飞机空气导管安全性设计与泄漏探测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
飞机空气导管系统主要负责从发动机、APU和地面气源引出高温压力气体输送到防冰系统、环控系统、液压系统等子系统。管系穿越机翼、发动机吊挂、机身等多个区域,管路故障不仅影响整个空气管理系统功能的实现,也会给周围其他系统带来安全隐患,故此空气导管的安全性和可靠性成为飞机安全设计的重要内容。本文主要从理论推导、数值仿真、实验模拟等方面对飞机空气导管管路系统设计所涉及的关键技术如传热流动特性、应力安全设计和评估方法及泄漏探测技术开展研究。具体工作内容如下:
     (1)空气导管管路工作机制与设计参数的选择
     给出了ARJ21-700的空气导管管路系统布置图,根据管路系统关断阀位置及管内气流属性,将管路系统分为引气系统、防冰系统、配平系统、空调管路系统和笛形管系统,详细介绍了各个子系统管路及其附件的工作机制。其次,给出了飞机空气导管管路的属性参数,提出了飞机空气导管采用空气层绝热和固体材料绝热的多层绝热设计思路,并推导了飞机空气导管多层绝热设计的计算方法。最后,结合空气导管的不同引气方式、飞行加速度、导管的校核标准以及外界环境温度确定了空气导管的计算工况,为空气导管的设计提供边界条件。
     (2)空气导管管内外传热流动特性研究
     基于流体网络算法和有限体积法开展对空气导管管内外传热流动特性的分析工作,获得了管系在不同边界条件下的温度、压力和流量等参数特性以及空气导管管外的温度场分布。研究结果表明:尽管小流量的管路破坏对管系本身的输送特性影响较小,但对周围环境温度的影响需要引起重视。此外,较好的PID控制逻辑和阀门的开关特性能改善管路的压力脉动。最后,从导管的空间布置来说,导管向下布置以及导管管径的增加均会加强导管与舱内空气的换热。管道的布置主要考虑其对座舱热载荷以及自身热损失的影响,对于给定管径的管道系统,可构建关于货舱三角区传递给座舱热负荷以及管道自身热损失的优化函数,给出最优的管道布置位置。
     (3)基于有限元的管系应力和位移安全设计方法
     在分析飞机飞行工况和应力安全评定准则的基础上,提出了基于空间梁单元、壳单元、实体单元的空气导管应力分析、补偿与校核的设计方案。分析了含有直管、弯管、阀门、球形接头、滑动接头、法兰、管路组件的空气导管管系梁单元模型、壳单元模型,同时给出了空气导管相关关键部位实体模型的建模方法。最后,考察了应力校核标准、飞行加速度、管内气体压力、温度及管道附件布置位置对管道应力补偿的影响。
     (4)引气系统的应力和位移安全设计
     采用提出的管系安全设计方法对ARJ21-700飞机空气导管的引气系统进行管系应力安全计算、补偿、校核与优化设计。在补偿过程中,提出了承重设计优先、位移约束及应力释放交替补偿、采用管系结构划分进行应力补偿、滑动接头对称布置等设计思路。同时,基于球形接头偏转角度的大小进行管系优化设计。最后,提出了基于Miner理论和雨流计数法分析管系的疲劳寿命的方法。
     (5)高温压力管道的泄漏探测技术研究
     在研究现有国外飞机空气导管泄漏探测系统工作原理的基础上,指出了现有探测系统的不足,基于热敏材料和组合电路提出了三种结构简单、具有定位泄漏部位能力的飞机高温压力导管泄漏探测系统及方法。其次,搭建了管道泄漏探测试验台,研究了加热段长度、管道气体温度对探测响应时间的影响。同时,结合FLUENT的三维泄漏流场的计算,分析了不同压力、温度、绝热层厚度、导流孔大小及泄漏位置对探测性能的影响。最后,推导了小孔泄漏流量的计算方法,并基于上述研究结果提出了探测系统优化布置的方案。
High temperature pneumatic duct system of the aircraft is bled from the engines, APU andground responsible for the anti-icing system,environment control system,hydraulic system and so on.The duct system is routed throughout the airframe, wings and engine pylon, the accidental rupture cannot only make pressure drop dramatically in the ducts, but also lead to the malfunction of thecorresponding system and the equipments around it. So the reliability and durability of the ducts arevery important for flight safety. The performances of the heat transfer and fluid flow, thermal stresscompensation methods and overheat detection technology are conducted in this paper via theoreticalderivation, numerical and experimental simulation. The thesis has the following major contents:
     (1) mechanism of the duct system and selection of the design parameters.
     The space layout of the pneumatic duct system of ARJ21-700is presented. According to theposition of the shut-off valve in the duct system, the pneumatic duct system is divided into fivesubsystems: bleed system, anti-ice system, trim system, pack discharge system and piccolo system.The mechanism of various subsystems and their accessories are introduced. And then, the attributeparameters of the duct system are given. The multilayer insulations design is adopted in this paper andits computing method is derived. Finally, the calculation conditions are determined by the air bleedway, flight acceleration, design criterion and environment temperature, which provide the boundaryconditions for the further calculation.
     (2)Study on the heat transfer and fluid flow characteristics of the internal and externalducts.
     The fluid network theory and the finite volume method are adopted to analysis the internal andexternal heat transfer and flow characteristics of the duct system. The temperature, pressure and flowrate of each node in the pipeline as well as the external temperature field of the duct system areobtained. The research results show that the rupture with small flow rate has less effect on thetransport characteristics, but its influence on the neighboring environment temperature requiresattention. A better PID control logic and switching characteristics of the valve can improve thepressure pulsation of the duct system. Furthermore, the total heat transfer of the cabin air increaseswith the duct in down location and diameter.The space layout of the duct system needs to consider itsheat loss and the heat load transferring to the cabin. For a given duct system, optimized layout of the duct can be achieved by establing the proper optimal object functions with heat loss of the duct andthe thermal load transferring to the cabin.
     (3)Stress and displacement safety design of the duct system with finite element method.
     By analyzing the flight state and safe assessment methods, the stress analysis, compensation andoptimization method of the aircraft duct system is developed by combination with beam element, shellelement and solid element model. Meanwhile, the beam element model and shell element model ofthe duct system with straight pipe bend, flange, ball joint, sliding seal and rod is derived and therelevant key part is modeled by solid element model. Finally, the influencing factors such as safetydesign criterion, the flight acceleration, temperature, pressure of the air and the layout of theaccessories on the stress distribution of the duct system are investigated.
     (4) Stress and displacement safety design of the bleed system and its influence factors
     Taken bleed system of ARJ21-700as an example, the stress analysis, compensation, checkingand optimization work are conducted by the method mentioned above. In the process of compensation,some design ideas such as load-bearing design firstly, displacement constraints and stress releasewith alternate compensation rule, stress compensation by duct unit dividing method, symmetricalarrangement of the slide joint are pointed out. Meanwhile,the layout of the duct system is optimizedbased on the angle of deflection of the ball joint.Finally, fatigue properties of the duct system arestudied by Miner fatigue damage theory and rain-flow counting method.
     (5)Leakage detection technology of the high temperature pneumatic duct system.
     Based on the study of the duct overheat detector of commercial aircraft in existence, threemodified overheat detection systems based on heat-sensitive property material and combinationalcircuits with simple structure, high reliability and global positioning capabilities are designed, whichfill a strategic gap in duct overheat detection region. Also, the overheat detection experiment platformis built. The influences of the overheat length and internal air temperature on the system response timeare conducted. Meanwhile,based on the three-dimension flow field simulation of the leakage byFLUENT, the influences of pressure,temperature,thickness of the insulation,the deflector size andthe leakage position on the detection system are investigated. Finally, the computing method of flowrate of eyelet leak is derived and the detection layout is optimized according to the present results.
引文
[1]程立嘉,程晓忠,左彦声.大型客机空气管理系统现状与发展趋势[J].航空科学技术,2008,(03):7-8.
    [2] The Engineering Society for Advancing Mobility Land Sea Air and Space, SAE ARP699, HighTemperature Pneumatic Duct Systems for Aircraft[S],1997.
    [3] The Engineering Society for Advancing Mobility Land Sea Air and Space, SAE AS1960,Coupling Assembly, V-Band, Sheet Metal Flange, Pneumatic Tube[S],2007.
    [4] The Engineering Society for Advancing Mobility Land Sea Air and Space, SAE AS1895, FlangeEnd,Male,Type I Standard,Profile Design Standard [S],2007.
    [5] Radio Technical Commission for Aeronautics, RTCA/DO-160E, Environmental Conditions andTest Procedures for Airborne Equipment [S],1997.
    [6] A.S.Iberall.Attenuation of Oscillatory Pressure in Instrument Lines [J]. National Bureall ofStandards,1950,45(6):85-108.
    [7] C.P.Rohmann, E.C.Grogan.On the Dynamics of Pneumatic Transmission Lines [J]. Trans.ASME,1957,79:853-874.
    [8] N.B.Nichols.The Linear Properties of Pneumatic Transmission Lines [J].Instrum.Soc.Amer.1962:5-14.
    [9] F.T.Brown.The Tansient Response of FLuid Lines [J].Journal of Basic Eng.Trans.ASME,Ser.D,1962,84(4):547-553.
    [10] H.M. Schaedel.Signal Analysis of Fluidic Networks[R], Fluidcs State of the Art Symposium30thSEPT.3rd Oct.1974.
    [11]柳兆荣,任福尧,穆晟.以腔室为终端的流体管路的传输特性(I)[J].复旦学报(自然科学版),1977,(1):19-30.
    [12]吴丁毅.内流系统的网络计算法[J].航空学报,1996,17(6):653-657.
    [13]吕亚国.飞机燃油系统计算研究[D],硕士学位论文.西安:西北工业大学,2006.
    [14]张屹尚,赵彬,刘永寿,岳珠峰.飞机燃油管路功能可靠性及其灵敏度分析[J].航空计算技术,2009,39(6):10-13.
    [15]李彦江,张立圣,刘永寿,岳珠峰.飞机燃油管路压力脉动分析[J].飞机设计,2009,29(5):37-42.
    [16]李彦江,冯震宙,刘永寿.飞机燃油系统仿真分析研究[J].西安工业大学学报,2008,28(4):401-405.
    [17]李彦江,刘永寿,姜志峰,岳珠峰.飞机燃油系统功能仿真分析[J].航空计算技术,2009,39(4):113-116.
    [18] Hong Shi, Yanlong Jiang, Zhili Liu. Simulation of bleed air behavior during aircraft in flightBased on the FLOWMASTER [J].Transactions of Nanjing University of Aeronautics&Astronautics.2013,30(2):132-138.
    [19]卜雪琴,郁嘉,林贵平,宋馨.机翼热气防冰系统设计[J].北京航空航天大学学报,2010,V36(8):927-930.
    [20]冯震宙,高行山,刘永寿,岳珠峰.某型飞机燃油系统数值建模方法与仿真分析[J],飞机设计2007,27(5):65-71.
    [21] Ng, H.W., Tan, F.L. Simulation of fuel behaviour during aircraft in-flight refueling[J].AircraftEngineering and Aerospace Technology,2009,81(2):99-105.
    [22]屠毅,林贵平,李国栋.基于Flowmaster的运输机供氧系统仿真[J].北京航空航天大学学报,2009,35(11):1306-1310.
    [23]施红,蒋彦龙,钟伟,彭莹,蔡玉飞.空气导管对飞机密闭空间传热流动的影响[J].南京航空航天大学学报,2012,44(3):313~319.
    [24] Fusegi T., Farouk B. A computational and experimental study of natural convection andsurface/gas radiation interactions in a square cavity [J]. Journal of Heat Transfer,1990,112(3):802-804.
    [25] Manab Kumar Das, K. Saran Kumar Reddy.Conjugate natural convection heat transfer in aninclined square cavity containing a conducting block[J].International Journal of Heat and MassTransfer,2006,49:4987-5000.
    [26] Hossain M.A., Takhar H.S. Thermal radiation effects on the natural convection flow over anisothermal horizontal plate [J]. Heat and Mass Transfer,1999,35(4):321-326.
    [27] Akiyama M., Chong Q.P., Numerical analysis of natural convection with surface radiation in asquare enclosure [J]. Numerical Heat Transfer,1997,32(4):419-433.
    [28] G. Cesini, M. Paroncini, G. Cortella, M. Manzan. Natural convection from a horizontal cylinderin a rectangular cavity [J].International Journal of Heat and Mass Transfer,1999,42(10):1801-1811.
    [29]陶文铨,李斌.处理区域内部导热与辐射联合作用的数值计算方法[J].西安交通大学学报,1985,(03):66-75.
    [30] ElSherbiny S.M., Hollands K.G.T., Raithby G.D. Effect of thermal boundary conditions onnatural convection in vertical and inclined air layers [J].Journal of Heat Transfer,1982,104(3):515-520.
    [31] Larson D.W., Viskanta R. Transient combined laminar free convection and radiation in arectangular enclosure [J].Journal of Fluid Mechanics,1976,78(1):65-85.
    [32]杨卫卫,何雅玲,徐超,陶文铨.二维方腔非稳态自然对流数值模拟研究[J].工程热物理学报,004,25(2):282-284.
    [33]赵秉文,刑荣鹏,张世将,陈晓春.矩形方腔湍流自然对流数值模拟研究[J].浙江理工大学学报,2008,25(4):457-461.
    [34]邹剑峰,郜冶.含加热圆管方腔内自然对流的数值研究[J].热科学与技术,2007,6(4):326-330.
    [35] Xu Xu, Gonggang Sun, Zitao Yu, Yacai Hu, Liwu Fan, Kefa Cen.Numerical investigation oflaminar natural convective heat transfer from a horizontal triangular cylinder to its concentriccylindrical enclosure.International Journal of Heat and Mass Transfer,2009,52(13):3176-3186.
    [36]刘娜.工业压力管道应力分析[D],硕士学位论文.北京:北京化工大学,2003.
    [37]邹建.管路系统静动态力学特性计算软件包开发[D],硕士学位论文.武汉:华中科技大学,2007.
    [38] Ramon Papa, Bento de Mattos, Luis Castro Santos.Simulations of Bleed-air DuctRupture[R].21st AIAA Applied Aerodynamics Conference,2003: AIAA-2003-3678.
    [39] Suman, J.C., Karpathy Sandor A. Design method addresses subsea pipeline thermal stresses[J].Oil and Gas Journal,1993,91(35):85-89.
    [40] Iimura Shoichi,Nishio Nobuaki.Study of Stress in Buried Pipeline under ThermalLoading[R].Proceedings of the1986International Gas Research Conference,1987:163-172.
    [41]陈曦.在用压力管道应力分析及安全评定系统的开发[D],硕士学位论文.大连:大连理工大学,2010.
    [42]王旭飞,刘菊蓉.保温热力管有限元热固耦合分析[J].陕西理工学院学报,2011,27(2):5-10.
    [43]王猛.有限元在海底管道设计中的应用研究[D],硕士学位论文.天津:天津大学,2004.
    [44]刘伟.直埋敷设供热管道应力分析与受力计算[D],硕士学位论文.哈尔滨:哈尔滨工程大学,2007.
    [45] Ouyang X.P., Gao F., Yang H.Y.,e tal.Two-dimensional stress analysis of the aircraft hydraulicsystem pipeline[J].Journal of Aerospace Engineering,2012,226(5):532-539.
    [46] Fyrileiv Olav, Aamlid Olav, Venas Asle.Analysis of expansion curves for subsea pipelines[R].Proceedings of the International Offshore and Polar Engineering Conference,1996v2:66-73.
    [47]王致祥,梁志钊,孙国模,文启鼎.管道应力分析与计算[M].北京:水利电力出版社,1983.
    [48]宋岢岢.工业管道应力分析与工程应用[M].北京:中国石化出版社,2011.
    [49]岳进才.压力管道技术[M].北京:中国石化出版社,2009.
    [50]唐永进.压力管道应力分析[M].北京:中国石化出版社,2010.
    [51]赵廷元.热力管道设计手册[M].山西:山西科学教育出版社,1986.
    [52]赵松滨,王怀庆,钱民,张振峰.浅谈管道补偿器的安装[J].油气田地面工程,2004,23(2):35.
    [53]黄泽淦.管道补偿器的选择和计算方法[J].油气储运,1983,(04):26-30.
    [54]洪景娥,赵永宁.热力管道补偿器膨胀节失效原因分析[J].山东电力技术,2004,(3):59-60.
    [55]张广新.球型补偿器在热力管网上的应用[J].管道技术与设备,2013,(1):36-38.
    [56] Liu Su, Huang Kun,Zhang Chaoyi,LiXinzhan.Study on compensation of bent pipes in subseaLNG cryogenic pipeline[R].ICPTT2011: Sustainable Solutions for Water, Sewer, Gas, and OilPipelines Proceedings of the International Conference on Pipelines and TrenchlessTechnology,2011:1204-1213.
    [57] Komorzycki Cyprian, Stupnicki Jacek.Effect of the Rigidity of the Reinforcing Rings on theOperation of Bellows-type Compensators [J].Mechanika Teoretyczna i Stosowana,1981,19(3):409-422.
    [58] Komorzycki Cyprian, Stupnicki Jacek.Photoelastic Studies of Compensation Bellows withReinforcing Rings [J].Mechanika Teoretyczna i Stosowana,1981,19(4):591-604.
    [59] Kishi Toru, Kikuchi Hiromu, Miura Satoshi, e tal.Application of probabilistic safety assessmentto the pipe rupture incident at Hamaoka Unit-1[J].Journal of Nuclear Science and Technology,2004,41(1):77-85.
    [60] Pinter Gerald, Haager Markus, Lang Reinhold W.Lifetime and safety assessment of PE pressurepipes based on fracture mechanics fatigue tests[R]. Annual Technical Conference ANTEC,2007,v5:2876-2879.
    [61]于艳红.飞机过热探测环路故障定位方法研究[D],硕士学位论文.天津:天津民航学院,2004.
    [62]赵海志.飞机引气泄漏探测传感元件的故障定位研究[D],硕士学位论文.西安:西安电子科技大学,2012.
    [63]李丽.民用发动机短舱火警探测器温度特性地面试验研究[J].航空科学技术,2012,(3):34-36.
    [64] Brake Daniel E., Stearns Steven V., Ronsky N. Dary. Enhanced pipeline leak detection usingairborne differential absorption LIDAR[R].Proceedings of the Biennial International PipelineConference,2008, v2:941-948.
    [65] Chyr Pyng Liou.Pipeline leak detection and location[R].Pipeline Design and Installation:Proceedings of the International Conference,1990:255-269.
    [66]孙会.红外辐射热力管道泄漏点检测仪的研制[D],硕士学位论文.吉林:吉林大学,2012.
    [67]王立宁,李健,靳世久.热输原油管道瞬态压力波法泄漏点定位研究[J].石油学报,2000,21(4):93-96.
    [68]卢庆千,孙晓雷,胡序胜.贮油罐泄漏显示报警仪及放射示踪剂检漏研究[J].同位素,1990,(1):29-30.
    [69] Wang Likun, Xu Bin, Wang Hongchao, e tal.Oil pipeline leak detection system based on acousticwave technology [J]. Applied Mechanics and Materials,2012, v220-223:1628-1632.
    [70] Hua Ke,Ye Hao, Wang, Guizen,e atal.Study on acoustic based leak detection and localizationof nature gas pipeline[J].Journal of Huazhong University of Science and Technology,2009,37(1):181-183.
    [71]赵松龄,盛胜我,殷业.自来水管网声学检漏技术的研究[J].同济大学学报,1997,25(2):171-175.
    [72] Miller R.K., Pollock A.A., Watts D.J., e tal.Reference standard for the development of acousticemission pipeline leak detection techniques [J]. NDT and E International,1999,32(1):1-8.
    [73]蒋彦龙,施红,王瑜,于磊,徐雷,李俊.飞机高温高压导管中高温气体泄漏探测系统及方法[P].中华人民共和国,发明专利,201110027440.2,2011.
    [74] Cholin John.Optical fire detection [J]. Chemical Engineering Progress,1989,85(7):62-68.
    [75] Chilekwa Victor, Sharp David.Detection, location and sizing of multiple leaks in a duct[R].Forum Acusticum Budapest2005:4th European Congress on Acustics,2005:2569-2572.
    [76]那威.真空复合保温管道的传热特性及地下管道的热力分析[D].博士学位论文.哈尔滨:哈尔滨工程大学,2007.
    [77]张礼贵.管线绝热层厚度计算方法集粹[J].石油化工设计,2004,21(1):30-34.
    [78]卞伯绘.辐射传热的分析和计算[M].北京:清华大学出版社,1988
    [79]闫克学.基于Flowmaster软件的直升机燃油系统仿真计算[J].直升机技术,2008,156(4):14-18.
    [80]党德功,张天强,高清秀,徐春龙.使用FLOWMASTER模拟和优化柴油机的供油系统[J].铁道机车车辆,2003,23(1):116-120.
    [81]杨小龙,左丽华,陈林青.基于Flowmaster燃油系统飞行剖面仿真研究[J].直升机技术,2009,159(3):86-89.
    [82]曹连华,庄达民,宁纯利,陈嵩禄.战斗机燃油系统流体网络的数值计算[J].飞机设计,2002,(4):37-41.
    [83] Peter Rowland, Maxine Longvill, Keith Austin, Irfan Bhatti.Development of the modelingenvironment for the imulation of an aircraft hydraulic system[R].2000World AviationConference,2000: AIAA-2000-5600.
    [84] Ashok Joshi, P. Jayan. Modeling and Simulation of Aircraft Hydraulic System[R].AIAAModeling and Simulation echnologies Conference and Exhibit,2002: AIAA-2002-4611.
    [85] Hampus Gavel, Johan lvander, Bj rn Johansson, Petter Krus. Aircraft Fuel System SynthesisAided by Interactive Morphology and Optimization[R].45th AIAA Aerospace Sciences Meetingand Exhibit,2007: AIAA-2007-653.
    [86]董军,刘旭红,姚顺忠,李慧峰.基于虚功原理表达的空间梁单元刚度矩阵分析[J].西南林学院学报,2002,22(4):59-62.
    [87]范钦珊,殷雅俊.材料力学[M].北京:清华大学出版社,2008.
    [88]严宗达,王洪礼.热应力[M].北京:高等教育出版社,1993.
    [89]崔孝秉,仝兴华,蔡强康.管系球形补偿器的受力分析及其应用[J].石油化工设备,1990,19(3):1-4.
    [90]仝兴华,崔孝秉,蔡强康.弹性杭弯铰模型在管系结构分析中的应用[J].石油大学学报,1989,13(5):51-61.
    [91]臧铁军.长输管道热应力对弯头的影响[J].管道技术与设备,1997,(2):23-25.
    [92]胡于进,王璋奇.有限元分析及应用[M].北京:清华大学出版社,2009.
    [93]王勖成.有限单元法[M].北京:清华大学出版社,2007.
    [94]傅永华.有限元分析基础[M].武汉:武汉大学出版社,2003.
    [95]陈敏,张周红.复杂管道应力分析中的支吊架布置方法[J].压力容器,2009,26(3):21-25.
    [96]周小兵,蔡晓峰,阳东升,何旭东,包俊.弹簧支吊架在管道布置和应力分析中的相关注意事项[J].化肥设计,2010,48(6):21-34.
    [97]周长江.石油化工管道支吊架的设置及选用[J].广东化工,40(8):154-155.
    [98]郑彦渊,王晓.管道支吊架的设置及选用[J].化工生产与技术,2012,19(4):47-49.
    [99]张利,李岩,魏韬.石化管道应力分析及支吊架设计综述[J].化工设计通讯,35(1):36-41
    [100] Lubecki Szczepan, Taler Dawid, Sobota Tomasz.Numerical optimization of steam pipelineheating with respect to thermal stresses [J]. Archives of Thermodynamics,2008,29(4):87-96.
    [101] Shih, Chien-Jong, Yeh Chi-Nan, Chang Ting-Hao.Experimental optimization and analysis ofintake and exhaust pipeline for small engine motorcycle [J]. Journal of Applied Science andEngineering,2012,15(1):21-30.
    [102]张士强.发动机进气歧管注塑模具浇口数量与位置优化[J].车用发动机,2012,202(5):85-91.
    [103]何浩祥,闫维明,张爱林.面向结构健康监测的传感器数量及位置优化研究[J].振动与冲击,2008,27(9):131-134.
    [104]孙晓丹,欧进萍.结构损伤参量灵敏度分析的传感器数量位置优化[J].哈尔滨工业大学学报,2010,42(10):1530-1534.
    [105]陈艳秋,朱梓根.基于遗传算法的航空发动机管路优化设计[J].航空动力学报,2002,17(4):421-424.
    [106]刘斌,蒋丹,齐恩伍.基于蚁群算法的三维管路优化[J].东华大学学报,2008,34(3):338-340.
    [107]高书光.热油管道优化设计技术研究[D],硕士学位论文.青岛:中国石油大学,2011.
    [108]翟明,顾元宪,申长雨.注射模浇口数目和位置的优化设计[J],化工学报,2003,54(8):1141-1144.
    [109]夏鹤鸣,周昌明,韩定邦.某型飞机机翼液压管路优化设计与分析[J].航空维修与工程,2012,(4):48-50.
    [110]伊鹏,刘衍聪,石永军,等.基于改进自适应遗传算法的海洋平台管路优化设计方法[J],中国海上油气,2010,22(2):134-138.
    [111] CRJ700/900AMM (Aircraft Maintenance Manual)[Z].Bombardier Inc. Revision33.2010.
    [112] CRJ700/900ASM (Aircraft Schematic Manual)[Z]. Bombardier Inc. Revision13,2010.
    [113] CRJ700/900ITEM (Illustrated Toll And Equipment Manual)[Z].Bombardier Inc.Revision16,2000.
    [114] CRJ700/900CMM (Component Maintenance Manual)[Z]. Bombardier Inc. Revision15,2001.
    [115] CRJ700/900SRM (Structural Repair Manual)[Z].Bombardier Inc. Revision16,2000.
    [116] CRJ700/900FIM (Fault Isolation Manual)[Z]. Bombardier Inc. Revision18,2008.
    [117] CRJ700/900ATM (Aircraft Training Manual)[Z].Bombardier Inc. Rev4,2006.
    [118] CRJ100/200AMM (Aircraft Maintenance Manual)[Z], Bombardier Inc. Revision14,2006.
    [119] CRJ100/200ASM (Aircraft Schematic Manual)[Z].Bombardier Inc. Revision2,1996.
    [120] CRJ100/200ITEM (Illustrated Toll And Equipment Manual)[Z]. Bombardier Inc,2000.
    [121] CRJ100/200CMM (Component Maintenance Manual)[Z].Bombardier Inc. Revision6,1999.
    [122] CRJ100/200SRM (Structural Repair Manual)[Z].Bombardier Inc. Revision12,2003.
    [123] CRJ100/200FIM (Fault Isolation Manual)[Z].Bombardier Inc. Revision41,2011.
    [124] CRJ100/200ATM (Aircraft Training Manual)[Z].Bombardier Inc. Revision4,1999.
    [125]侯庆民.天然气管道泄漏与天然气在大气中扩散的模拟研究[D],硕士学位论文.哈尔滨:哈尔滨工程大学,2009.
    [126]吴昊.高含硫天然气管线泄漏毒害研究[D],硕士学位论文.兰州:兰州理工大学,2010.
    [127] Leslie Fernandes,Arnaud Amy.Bleed Leak Detection system[P],America,United StatesPatent,US7155961B2,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700