reliability Study of High I/Os Flip Chip On Laminated Substrate Based on FEA, RSM and Interfacial Fracture Mechanics, Sixth International Conference on Electronics Packaging Technology, 2005, 8, 30, Shenzhen, China
    [105] Yu Gu and Toshio Nakamura, Interfacial Delamination and Fatigue Life Estimation of 3D Solder Bumps in Flip chip Package, Microelectronics Reliability, 2004, Vol. 44, pp.471-483
    [106] Kay N, Madenci and E, Shkarayev S., Global/local finite element analysis for singular stress fields near the junction of dissimilar elastic and elastic-plastic materials in electronic packages. Proceedings of 49th Electronic Components and Technology Conference, May, 1999, pp. 987-993
    [107] Anand L., Constitutive Equations for the Rate-Dependent Deformation of Metals at Elevated Temperatures, ASME Journal of Engineering Material Technology, 1992, Vol. 104, No. 1, pp. 12-17
    [108] M. Pecht, R. Agarwal, E McCluskey, et al., Electronic Packaging Materials and Their Properties, Florida: CRC Press LLC, 1999
    [109] 孔祥谦,热应力有限单元法分析,上海:上海交通大学出版,1999年10月
    [110] John H. Lau and D. Y. R. Chong, Flip chip on Board Solder joint Reliability Analysis Using 2-D and 3-D FEA Models, IEEE Transactions on Advanced Packaging, 2001,Vol. 24, No. 4, pp. 499-506
    [111] C. P. Yeh, W. X. Zhou and K. Wyatt, Parametric finite element analysis of flip chip reliability, Journal of Microcircuit Electronic Packaging, 1996,Vol. 19, No. 2, pp. 120-127
    [112] E. A. Johnson, W. T. Chen, and C. K. Lim, Principles of Electronic Packaging, D. P. Seraphim, R. Lasky, and C.-Y. Li, Eds. New York: McGraw-Hill, 1989, ch. 6, pp. 159-195
    [113] H. D. Solomon, K. Matsui, Thermal Fatigue Life of Pb-Sn Alloy Interconnections, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1991, Vol. 14,No. 1, pp. 224-232
    [114] W. Engelmaier and W. L. Swift, Single Stage Reverse Braton Cryocooler: Performance of the Engineering Model, in the Proc. of the 8th International Cryocooler Conference, 1995, New York
    [115] Lee W. W., Nguyen L. T. and Selvaduray G. S., Solder Joint Fatigue Models: Review and Applicability to Chip Scale Package, Microelectronics Reliability, 2000, Vol. 25, No. 6, pp.205-213
    [116] Liang, J., Lee, ES., Schroeder, S., et al., An Integrated Fatigue Life Prediction Methodology for Optimum Design and Reliability Assessment of Solder Interconnections, Advances in Electronic Packaging, 1997, Vol. 2, pp. 1583-1592
    [117] Robert Darveaux, Effect of Simulation Methodology on Solder Joint Crack Growth Correlation, 50th Electronics Components and Technology Conference, 2000, May, pp. 1048-1058
    [118] p Paris and F Erdogan, A Critical Analysis of Crack Propagation Laws, ASME Journal of Basic Engineering, 1963, December, pp.528-534
    [119] John H. Lau, Chris Lang and S.-W. Ricky Lee, Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies, IEEE Transactions on Components and Packaging and Technology, 2001, Vol. 24, No.2, pp.285-292
    [120] C. Kanchanomai, W. Limtrakarn and Y. Mutoh, Fatigue crack growth behavior in Sn-Pb eutectic solder/copper joint under mode I loading, Mechanics of Materials 2005, Vol. 37, pp. 1166-1174
    [121] Yi-Hsin Pao, A Fracture Mechanics Approach to Thermal Fatigue Life Prediction of Solder Joints, IEEETransactions on Components, Hybrids, and Manufacturing Technology, 1992, Vol. 15,No.4, pp. 559-570
    [122] Boon Wong and Helling D E, A mechanistic method fox solder joint failure prediction under thermal cycling, ASME Journal of Electronics Packaging, 1990, Vol. 112, No. 1, pp. 104-109
    [123] 袁志发,周静芋,试验设计与分析,北京:高等教育出版社,2003年4月
    [124] 陈立周,稳健设计,北京:机械工业出版社,1999年12月
    [125] Hutchinson J. W., Suo Z., Mixed mode cracking in layed materials, Advances in Applied Mechanics, 1992, Vol. 29, Boston: Academic Press
    [126] 杨卫,宏微观断裂力学,北京:国防工业出版社,1995年
    [127] Hyouk Lee and Youn Young Earmme, A Fracture Mechanics Analysis of the Effects of Material Properties and Geometries of Components on Various Types of Packages Cracks, IEEE Transactions on Components, Packaging and Manufacturing Technology-Part A, 1996, Vol. 19, No.2, pp.168-178
    [128] Masazumi Amagai, Investigate of Stress Singularity Fields and Stress Intensity Factors for Cracks, Finite Elements in Analysis and Design, 1998, Vol.30,pp.97-124
    [129] Jianjun Wang, Minfu Lu, Sheng Liu, et al., Investigation of Interfacial Fracture Behavior of a Flip Chip Package under a Constant Concentrated Load, IEEE Trans. on Component, Packaging, Manufacturing Technology-Part B: Advanced Packaging, Vol. 21, No. 1, 1998, pp.79-86.
    [130] Qizhou Yao, Jianmin Qu, Wong, C. P. et al, Characterization of underfill/substrate interfacial toughness enhancement by silane additives, IEEE Transactions on Electronics Packaging Manufacturing, 1999,Vol. 22, No.4, pp.264-267
    [131] John H. Lau, S.-W. Ricky Lee, Chris Chang, Effects of Underfill Material Properties on the Reliability of Solder Bumped Flip Chip on Board with Imperfect Underfill Encapsulants, IEEE Transactions on Components and Packaging Technologies, 2000,Vol. 23, No. 2, pp. 323-333.
    [132] John H. Lau, Chris Lang and S.-W. Ricky Lee, Solder Joint Crack Propagation Analysis of Wafer-Level Chip Scale Package on Printed Circuit Board Assemblies, IEEE Transactions on Components and Packaging and Technology, 2001, Vol. 24, No.2, pp.285-292
    [133] Masazumi Amagai, Mechanical Reliability in electronic Packaging, Microelectonics Reliability, 2002, Vol. 42, pp. 607-627.
    [134] Herman F. Nied, Mechanics of Interface Fracture with Applications in Electronics Packaging, IEEE Transactions on Device and Materials Reliability, 2003, Vol. 3, No. 4, pp.129-143
    [135] Andrew A. O. Tay, Modeling of Interfacial Delamination in Plastic IC Packages Under Hygrothermal Loading, ASME Journal of Electronics Packaging, 2005,Vol. 127, No. 3, pp.268.
    [136] Bulu Xu, Xia Cai, Weidong Huang, et al., Research of Underfill Delamination in Flip Chip by the J-Integral Method, ASME Journal of Electronic Packaging, 2004, Vol. 126, No. 1, pp.94-99
    [137] 彩霞,黄卫东,徐步陆等,填充不流动胶的倒装焊封装中芯片的断裂问题,半导体学报,2003,Vol.24.No.1,pp.90-97
    [138] I Guven, V. Kradinov, J. T. Tor, et al., Strain Energy Density Criterion for Reliability Life Prediction of Solder Joints in Electronic Packaging, ASME Journal of Electronic Packaging, 2004, Vol. 126, No.3, pp.398-405
    [139] Dundurs J. Edge-bonded Dissimilar Orthogonal Elastic Wedges, Journal of Applied Mechanics, 1969, Vol. 36, pp.650-652
    [140] Rice J. R., Sih G. C., Plane Problems of Cracks in Dissimilar Media, Journal of Applied Mechanics, 1965, Vol. 32, pp.418-423
    [141] Rice J R. A path indenpendent integral and the approximate analysis of strain concentration by notches and cracks, Journal of Applied Mechanics, 1968, Vol. 35, pp. 379-386
    [142] Jai H. Park and Youn Y. Earmme, Application of Conversation Integrals to Interface Crack Problems, Mechanics of Materials, 1986, Vol. 5, pp.261-276
    [143] S.N. Atluri, Energetic approaches and path-independent integrals in fracture mechanics, in: S.N. Atluri (Ed.), Computational Methods in the Mechanics of Fracture, Vol. 2, Elsevier Science Publishers, New York, 1986
    [144] Kyung W. Lee and Youn Y. Earmme, Effect of geometric parameters on popcorn cracking in plastic packages during VPS process Finite Elements in Analysis and Design, 1998, Vol. 30, pp. 81-96
    [145] Ronald Krueger, The Virtual Crack Closure Technique: History, Approach and Applications, ICASE Report No. 2002-10, ICASE, Hampton, Virginia

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700