自主式水下航行器的建模与自适应滑模控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文系统研究了自主式水下航行器的建模、非线性自适应滑模控制、以及深度调整和水平面导引方法等问题,具体成果和创新点如下
     1、根据流体力学理论,建立了螺旋桨推进器的动态模型,它以螺旋桨来流速度v_p和螺旋桨转速n为状态变量,以电机施加转矩τ为输入,螺旋桨推力T和转矩Q为输出。
     2、针对自主式水下航行器非线性强、模型参数获取困难的问题,提出了非线性自适应滑模控制,从理论上证明了它的全局渐近稳定性。其特点是在滑模控制的基础上引入自适应机制,在线估计不确定参数,从而消除参数不确定性对系统性能的影响,在保证鲁棒性的基础上减小了滑模控制附加项的幅值。考虑到可能出现的参数漂移,提出了自适应律的两点改进。
     3、研究了自主式水下航行器的速度/位置跟踪控制问题。在推进器动态模型的基础上,采用滑模控制的方法,由速度/位置误差获得期望推力,再通过求解包括来流速度的二次方程得到期望螺旋桨转速。通过对比未考虑与考虑推进器动态模型两种情况的控制结果,说明该模型的重要性。
     4、提出基于模糊推理系统的自主式水下航行器深度调整策略。该方法建立在对水下航行器的机动性能和水下环境等先验知识的基础上,突出优点是易于理解、操作和修改。
     5、研究了自主式水下航行器水平面运动的“视线”导引算法,并考虑了广泛存在的定常海流对水平面导引轨迹的影响。在速度和位置测量的基础上,设计了海流速度的观测器,并对“视线”导引进行修正,使水下航行器能够沿“视线”航行。本论文还研究了一种基于极坐标变换的“视线”导引,并与前面的方法进行了对比。
The continual development of computer technology has enabled the expansion of advanced control into the field of autonomous underwater vehicles (AUVs), where potential uses include oceanographic research, environmental monitoring and military mine countermeasures. In this dissertation, through computer simulation, the problems of modeling, control and guidance of AUVs are presented.
    The first part of this dissertation addresses the problem of dynamically modeling of AUVs, and derives thrusters' two-dimension nonlinear dynamic model, which has axial flow speed and propeller rotational velocity as two state variables, voltage or current of motor as inputs, and thruster force and torque as output.
    The second part focuses on the nonlinear adaptive sliding mode control of AUVs in diving plane and steering plane. The requirement for having a simple controller which performs satisfactorily in the presence of dynamical uncertainties calls for a design using the sliding mode approach. In this controller, online parameters estimating algorithm is added to classical sliding mode controller to achieve both robustness and adaptability, to prevent noise and disturbances from causing parameter drift, a dead-zone is added to shut adaptation off for small tracking errors, and the adaptation law is modified to guarantee the estimated parameters in previously known ranges.
    The third part is devoted to the problem of speed/position's tracking control using sliding mode control approach. A cascaded architecture is adopted, where desired propeller rate of revolution is generated by solving a static 2nd order equation with a parameter of desired thrust force, which is the input of the speed/position tracking control.
    In the last part, depth schedule strategy based on fuzzy inference system (FIS), and line-of-sight guidance in horizontal plane in the presence of unknown current are studied.
引文
[1] 蔡白兴.机器人学.北京:清华人学出版社,2000
    [2] 常文君,刘建成,于华南,徐如玉.水下机器人运动控制与仿真的数学模型.船舶工程,2000(3):58—60
    [3] 封锡盛,刘永宽.自治水下机器人研究开发的现状和趋势.高技术通讯,1999(9):55-59
    [4] 封锡盛.从有缆遥控水下机器人到自主水下机器人.中国工程科学,2000,2(12):29-58
    [5] 高剑.鱼雷纵向运动的变结构控制.学士论文,西北工业大学,2001
    [6] 高剑,严卫生,徐德民,张福斌.变速鱼雷的螺旋桨推进器建模研究.鱼雷技术,2003(3)
    [7] 李殿璞,赵爱民,迟岩.水下机器人运动控制和仿真的数学模型.哈尔滨工程大学学报,1997,18(3):22-30
    [8] 李殿璞.船舶运动与建模.哈尔滨:哈尔滨工程大学出版社,1999
    [9] 李天森.鱼雷操纵性.北京:国防工业出版社,1999
    [10] 邱醒亚,S.J.Shepherd.海洋开发中的定位与测量技术.北京:国防工业出版社,1986
    [11] 孙元康,马运义,邓志纯.潜艇和深潜器的现代操纵性理论与应用.北京:国防工业出版社,2001
    [12] 徐德民.鱼雷自动控制系统(第2版).西安:西北工业大学,2001
    [13] 张宇文.鱼雷弹道与弹道设计.西安:西北工业大学出版社,1999
    [14] 诸静.模糊控制原理及应用.北京:机械工业出版社,1999
    [15] António Pedro Aguiar. Nonlinear Motion Control of Nonholonomic and. Underactuated Systems. Ph.D. Thesis, Department of Electrical Engineering, Instituto Superior Técnico, IST, Lisbon, Portugal, 2002
    [16] A.Aguiar, P.Oliveira, C.Silvere, and A.Pascoal. Guidance and Control of the SIRENE Underwater Vehicle: from System Design to Tests at Sea, In Proceedings of Ocean'98, Nice, France, 1998(1-3):1043-1048
    [17] Gianluca Antomelli, Stefano Chiaverini, Roboto Finotello, and Riccardo Schiavon. Real-Time Path Planning and Obstacle Avoidance for RAIS: An Autonomous Underwater Vehicle. IEEE Journal of Ocean Engineering, 2001, 26(2):216-227
    [18] M.Blanke, K. P. Lindegaard, and T. I. Fossen. Dynamic Model for Thrust Generation of Marine Propellors. Proceedings of IFAC Conference of Maneuvering of Marine Craft (MCMC2000), Aalborg, Denmark, 2000:23-25
    [19] Donald P.Brutzman. A Virtual World for an Autonomous Underwater Vehicle. Ph.D.Thesis,
    
    Naval Postgraduate School, Monterey, California, 1994
    [20] Roberto Cristi, Fotis A. Papoulias, and Anthony J. Healey. Adaptive Sliding Mode Control of Autonomous Underwater Vehicles in the Dive Plane. IEEE Journal of Oceanic Engineering, 1990, 15(3):152-160
    [21] Ola-Erik Fjellstad. Position and Attitude Tracking of AUVs: A Quaternion Feedback Approach. IEEE Journal of Oceanic Engineering, 1994, 19(4):512-518
    [22] Thor I. Fossen. Comments on "Hamiltonian Adaptive Control of Spacecraft". IEEE Transactions on Automatic Control, 1993, 38(4):671-672
    [23] Thor I. Fossen. Nonlinear Output Feedback Control of Dynamically Positioned Ships Using Vectorial Observer Backstepping. IEEE Transactions on Control System Technology, 1997, 5(3):360-370
    [24] Thor I. Fossen, Mogens Blanke. Nonlinear Output Feedback Control of Underwater Vehicle Propellers Using Feedback Form Estimated Axial Flow Velocity. IEEE Journal of Oceanic Engineering, 2000, 25:241-255
    [25] Thor I. Fossen, Ola-Erik Fjellstad. Nonlinear Modelling of Marine Vehicles in 6 Degrees of Freedom. Journal of Mathematical Modelling of Systems, 1995,1(1)
    [26] Thor I. Fossen, Ola-Erik Fjellstad. Robust Adaptive Control of Underwater Vehicles: A Comparative Study. Proceedings of the 3rd IFAC Workshop on Control Applications in Marine Systems(CAMS'95), Trondheim, Norway, 1995:66-76
    [27] Thor I. Fossen, Svein I. Sagatun. Adaptive Control of Nonlinear Underwater Robotic Systems. In Proceedings of the 1991 IEEE Conference on Robotics and Automation, Sacramento, California, 1991:1687-1695
    [28] Kevin R. Goheen, and E. Richard Jefferys. Multivariable Self-Tuning Autopilots for Autonomous and Remotely Operated Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1990, 15:144-151
    [29] Todd D. Hawkinson. Multiple Input Sliding Mode Control for Autonomous Diving and Steering of Underwater Vehicles. M.S. Thesis, Naval Postgraduate School, Monterey, California, 1990
    [30] A. J. Healey and David Lienard. Multivariable Sliding Mode Control for Autonomous Diving and Steering of Unmanned Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1993, 18(3):327-338
    [31] A. J. Healey, S. M. Rock, S. Cody, D. Miles, and J. P. Brown. Toward an Improved Understanding of Thruster Dynamics for Underwater Vehicles. IEEE Joumal of Oceanic Engineering, 1995, 20:354-361
    
    
    [32] Bjφrn Jalving. The NDRE-AUV Flight Control System. IEEE Journal of Oceanic Engineering, 1994, 19(4):497-501
    [33] J. R. Jang, and C. Sun. Neuro-Fuzzy Modeling and Control. Proceedings of the IEEE, 83, 378-406. http://citeseer.nj.nec.com/jang95neurofuzzy.html, 1995:378-406
    [34] Phillip J. LeBas. Maximizing AUV Slow Speed Performance. M.S. Thesis, Massachusetts Institute of Technology/Woods Hole Oceanographic Institution Joint Program, 1997
    [35] John J. Leonard, Andrew A. Bennett, Christopher M. Smith, Hans Jacob S. Feder. Autonomous Underwater Vehicle Navigation. MIT Marine Robotics Laboratory Technical Memorandum, 98-1, 1998
    [36] David Bryan Marco, Anthony J. Healey. Command, Control, and Navigation Experimental Results With the NPS ARIES. IEEE Journal of Oceanic Engineering, 2001,26(4):466-475
    [37] S.D. McPhail, M. Pebody. AUTOSUB-1: A Distributed Approach to Navigation and Control of an Autonomous Underwater Vehicle. The Seventh International Conference on Electronic Engineering in Oceanography, Southampton, London, Institution of Electrical Engineers, 16-22. (IEE Conference Publication, 439), 1997:16-22
    [38] Aravind Muralidharan. Sonar Based Navigation: Follow the Leader Solution for Bearcat Ⅲ. M.S. Thesis, University of Cincinnati, 2001
    [39] W. Naeem, R. Sutton, S. M. Ahmad. Pure Pursuit Guidance and Model Predictive Control of an Autonomous Underwater Vehicle for Cable/Pipeline Tracking, http://www.cranfield.ac.uk/sims/marine/research/control.htm, 2003
    [40] W. Naeem, R. Sutton, S. M. Ahmad and R. S. Bums. A Review of Guidance Laws Applicable to Unmanned Underwater Vehicles. The Journal of Navigation, 2003,56(1): 15-29
    [41] Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebertts Sira-Ramirez. Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications. Springer-Verlag, London, 1998
    [42] Romeo Ortega, Mark W. Spong. Adaptive Motion Control of Rigid Robots: A Tutorial. Automatica, 1989, 25(6):877-888
    [43] P.Ridao, J. Batlle and M. Carreras. Dynamics Model of an Underwater Robotic Vehicle. Research report ⅡiA 01-05-RR. Institute of Informatics and Applications, University of Girona, April 2001
    [44] P.Ridao, J. Yuh, J. Batlle, K. Sugihara. On AUV Control Architecture. Proceedings of the International Conference on Robots and Systems, Japan, 2000
    [45] Jeffery Scott Riedel. Seaway Learning and Motion Compensation in Shallow Waters for
    
    Small AUVs. Ph.D. Thesis, Naval Postgraduate School, Monterey, Califomia, 1999
    [46] Svein lvar Sagatun. Modeling and Control of Underwater Vehicles: A Lagrangian Approach. M.S. Thesis, Division of Engineering Cybernetics, Department of Computer Science and Electrical Engineering, The Norwegian Institute of Technology, 1992
    [47] H. G. Sage, M. F. De Mathelin and E. Ostertag. Robust Control of Robot Manipulators: A Survey. International Journal of Control, 1999,72(16): 1498-1522
    [48] J.-J. E. Slotine and M.D.Di Benedetto. Hamiltonian Adaptive Control of Spacecraft. IEEE Transactions on Automatic Control, 1990,35(7):848-852
    [49] J-J. E. Slotine, Weiping Li. Adaptive Manipulator Control: A Case Study. IEEE Transactions on Automatic Control, 1988, 33(11):995-1003
    [50] J-J. E. Slotine, Weiping Li. 应用非线性控制.蔡自兴,罗公亮,桂卫华等译.北京:国防工业出版社,1992
    [51] Sonardyne. http://www.sonardyne.co.uk/
    [52] Mark W. Spong. Robust and Adaptive Motion Control of Manipulators. http://robot0.ge.uiuc.edu/~spong/ge389/handbook.pdf
    [53] Kenkichi Tamura, Taro Aoki, Satoshi Tsukioka. The Development of the Deep Sea Cruising AUV Urashima. http://www.dt.navy.mil/ip/mfp/Acrobat%20Files/Technical%20Papers/Session%201-%20Oc ean%20Engineering%20and%20Resource%20Development/Topic%204/deepsea.pdf
    [54] Kimon P. Valavanis, Denis Gracanin, Maja Matijasevic, Ramesh Kolluru, and Georgios A.Demetriou. Control Architectures for Autonomous Underwater Vehicles. IEEE Control System Magzine, 1997, 17(6):48-64
    [55] Louis L. Whitcomb. Underwater Robotics: Out of the Research Laboratory and Into the Field. The Special Session on Industrial Robotics, IEEE International Conference of Robotics and Automation, 2000
    [56] Louis Whitcomb and Dana Yoerger. Development, Comparison, and Preliminary Experimental Validation of Non-Linear Dynamic Thruster Models. IEEE Journal of Oceanic Engineering, 1999, 24(4):481-494
    [57] Louis Whitcomb, Dana Yoerger, Hanumant Singh, and David Mindell. Towards Precision Robotic Maneuvering, Survey, and Manipulation in Unstructured Undersea Environments. In Y.Shirai and S.Hirose, Editors, Robotics Research-The Eighth International Symposium, chapter 2, Spring-Verlag, London, 1998:45-54
    [58] Louis Whitcomb, Dana Yoerger, Hanumant Singh, and Jonathan Howland. Advances in Underwater Robot Vehicle for Deep Ocean Exploration: Navigation, Control, and Survey Operations. Robotics Research 9: Proceedings of the Ninth International Symposium of
    
    Robotics Research (ISRR'99), Snowbird, Utah, USA, October 9-12, 1999
    [59] D.R.Yoerger, J.G.Cooke, and J.-J. E. Slotine. The Influence of Thruster Dynamics on Underwater Vehicle Behavior and Their Incorporation into Control System Design. IEEE Journal of Oceanic Engineering, 1991,15(3): 167-178
    [60] D.R.Yoerger, and J.-J. E. Slotine. Robust Trajectory Control of Underwater Vehicles. IEEE Journal of Oceanic Engineering, 1985,10:462-470
    [61] J. Yuh. Modeling and Control of Underwater Robotic Vehicles. IEEE Transactions on System, Man, and Cybernetics, 1990, 20(6): 1475-1483
    [62] J. Yuh. Design and Control of Autonomous Underwater Robots: A Survey. Autonomous Robots, 2000(8): 7-24
    [63] J. Yuh and Ranganath Lakeshmi. An Intelligent Control System for Remotely Operated Vehicles. IEEE Journal of Oceanic Engineering, 1993, 18(1):55-61

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700