力反馈主手机构设计若干关键问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
主从式手术机器人系统可以把人和机器人结合起来,以力反馈主手作为交互界面控制手术机器人进入体内进行手术操作,既能利用人类具有的高级思维和决策能力,又能够利用机器人具有的高精密度和准确度。力反馈主手是主从式手术机器人系统的重要组成部分,本文对力反馈主手机构设计的工作空间分析、位姿误差建模、重力平衡等关键问题进行了深入研究,论文主要内容和成果如下:
     编写了n自由度机器人机构运动学模型和雅可比矩阵的计算程序,建立了主从运动学映射的数学模型。
     提出了一种计算n自由度正交机器人机构工作空间的数值方法,先求出机器人机构末端两个关节对应子工作空间的边界曲面,在前一个关节建立参考坐标系,将已知子工作空间的边界曲面分成若干层,求出每一层上的截交线,定义截交线的两个端点、半径坐标值最大点和最小点等为特征点,根据这些特征点可生成前一级子工作空间的边界曲线和边界曲面,由此递推可生成工作空间的边界曲面,并计算出工作空间的体积值。以三自由度正交机器人机构和PHANTOM力反馈主手机构为例进行了仿真分析,结果表明该算法具有运动学计算量小、结果精确等优点,并且能适用于平行关节机构。
     根据机器人机构位姿误差模型的连续性、等价性、比例性要求,以加入Hayati参数的运动学模型为基础,运用Paul提出的机器人微分运动理论,提出了一种基于坐标系分组的机器人机构位姿误差矢量的计算方法,简化了Veitschegger和Chi-haur Wu提出的基于杆件的位姿误差矢量计算方法。建立了主从式手术机器人系统的位姿误差模型,开发了基于MATLAB平台的仿真程序,分析了由PHANTOM力反馈主手和Da Vinci手术机器人组成的主从式手术机器人系统的位姿误差在其工作空间截面内的分布状况。根据PHANTOM力反馈主手机构的位置误差模型,采用正交试验设计的方法,以各杆件运动学参数误差作为试验因素,以位置误差作为响应变量,进行了精度设计的仿真分析。
     提出了一种弹簧重力平衡系统的能量分析方法,以具有平行四边形辅助杆件的2自由度机构为研究对象,进行了单关节弹簧重力平衡系统的方案设计。根据Kane方法推导了PHANTOM力反馈主手机构的动力学模型,进行了反向可驱动性的分析,最后对样机刚度进行了实验测试。
The master-slave surgical robotic system is a more effective surgical robotic system,theslave robot is the actual robot manipulator that performs the surgery within the patient’s bodywhile the master is an interface device that allows the surgeons to control the slave. Themaster-slave surgical robot system allows the human to provide high-level thinking and decisionmaking and allows the robot using its high precision and accuracy. The force feedback mastermanipulator is an important component of the master-slave surgical robotic system, the key issuessuch as workspace analysis, error modeling, gravity compensation have been studied, thefollowing aspects in the dissertation have been achieved:
     A computer program to calculate the kinematic model and the jacobian matrix of n dof robotmanipulator has been developed in MATLAB. The linear mapping relationship between the forcefeedback master manipulator workspace and the surgical robot workspace has been built.
     An algorithm for the workspace boundary of the n-R orthogonal manipulators has beendeveloped, sub workspace boundary surface of the last two joints is generated as initial subworkspace boundary,the cross sections of the initial sub workspace boundary are created withrespect to the preceding joint coordinate, the two end points, the point with maximum radius andthe point with minimum radius of each cross sections curve are defined as the feature points, theboundary curves and the boundary surfaces of the former sub workspace are determined by thesefeature points, then the workspace is computed by this iterative process, and the volume of theworkspace is calculated. A simulation has been performed on a3-R orthogonal manipulator.Simulation results show that the proposed algorithm has advantages of small amount of kinematiccalculations and high precision, and it can be used for the manipulators with parallel joints.
     In order to obtain a parametrically continuous model in the case of two adjacent paralleljoints or nearly parallel joints, an additional rotation term about the y-axis known as a Hayatiparameter is introduced as the fifth parameter. According to the differential theory, a new methodto calculate the differential vector of the end-effector is proposed to simplify the expressionsderived by Veitschegger and Wu. A linear error model that described the end-effector position andorientation errors of the master salve surgical robot system due to kinematics parameters errors has been presented. A computer program to perform the accuracy analysis is developed inMATLAB. This methodology and software has been applied to the accuracy analysis of amaster-slave surgical robot system which consists of PHANTOM force feedback device and DaVinci robotic arm. The position error in its workspace cross section (XOZ) has been plotted as3Dsurface graph and discussed. The orthogonal experimental design method is adopted for accuracydesign of the haptic manipulator. The kinematic parameter errors are considered as the factors andthe pose errors are considered as the response variable, simulation analysis for the accuracydesign has been performed.
     An energy approach to analysis the spring balancing mechanisms has been proposed, themono-articular spring balancing mechanism with auxiliary link for a2-DOF manipulator has beendesigned. The dynamic model of the PHANTOM force feedback device has been built, and thebackdrivability has been analyzed. The stiffness of a prototype force feedback master manipulatorhas been tested by experiment.
引文
[1] R. H. Taylor,D. Stoianovici,Medical robotics in computer integrated surgery,IEEE Transactions on Robotics and Automation,2003,19(5):765-781
    [2] B. Davies,A review of robotics in surgery,Proc Inst Mech Eng,2000,214(1):129-40
    [3] G. Dogangil,B. L. Davies,F. R. y Baena,A review of medical robotics forminimally invasive soft tissue surgery,Proceedings of the Institution ofMechanical Engineers, Part H: Journal of Engineering in Medicine,2010,224(5):653-679
    [4] P. Gomes,Surgical robotics:Reviewing the past,analysing the present,imagining the future, Robotics and Computer-Integrated Manufacturing,2011,27(2):261-266
    [5] Y. S. Kwoh,J. Hou,E. A. Jonckheere,et al, A robot with improvedabsolute positioning accuracy for CT-guided stereotactic brain surgery,IEEETrans. Biomed. Eng.,1988,35:153-161
    [6] A Reiter,PK Allen,T Zhao,Feature classification for tracking articulatedsurgical tools, Medical Image Computing and Computer-AssistedIntervention–MICCAI2012,2012,592-600
    [7] O. J. Romero, P. Javier, D. Atreya, et al, History, evolution andapplication of robotic surgery in urology,Arch. Esp. Urol.2007,60(4):335-341
    [8] J. Wall,V. Chandra,T. Krummel,Robotics in general surgery,MedicalRobotics,I-Tech Education and Publishing,2008,401-506
    [9] S. C. Low,L. Phee,A review of master-slave robotic systems for surgery,International Journal of Humanoid Robotics,2006,3(4):547-567
    [10] R. D. Howe, Y. Matsuoka, Robotics for surgery, Annu. Rev. Biomed.Eng.,1999,1:211-240
    [11]邓乐,赵丁选,唐新星,具有力觉临场感的遥操作操纵器关键技术研究,工程设计学报,2005,12(3):159-162
    [12] R. C. Goertz,Fundamentals of Gerneral-Purpose Remote Manipulators,Journal of Nucleonics,1952,10(11):36-42
    [13] R. Taylor,P. Jensen,L. Whitcomb,et al,A steady-hand robotic system formicrosurgical augmentation, The International Journal of RoboticsResearch,1999,18(12):1201-1210
    [14]孔民秀,缩放式力反馈主手研究及其在遥操作正骨手术中的应用:[博士学位论文],哈尔滨,哈尔滨工业大学,2007
    [15] C. R. Wagner,N. Stylopoulus,R. D. Howe,The Role of Force Feedback inSurgery:Analysis of Blunt Dissection,Proc. Haptics Symp,2002
    [16] H. Mayer,I. Nagy,A. Knoll,et al,An Experimental System for RoboticHeart Surgery,18th IEEE Symposium on Computer-Based MedicalSystems,2005,56-60
    [17] U. Hagn, M. Nickl, S. J rg, et al, The DLR MIRO—a versatilelightweight robot for surgical applications, Ind Robot,2008,35(4):324-336
    [18] Linda van den Bedem,Ron Hendrix,Nick Rosielle,et al,Design of aMinimally Invasive Surgical Teleoperated Master-Slave System with HapticFeedback Proceedings of the2009IEEE International Conference onMechatronics and Automation,2009:60-65
    [19] V. Hayward,P. Gregorio,O. Astley,et al,Freedom7:a high fidelityseven axis haptic feedback device with application to surgical training. InISERS’97,1997
    [20]王国彪,彭芳瑜,王树新等,微创手术机器人研究进展,中国科学基金,2009,4:209-213
    [21] Mao-Sheng Cai,Alberto Rovetta,A new algorithm for workspace analysisfor robot manipulators,Meccanica,1990,25(1):40-46
    [22] Marco Ceccarelli. A Formulation for The Workspace Boundary of generalN-revolute Manipulators.Journal of Mechanism and Machine Theory,1996,31(5):637-646
    [23] I. Tyapin,G. Hovland,T. Brogardh,A Geometrical Method for Calculatingthe Unreachable Workspace of the3-DOF Gantry-Tau Parallel Manipulator,Proc. of the Australasian Conference on Robotics and Automation,Brisbane,December2007
    [24] F. Bulca, J. Angeles, P. J. Zsombor-Murray, On the workspacedetermination of spherical serial and platform mechanisms, Mech MachTheory,1999,34(3):497-512
    [25] J. A. Hansen,K. C. Gupta,Kazerounian,et al,Generation and evaluationof the workspace of a manipulator. Int. J. Robotics Res,1983,2:22-31
    [26] J. P. Merlet,Designing a Parallel Manipulator for a Specific Workspace,theInternational Journal of Robotics research,1997,16(4)545-556
    [27] S. J. Kwon, Y. Youm,W. K. Chung,General algorithm for automaticgeneration of the workspace for n-link planar redundant manipulators,ASMETrans.,1994,116:967-969
    [28] A. Kumar,K. J. Waldron,The workspace of mechanical manipulators,ASMEJ. Mech. Des.,1981,103:665-672
    [29] J. Rastegar, D. Perel, Generation of Manipulator Workspace BoundaryGeometry Using the Monte Carlo Method and Interactive ComputerGraphics,ASME Trends and Developments in Mechanisms,Machines,andRobotics,1988,3:299-305
    [30] D. Alciatore,C. Ng,Determining manipulator workspace boundaries usingthe Monte Carlo method and least square segmentation,ASME Robot.:Kinematics,Dynam.,Controls,1994,DE-72:141-146
    [31] C. H. Choi, H. S. Park,S. H. Kim,et al, A ManipulatorWorkspaceGeneration Algorithm Using a Singular Value Decomposition,InternationalConference on Control, Automation and Systems2008,Seoul,Korea,2008,163-168
    [32]王兴海,周迢,机器人工作空间的数值计算,机器人,1988,9(1):50-53
    [33]赵杰,王卫忠,蔡鹤皋,可重构机器人工作空间的自动计算方法,天津大学学报,2006,9:1082-1087
    [34]曹毅,显微外科手术机器人工作空间分析与综合:[博士学位论文],天津,天津大学,2004
    [35] I. Tyapin,G. Hovland,T. Brog°ardh,A Fully Geometric Approach for theWorkspace Area of the Gantry-Tau Parallel Kinematic Manipulator,Proc. ofthe13th IASTED International Conference on Robotics and Applications,Wurzburg,Germany,2007
    [36] Y. C. Tsai,A. H. Soni,an algorithm for the workspace of a general n-rrobot,ASME Journal of Mechanisms,Transmissions,and Automation inDesign,1983,105:52-57
    [37] Karim Abdel-Malek,Harn-Jou YEH,Analytical boundary of the workspacefor general3-DOF mechanisms,International Journal of Robotics Researcharchive,1997,16(2):198-213
    [38] Litvin FL,Application of Theorem of Implicit Function System Existence forAnalysis and Synthesis of Linkages. Mechanism and Machine Theory1980,15:115-125
    [39] K. Abdel-Malek,F. Adkins,H. J. Yeh,et al,On the determination ofboundaries of manipulator workspaces, Robot Comput-Int Manuf1997,13(1):63-72
    [40] E. J. Haug,J. Y. Wang,J. K. Wu,Dextrous workspaces of manipulators:I.analytical criteria,Journal of Structural Mechanics,1992:20(3):321-361
    [41] E. J. Haug,C. M. Luh,F. A. Adkins,et al,Numerical algorithms formapping boundaries of manipulator workspaces,ASME J Mech,1996,118:228-34
    [42] J. Yang, K. Abdel-Malek, Y. Zhang, On the workspace boundarydetermination of serial manipulators with non-unilateral constraints,Roboticsand Computer-Integrated Manufacturing,2008,24(1):60-76
    [43] K. Abdel-Malek, Jingzhou Yang, Workspace boundaries of serialmanipulators using manifold stratification,Int J Adv Manuf Technol,2006,28:1211-1229
    [44] C. Mavroidis,S. Dubowsky,P. Droue,et al,A Systematic Error Analysisof Robotic Manipulators:Application to a High Performance Medical Robot.In: Proceedings of the1997International Conference in Robotics andAutomation,1997,980-985
    [45] G. Alici,B. Shirinzadeh, A systematic technique to estimate positioningerrors for robot accuracy improvement using laser interferometry based sensing.Mechanism Machine Theory,2005,40:879-906
    [46] C. R. Mirman,K. C. Gupta,Identification of Position Independent RobotParameter Errors Using Special Jacobian Matrices,The Internation Journal ofRbotics Research,1993,12:288-298
    [47] I. C. Ha,Kinematic Parameter Calibration Method for Industrial RobotManipulator Using the Relative Position,J. Mech. Sci. Technol,2008,22:1084-1090
    [48]闫华,刘桂雄,郑时雄,机器人位姿误差建模方法综述,机床与液压,2000,1:3-5
    [49] K. J. Waldron, A. Kumar, Development of a theory of errors formanipulators,Proc. of5th World Congress on TMM,1979,821-825
    [50] S. Hayati,Robot arm geometric link parameter estimation,In:Proc.22ndIEEE Conf. Decision and Control,1983,1477-1483
    [51] W. Veitchegger,C. Wu,Robot accuracy analysis based on kinematics. IEEEJ Robotics Automat,1986(3):171-179
    [52] L. J. Everett,M. R. Driels,Mooring,B. M,Kinematic modeling for robotcalibration, In: IEEE Int. Conf. on Robotics and Automation,1987,183-189
    [53] H. Zhuang,Z. Roth,F. Hamano,A complete and parametrically continuouskinematic model for robot manipulators. IEEE Transaction in Robotics andAutomation,1992,8(4):451-462
    [54] N. Vira,T. Gill,E. Tunstel,Application of symbolic computation in robotpose error modeling. Journal of Symbolic Computation,1990,10(5):509-523
    [55] W. Khalil,S. Besnard,P. Lemoine,Comparison study of the geometricparameters calibration methods, International Journal of Robotics andAutomation,2000,15(2):56-67
    [56]黄真,机器人手臂误差分析及误差补偿,光学精密工程,1987,1:77-86
    [57]徐卫良,机器人机构误差建模的摄动法,机器人,1989,3(6):39-48
    [58]丁希仑,周乐来,周军,机器人的空间位姿误差分析方法,北京航空航天大学学报,2009,35(2):241-24
    [59]黄晨华,张铁,谢存禧,工业机器人位姿误差建模与仿真,2009,37(8):65-69
    [60]黄勇刚,杜力,黄茂林,基于旋量理论的机器人误差建模方法,2010,42(3):484-489
    [61]吴健荣,王立权,王才东,王文明,机器人精度设计的方法研究,哈尔滨工程大学学报,2010,10:1367-1372
    [62]徐卫良,机器人精度的概率优化综合,东南大学学报,1989,01:53-60
    [63]禡琳,黄田,王洋,倪雁冰,张世昌,面向制造的并联机床精度设计,中国机械工程,1999,10:42-46
    [64]方跃法,房海蓉,牟建斌,并联机器人误差敏感系数及其在工作空间内的分布,北方交通大学学报,2000,04:38-42
    [65]卢强,张友良,用蒙特卡洛法进行6腿并联机床精度综合,中国机械工程,2002,06:464-467
    [66]赵永涛,王田苗,基于蒙特卡洛方法的导航机器人的误差分析,航空制造技术,2004,3:52-54
    [67]张义民,黄贤振,张旭方,岳贵平,含运动副间隙平面机构位姿误差分析,东北大学学报(自然科学版),2008,08:1147-1150
    [68]王伟,贠超,机器人机构精度综合的正交试验法,机械工程学报,2009,11:18-24
    [69]李娟,孙立宁,刘延杰,一种新型平面并联定位机构的误差建模与分析,压电与声光,2009,02:284-288
    [70]李新友,陈五一,韩先国,基于正交设计的3-RPS并联机构精度分析与综合,北京航空航天大学学报,2011,08:979-984
    [71]郭盛,王乃玥,方跃法,李霄霄,基于概率分布的3-UPU机构误差影响敏感度,机械工程学报,2011,21:14-21
    [72] Po-Yang Lin,Win-Bin Shieh,Dar-Zen Chen,Design of Perfectly Static-Balanced One-DOF Planar Linkage with Revolute Joint Only,Proceedings ofthe ASME2008International Design Engineering Technical Conferences&Computers and Information in Engineering Conference,August,Brooklyn,New York,USA,2008,1-9
    [73] P. Fischer,R. Daniel,K. V. Siva,Specification and Design of Input Devicesfor Teleoperation,Proc. IEEE Int. Conf. Robotics&Auto,1990:40-545
    [74] N. Ulrich,V. Kumar,Passive Mechanical Gravity Compensation for RobotManipulators,Proc. of IEEE Int. Conf. on Robotics and Automation,1991,1536-1541
    [75] H. Diken, Effect of Mass Balancing on the Actuator Torques of aManipulator,Mech. and Mach. Theory,1995,30:495-500
    [76] J. Wang,C. M. Gosselin,Static Balancing of Spatial Four-degreeof-freedomParallel Mechanisms, Mechanisms and Machine Theory,2000,35:563-592
    [77] S. K. Agrawal, A. Fattah, Gravity-balancing of Spatial RoboticManipulators,Mechanisms and Machine Theory,2004,39:1331-1344
    [78] S. Hirose,T. Ishii,A. Haishi,Float Arm V:Hyper-Redundant ManipulatorWith Wire-Driven Weight-Compensation Mechanism, Proceedings of the2003IEEE IRternsliomBl Conforenre OR Robotics&Automation Taipei,Taiwan,2003,368-343
    [79] D. Borro,A. Garcia-Allonso,L. Matey,A large haptic device for aircraftengine maintainability,J. of IEEE Computer Science Society,2004:70-73
    [80] Toshio Morita, Fumiyoshi Kuribara, Yuki Shiozawa, et al, A NovelMechanism Design for Gravity Compensation in Three Dimensional Space,International Conference on Advanced Intelligent Mechatronics,2003,163-168
    [81] S. L. Chow,C. F. Shi,Passive gravity-compensating mechanisms,UnitedStates Patent,6899308,2005
    [82] Naoyuki Takesue,Takashi Ikematsu,Hideyuki Murayama,et al,Designand Prototype of Variable Gravity Compensation Mechanism (VGCM),Journal of Robotics and Mechatronics,2011,23(2):249-257
    [83] Gen Endo, Hiroya Yamada, Akira Yajima, et al, A Passive WeightCompensation Mechanism with a Non-Circular Pulley and a Spring,2010IEEE International Conference on Robotics and Automation,2010,3843-3848
    [84] V. H. Arakelian, M. R. Smith, Complete Shaking Force and ShakingMoment Balancing of Linkages,Mechanisms and Machine Theory,1999,34:1141-1153
    [85] T. Rahman,R. Ramanathan, R. Seliktar,et al,A simple technique topassively gravity-balance articulated mechanism, ASME Transactions onMechanisms Design,1995,117(4):655-658
    [86] F. L. te Riele, E. E. Hekman,J. L. Herder,Planar and spatial gravitybalancing with normal springs,ASME,2004
    [87] I. Ebert-Uphoff,K. Johnson,Practical considerations for the static balancingof mechanisms of parallel architecture,Proceedings of the Institution ofMechanical Engineers,Part K: Journal of Multi-body Dynamics,2002,216(1),73-85
    [88] S. K. Agrawal, A. Fattah, Gravity-Balancing of Classes of IndustrialRobots,Proceedings of the2006IEEE International Conference on Roboticsand Automation Orlando,Florida-May2006,2872-2877
    [89] T. Nakayama, Y. Araki, H. Fujimoto, A new gravity compensationmechanism for lower limb rehabilitation,In Mechatronics and Automation,2009. ICMA2009,943-948
    [90] W. Khalil, J. F. Kleinfinger, A new geometric notation for open andclosedloop robots,Proc. IEEE Conf. on Robotics and Automation,1986,1174-1180
    [91] M. Richard,Z. X. Li,S. S. Sastry,A Mathematical Introduction to RoboticManipulation,CRC press Inc.,1994
    [92] Loi-Wah Sun, Frederick Van Meer, Yan Bailly, and Chung KwongYeung,Design and Development of a Da Vinci Surgical System Simulator,Proceedings of the2007IEEE International Conference on Mechatronics andAutomation,2007,1050-1055
    [93]熊有伦,丁汉,刘恩沧,机器人学,北京:机械工业出版社,1993,87-114
    [94]王庭树,机器人运动学及动力学,西安:西安电子科技大学出版社,1990,62-80
    [95]郭柏鹭,具有力感觉的通用型手术机器人主手精度问题研究:[硕士学位论文],天津大学2009
    [96] C. J. Yang,B. Niu,J. F. Zhang,et al,Different structure-based controlsystem of the PUMA560manipulator with an arm exoskeleton, In:Proceedings of the2004IEEE conference on robotics, automation andMechatronics,2004:572-7
    [97] Y. Chen, J. Zhan, C. Yang, et al, The workspace mapping withdeficient-DOF space for the PUMA560robot and its exoskeleton arm by usingorthogonal experiment design method, Robotics and Computer-IntegratedManufacturing,2007,23:478-487
    [98] C. LanniI, S. F. P. Saramago, M. Ceccarelli, Optimal Design of3RManipulators by Using Classical Techniques and Simulated Annealing,Journal of the Brazilian Society for Mechanical Sciences,2002,24(4):294-302
    [99] M. Zein,P. Wenger,D. Chablat,An exhaustive study of the workspacetopologies of all3R orthogonal manipulators with geometric simplification,Mechanism and Machine Theory,2006,41(8):971-986
    [100]曹毅,李秀娟,宁祎等,三维机器人工作空间及几何误差分析,机械科学与技术,2006,25(12):1458-1502
    [101]汪钟正,n-R副机械手工作空间内通孔空腔特性分析,武汉工业大学学报,1987,3:367-377
    [102] S. S. Lee,J. M. Lee,Design of a general purpose6-DOF haptic interface,Mechatronics,2003,13(7):697-722
    [103] S. Kucuk,Z. Bingul,Comparative study of performance indices forfundamental robot manipulators,Robotics and Autonomous Systems,2006,54(7):567-573
    [104]谢存禧,郑时雄,林怡青,空间机构设计,上海:上海科技出版社,1996,90-96
    [105]潘汉军,汪钟正,工业机器人工作空间分析,武汉工业大学学报,1988,2:237-244
    [106] C. Gosselin,J. Angeles,A global performance index for the kinematic,optimization of robotic manipulators,Transacations of the ASME,1991,133:220-226
    [107] Donghun Lee, TaeWon Seo, Jongwon Kimc, Optimal design andworkspace analysis of a mobile welding robot with a3P3R serialmanipulator,Robotics and Autonomous Systems,2011(59):813-826
    [108]李海虹,一种含柔性杆件的高速并联机器人优化设计方法研究:[博士学位论文],天津大学,2003
    [109]吴扬东,面向机械产品族的稳健设计技术研究及其在往复泵中的应用:[博士学位论文],浙江大学,2008
    [110] C. Zang,MI Friswell,JE Mottershead,A review of robust optimal designand its application in dynamics,Computers&Structures,2005:315-326
    [111]杨艳子,基于BP网络和稳健性分析的机械扩径工艺参数优化:[博士学位论文],燕山大学,2010
    [112] P. Fischer,R. Daniel,K. V. Siva,Specification and Design of Input Devicesfor Teleoperation,Proc. IEEE Int. Conf. Robotics&Auto,1990:40-545
    [113] P. A. Millman, J. E. Colgate, Design of a Four Degree-of-FreedomForce-Reflecting Manipulandum with a Specified Force/Torque Workspace,Proc. IEEE In. Conf. Robotics&Auto,1991:1488-1493
    [114] H. Z. Tan,Mandayam A. Srinivasan,Brian Eberman,and Belinda Cheng,Human factors for the design of force-reflecting haptic interfaces. Proceedingsof the3rd International Symposium on Haptic Interfaces for VirtualEnvironment and Teleoperator Systems,Chicago,1994:353-359
    [115] R. E. Ellis,O. M. Ismaeil,M. G. Lipsett, Design and evaluation of ahigh-performance haptic interface,Robotica,1996,14:321-327
    [116] Jungwon Yoon,Jeha Ryu,Design,Fabrication,and Evaluation of a NewHaptic Device Using a Parallel Mechanism,IEEE/ASME TRANSACTIONSON MECHATRONICS VOL,2001,6(3):1-13
    [117] T. Massie,J. K Salisbury,The PHANTOM haptic interface: A device forprobing virtual objects, In Proc. ASME Winter Annual Meeting:Symposium on Haptic Interfaces for Virtual Environment and TeleoperatorSystems,1994
    [118] D.A. Streit,E. Shin,Equilibrators for planar linkages,ASME Journal ofMechanical Design,1993:604-611
    [119] Po-Yang Lin,Win-Bin Shieh,Dar-Zen Chen,A stiffness matrix approachfor the design of statically balanced planararticulated manipulators,Mechanism and Machine Theory,2010,45:1877-1891
    [120] V. Arakelian,S. Ghazaryan,Improvements of balancing accuracy of roboticsystem: Application to leg orthosis for rehabilitation devices. Mechanismand Machine Theory43,2008,43:565-775
    [121] C. Cho,S. Kang,Design of a static balancing mechanism with unit gravitycompensators, Intelligent Robots and Systems (IROS),2011IEEE/RSJInternational Conference on. IEEE,2011:1857-1862.
    [122] J. H. Lee,B. J. Yi,J. Y. Lee,Adjustable spring mechanisms inspired byhuman musculoskeletal structure,Mechanism and Machine Theory,2012,54:76-98
    [123] Mathijs Vermeulen, Martijn Wisse, Intrinsically Safe Robot Arm:Adjustable Static Balancing and Low Power Actuation,Int J Soc Robot,2010,2:275-288
    [124]罗杨宇,陈恳,张玉茹,机器人机构的反向可驱动性设计,机械工程学报,2007,43(6):72-75
    [125]李思桥,张玉茹,曹永刚,力觉交互设备的重力补偿实验研究,机械设计与研究,2007,23(1):95-97
    [126]刘迎春,余跃庆,姜春福,机器人可操作性研究进展,机械设计与研究,2003,19(4):34-38
    [127]郭语,帅双辉,孙志峻等,一种穿戴型力反馈主手结构的综合尺度优化,南京航空航天大学学报,2010,8(4):395-360
    [128]马峰涛,具有力感觉的通用型手术机器人主手重力平衡问题研究:[硕士学位论文],天津大学,2010
    [129]张利敏,基于动力学指标的Delta高速并联机械手集成优化设计方法研究:[博士学位论文],天津大学,2011

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700