氧化铟纳米结构材料的控制合成及表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文主要采用液相化学法控制合成In_2O_3级次结构纳米材料,并探讨其形成机制及内在规律。分别从纳米结构材料的制备、形成机理以及性质表征几个方面进行论述,内容涉及水溶液体系中小分子结构导向剂辅助下In_2O_3级次纳米结构的制备、形成机制以及光学性质,溶剂热体系中In_2O_3级次纳米结构的制备、形成机制和光学性质以及低分子量聚合物辅助下In_2O_3中空球的控制合成、形成机制、光学性质等。全文旨在探索液相体系中级次纳米结构材料形成的内在机制,寻找构建级次纳米结构材料的更加有效的手段和途径。
     1.藕状In_2O_3级次纳米结构的制备、表征及光学性质
     以InCl_3·4H_2O、水、无水乙醇以及甲酰胺为原料,通过简单的溶液反应得到了具有级次结构的藕状In(OH)_3纳米结构,通过进一步煅烧制备了In_2O_3藕状纳米结构。透射电镜观察表明这种藕状In_2O_3纳米结构的藕节是由长度为50-90nm、直径为15-40nm的纳米棒构筑而成。将In(OH)_3级次纳米结构进行切片处理后通过HRTEM观察发现构成藕状In(OH)_3的初级结构单元是大小约为10nm的纳米颗粒,在界面上可以观察到位错的存在,但是从整体上看,颗粒间的晶格条纹是连续的,这表明纳米粒子是按特定晶面定向聚集的,也就是说这种纳米结构形成的机理是纳米粒子的晶面选择性聚集机制,与文献中所报道的定向聚集生长机理相吻合。
     为研究藕状In(OH)_3纳米结构的形成机理,我们利用XRD和TEM技术对其形成过程进行了跟踪。在实验基础上,提出了In(OH)_3级次纳米结构的形成机理。首先,由于高温下甲酰胺的分解,In~(3+)水解形成无定形胶态纳米颗粒;然后所形成的纳米颗粒由于表面能较高而进一步聚集形成小的椭球形颗粒,同时,也伴随着从无定形到立方相In(OH)_3的相转变。随着反应的进行,溶液中的反应物逐渐消耗,晶粒继续生长,反应进行到30min时形成直径约为500nm的纺锤形聚集体,这是由于In(OH)_3晶体结构的各向异性而导致了晶粒的生长也表现出了各向异性。此时反应物已完全消耗,晶粒的生长几乎停止。然后,由于(110)面具有较大的表面能,所以颗粒沿着[110]方向定向聚集,最终形成了In(OH)_3藕状级次纳米结构。
     藕状In_2O_3纳米结构的光致发光光谱显示了特殊的以445,468,551,632nm为中心的可见光发射,这些发射可能与制备过程中所形成的缺陷有关。
     2.花状In_2O_3级次纳米结构的合成、表征、形成机理及光学性质
     以InCl_3·4H_2O、丙三醇、甲酰胺为原料,通过简单的溶剂热反应得到了一种具有级次结构的新型花状In-丙三醇前驱体。该前驱体由纳米片组成。XRD、FT-IR以及TG表征结果与文献中报道的Mn,Co-丙三醇盐类似。经过煅烧之后,这种In-丙三醇前驱体可以转变为立方相In_2O_3,形貌保持不变,HRTEM观察表明组成该花状结构的纳米片为单晶结构,其上下表面为{210}晶面。
     基于XRD、TEM以及元素分析的结果,我们提出了花状前驱体的形成机理。首先,在热处理的过程中,甲酰胺分解产生OH~-诱导形成In(OH)_3纳米颗粒,由于纳米颗粒具有高的表面能,因此形成的纳米颗粒进一步聚集形成球形聚集体。然后,In(OH)_3与丙三醇反应形成纳米片。但是,由于体系中存在少量水,对醇盐的形成具有抑制作用,而且反应温度较低,该反应不能进行彻底。最后,得到了结晶的花状In-丙三醇盐前驱体,但其中仍有部分羟基保留下来,进一步通过煅烧得到In_2O_3,并保持其形貌不变。
     这种独特的In_2O_3纳米结构具有独特的发光性质,它在可见光区域有一个以442nm(蓝色)为中心的强发射峰,并在468nm(蓝色)和524nm(黄色)处存在两个肩峰,该发射峰及其肩峰应归因于光子激发的空穴和占据氧空位的电子的复合。
     3.低分子量聚乙二醇辅助下In_2O_3复合纳米空心球的合成、表征以及光学性质
     以In(NO_3)_3·4H_2O、PEG400、尿素为原料通过简单的溶剂热反应制备了具有介孔壳壁的In_2O_3/PEG400复合空心纳米结构,空心球由纳米晶聚集而成,壳壁厚度在10-20nm间。高分辨电镜观察表明空心球是由粒径约7nm的纳米颗粒构成,纳米颗粒之间存在纳米级孔洞。另外我们可以清晰地观察到单个空心球某些特定区域的晶格条纹,从整体上看,颗粒中的晶格条纹是连续的,但纳米粒子的轮廓仍可以清晰辨认,这表明纳米粒子是按特定晶面定向聚集的,也就是说这种空心结构形成的机理是纳米粒子的晶面选择性聚集机制。
     产物的N_2吸附-脱附等温线表现为带有滞后环的Ⅳ型吸附等温线,并出现比较明显的滞后环,说明产物具有介孔结构。样品的BJH孔径分布曲线表明产物孔径主要分布在3~10nm之间,集中于3.4nm处,与HR-TEM观察的结果基本吻合。样品的孔体积为0.19cm~3/g,BET比表面积为94.1 m~2/g。
     与文献报道的块体In_2O_3相比,这种具有介孔壳壁的In_2O_3/PEG400纳米空心球在330nm处的紫外吸收发生了大幅度的蓝移,这可能是由弱的量子限域效应导致的。另外该In_2O_3/PEG400纳米空心球还表现出特殊的光致发光特性,在461、538以及620nm处均有发射。我们推测这种特殊的光学性质可能与其空心结构或无机-有机复合结构有关。
The controlled synthesis of indium oxide hierarchical nanostructures through liquid-phase chemical route is investigated in this thesis.The controlled synthesis,formation mechanism,and properties are investigated in detail.The thesis mainly focuses on the preparation,formation mechanism and photoluminescence properties of hierarchical nanostructured indium oxide obtained by simple solution method,which mainly includes the lotus-root-like In_2O_3 nanostructure from the aqueous solution route,the flower-like In_2O_3 nanostructure from a novel solvothermal indium precursor,and the In_2O_3/PEG400 hollow sphere from the solvothermal synthesis.This aims to study the intrinsic formation mechanism of hierarchical nanostructures in solution route and find the more effective strategy to fabricate novel nanostructures.
     1.Lotus-Root-Like In_2O_3 Nanostructures:Fabrication,Characterization,and Photoluminescence Properties
     Novel lotus-root-like In_2O_3 nanostructures with a diameter of ca.300 nm and a length of 1.5-4.0μm have been prepared by annealing In(OH)_3 nanostructures with the same morphology derived from a mild solution reaction.The hierarchical nanostructures are composed of several segments aggregated orderly from In_2O_3 nanorods with the length of 50-90 nm and diameter of 15-40 nm.The segments of the lotus-root-like In(OH)_3 nanostructures are composed of nanoparticles with the size of ca.10 nm and a small misorientation exists at the interface although the planar fringes are ordered in the particles,which implies an oriented aggregation growth mechanism.
     To track the fabrication process of lotus-root-like In(OH)_3 nanostructures, a detailed time course was studied.On the basis of the experimental results, the formation process of In(OH)_3 nanostructures was proposed.In the initial stages,when the solution was heated,the In~(3+) cations hydrolyzed to form the colloid particles due to the decomposition of formide at high temperature,and the as-formed amorphous nanoparticles subsequently aggregated to small elliptical particles to minimize their surface energy,which can be revealed by the HRTEM observation.At the same time,the transformation from the amorphous particles to cubic In(OH)_3 occurred.With the reaction proceeding, grain growth was carried out with the consumption of the reactants in the solution,the particles became larger and larger,and the spindles with the size of 500 nm were formed after the reaction was conducted for 30 min.At this stage,the grain growth exhibited anisotropy due to the anisotropy of the In(OH)_3 crystallographic structure.When the reactants were consumed completely,the grain growth almost stopped.Then the oriented aggregation along[110]direction started due to the large surface energy of(110) planes. As a result,the lotus root-like In(OH)_3 nanostructures were formed,which can be transformed to In_2O_3 nanostructures by calcination without changing the morphology of the nanostructures.
     The PL spectrum of In_2O_3 nanostructures at room temperature exhibits three peaks centered at 468,551,632 nm and a shoulder at 445 nm in the visible light region.These emissions may be related to the defect produced during the preparation process.
     2.Flower-like In_2O_3 Nanostructures Derived from Novel Precursor:Synthesis, Characterization and Formation Mechanism
     Three-dimensional flower-like In precursor nanostructures were fabricated by glycerol-mediated solvothermal reaction using InCl_3·4H_2O and formide as reagents.The precursor composed of nanosheet and the corresponding XRD, FT-IR,TG is similar to the reported Co,Mn-based glycerol.And the as-formed indium precursor could be transformed to cubic In_2O_3 maintaining its original flower-like morphology after calcination.HR-TEM image of a nanoplate at the edge of the In_2O_3 flower-like nanostructure shows the continuous lattice fringes in the visible range,indicating its single crystalline nature with the dominated surface of {210}.
     To track the formation process of the precursor,TEM,FE-SEM,XRD and elemental analysis techniques were applied to investigate the samples collected at different reaction times.At first,the In(OH)_3 nanoparticles were formed due to the decomposition of formide during the heat-treatment,which aggregated to large spheres due to the high surface energy of the nanoparticles. The decomposition of formide was slow due to the small amount of water in the system,which further led to a slow formation rate of In(OH)_3 as well as the following aggregation.Then,the In(OH)_3 reacted with glycerol by replacing the hydroxyls in In(OH)_3 to form the nanoplates.However,this reaction could not carry out thoroughly because the presence of water in the system and a relatively low temperature.Finally,the crystalline flower-like In-glycerol complex precursor was formed,which can easily transforms to In_2O_3 without changing the morphology during calcination.
     The room temperature PL spectrum of flower-like In_2O_3 nanostructure exhibits a strong emission centered at 442 nm with two shoulders at 468 and 524 nm,as well as a weak peak at 627 nm in the range of visible light region. The emission at 442 nm and the shoulders can be attributed to the radioactive recombination of a photoexcited hole with an electron occupying the oxygen vacancies,while the emission at 627 nm may result from the Raman scattering.
     3.PEG-Assisted Synthesis of Nanosized In_2O_3 Hollow Structures and Their Optical Properties
     The nanosized In_2O_3/PEG400 composite hollow spheres(70-100 nm in diameter) with mesoporous shells of 10-20 nm were synthesized by a poly(ethylene glycol)(PEG)-assisted solvothermal method using In(NO_3)_3·4H_2O and urea as reactants.The HR-TEM image shows that the hollow spheres aggregated orderly from In_2O_3 nanocrystals with the diameter of 7 nm.The continuous lattice fringes confirm the oriented-aggregation of the nanocrystals,although the interface between the particles can be clearly observed.
     The N_2 adsorption-desorption isotherms of the hollow spheres exhibit the typeⅣadsorption isotherm and a hysteresis loop in the relative pressure range of 0.4-1.0,indicating the presence of the inhomogeneous mesopores, which are formed through the aggregation of the nanocrystals.The corresponding pore size distribution curve calculated from the desorption branch by the BJH method displays a pore size distribution from 3 to 10 nm, centered at ca.3.4 nm,which is close to the result from the TEM images.The calculated pore volume is 0.19 cm~3/g,and the specific surface area is 94.1 m~2/g by the BET method.
     The UV-visible absorption spectrum of this novel In_2O_3/PEG400 nanosized hollow spheres shows absorptions at 310 nm.The absorption shows obvious blue shift compared to the absorption at 330 nm of bulk In_2O_3,which arises from the weak quantum confinement effect.The room temperature PL spectrum of In_2O_3/PEG400 nanosized hollow spheres exhibits emissions centered at 461,538 and 620 nm.It is speculated that the novel emissions are related to the defect produced during the preparation process and also relate to the hollow organic/inorganic composite nanostructure.
引文
1.Heath,J.R.Nanoscale materials.Acc.Chem.Res.1999,32,388-388.
    2.曹新,赵振华纳米科技时代-奇迹、财富与未来.北京:经济科学出版社2001.15-30
    3.Michailovski,A.;Krumeich,F.;Patzke,G.R.Hierarchical growth of mixed ammonium molybdenum/tungsten bronze nanorods.Chem.Mater.2004,16,1433 - 1440.
    4.Kuang,D.B.;Brezesinski,T.;Smarsly,B.Hierarchical porous silica materials with a trimodal pore system using surfactant templates.J.Am.Chem.Soc.2004,126,10534-10535.
    5.Yin,Y.D.;Lu,Y.;Gates,B.;Xia,Y.N.Template-assisted self-assembly:A practical route to complex aggregates of monodispersed colloids with well-defined sizes,shapes,and structures.J.Am.Chem.Soc.2001,123,8718-8729.
    6.Morikawa,M.;Yoshihara,M.;Endo,T.;Kimizuka,N.ATP as building blocks for the self-assembly of excitonic nanowires.J.Am.Chem.Soc.2005,127,1358-1359.
    7.Matsui,H.;Holtman,C.Organic nanotube bridge fabrication by controlling molecular self-assembly processes between spherical and tubular formations.Nano Lett.2002,2,887-889.
    8.Fresco,Z.M.;Suez,I.;Backer,S.A.;Frechet,J.M.J.AFM-induced amine deprotection:Triggering localized bond cleavage by application of tip/substrate voltage bias for the surface self-assembly of nanosized dendritic objects,J.Am.Chem.Soc.2004,126,8374-8375.
    9.Frankamp,B.L.;Boal,A.K.;Rotello,V.M.Controlled interparticle spacing through self-assembly of Au nanoparticles and poly(amidoamine) dendrimers.J.Am.Chem.Soc.2002,124,15146-15147.
    10.Gao,J.B.;Yu,A.P.;Itkis,M.E.;Bekyarova,E.;Zhao,B.;Niyogi,S.;Haddon,R.C.Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly.J.Am.Chem.Soc.2004,126,16698-16699.
    11.Huang,Y.F.;Chang,H.T.;Tan,W.H.Cancer cell targeting using multiple aptamers conjugated on nanorods.Anal.Chem.2008,80,567-572.
    12.Chen,J.Y.;Wang,D.L.;Xi,J.F.;Au,L.;Siekkinen,A.;Warsen,A.;Li,Z.Y.;Zhang,H.;Xia,.Y.N.;Li,X.D.Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells.Nano Lett.2007,7,1318-1322.
    13.Skrabalak,S.E.;Chen,J.;Au,L.;Lu,X.;Li,X.;Xia,Y.Gold nanocages for biomedical applications.Adv.Mater.2007,19,3177-3184.
    14.Ewers,T.D.;Sra,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.F.;Schaak,R.E.Spontaneous hierarchical assembly of rhodium nanoparticles into spherical aggregates and superlattices.Chem.Mater.2005,17,514-520.
    15.Wu,C.Z.;Xie,Y.;Wang,D.;Yang,J.;Li,T.W.Selected-control hydrothermal synthesis of gamma-MnO_2 3D nanostructures.J.Phys.Chem.B 2003,107,13583- 13587.
    16.Ma,Y.R.;Qi,L.M.;Ma,J.M.;Cheng,H.M.Hierarchical,star-shaped PbS crystals formed by a simple solution route.Cryst.Growth Des.2004,4, 351-354.
    17.Yu,J.;Yu,X.;Huang,B.;Zhang,X.;Dai,Y.Hydrothermal Synthesis and Visible-light Photocatalytic Activity of Novel Cage-like Ferric Oxide Hollow Spheres.Cryst.Growth Des.2009,9,1474-1480.
    18.Yang,L.X.;Zhu,Y.J.;Tong,H.;Liang,Z.H.;Wang,W.W.Hierarchical beta-Ni(OH)_2 and NiO carnations assembled from nanosheet building blocks.Cryst.Growth Des.2007,7,2716-2719.
    19.Chen,S.H.;Fan,Z.Y.;Carroll,D.L.Silver Nanodisks:Synthesis,Characterization,and Self-Assembly.J.Phys.Chem.B 2002,106,10777 -10781.
    20.Jana,N.R.;Gearheart,L.;Murphy,C.J.Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template.Adv.Mater.2001,13,1389-1393.
    21.Wen,X.G.;Xie,Y.T.;Mak,W.C.;Cheung,K.Y.;Li,X.Y.;Renneberg,R.;Yang,S.Dendritic nanostructures of silver:Facile synthesis,structural characterizations,and sensing applications.Langmuir 2006,22,4836-4842.
    22.Zeng,S.Y.;Tang,K.B.;Li,T.W.;Liang,Z.H.;Wang,D.;Wang,Y.K.;Qi,Y.X.;Zhou,W.W.Facile route for the fabrication of porous hematite nanoflowers:Its synthesis,growth mechanism,application in the lithium ion battery,and magnetic and photocatalytic properties.J.Phys.Chem.C 2008,112,4836-4843.
    23.Corma,A.;Atienzar,P.;Garcia,H.;Chane-Ching,J.Y.,Hierarchically meso- structured doped CeO_2 with potential for solar-cell use.Nat.Mater.2004,3,394-397.
    24.Li,H.B.;Chai,L.L.;Wang,X.Q.;Wu,X.Y.;Xi,G.C.;Liu,Y.K.;Qian,Y.T.Hydrothermal growth and morphology modification of beta-NiS three-dimensional flowerlike architectures.Cryst.Growth Des.2007,7,1918-1922.
    25.Zheng,Y.H.;Cheng,Y.;Wang,Y.S.;Zhou,L.H.;Bao,F.;Jia,C.Metastable gamma-MnS hierarchical architectures:Synthesis,characterization, and growth mechanism,J.Phys.Chem.B 2006,110,8284-8288.
    26.Mann,S.The chemistry of form.Angew.Chem.,Int.Edit.2000,39,3393-3406.
    27.Popescu,D.C.;Smulders,M.M.J.;Pichon,B.P.;Chebotareva,N.;Kwak,S.Y.;van Asselen,O.L.J.;Sijbesma,R.P.;DiMasi,E.;Sommerdijk,N.A.J.M.Template adaptability is key in the oriented crystallization of CaCO_3.J Am.Chem.Soc.2007,129,14058-14067.
    28.Zhong,L.S.;Hu,J.S.;Liang,H.P.;Cao,A.M.;Song,W.G.;Wan,L.J.Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment.Adv.Mater.2006,18,2426-2431.
    29.Ullah,M.H.;Chung,W.S.;Kim,I.;Ha,C.S.,pH-selective synthesis of monodisperse nanoparticles and 3D dendritic nanoclusters of CTAB-stabilized platinum for electrocatalytic O_2 reduction.Small 2006,2,870-873.
    30.Bao,N.Z.;Shen,L.M.;Takata,T.;Domen,K.Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible.Chem.Mater.2008,20,110-117.
    31.Hu,J.;Zhong,L.;Song,W.;Wan,L.Synthesis of Hierarchically Structured Metal Oxides and their Application in Heavy Metal Ion Removal.Adv.Mater.2008,20,2977-2982.
    32.徐如人;庞文琴.无机合成与制备化学 北京:高等教育出版社.1999,440-454.
    33.Frasch,J.L.,B.;Soulard,M.;Patarin,J.;Zana.R.In Situ Investigations on Cetyltrimethylammonium Surfactant/Silicate Systems,Precursors of Organized Mesoporous MCM-41-Type Siliceous Materials.Langmuir 2000,16,9049-9057.
    34.Zhang,W.P.,T.;Pinnavaia,T.Tailoring the Framework and Textural Mesopores of HMS Molecular Sieves through an Electrically Neutral(S~0I~0).Chem.Mater.1997,9,2491-2498.
    35.Walker,S.K.,M.Joseph.;Zasadzinski,A.Encapsulation of Bilayer Vesicles by Self-assembly.Nature 1997,387,61-64.
    36.Wu,C.G.;Bein,T.Microwave synthesis of molecular sieve MCM-41.Chem.Commun.1996,925-926.
    37.Lin,W.;Chen,J.;Sun,Y.;Pang,W.Bimodal Mesopore Distribution in a Silica Prepared by Calcining a Wet Surfactant-containing Silicate gel.Chem.Commun.1995,2367-2368.
    38.Yang,P.;Zhao,D.;Margolese,D.Generalized Syntheses of Large Pore Mesoporous Metal Oxides with Semicrystalline Frameworks.Nature 1998,396,152-155.
    39.Boettcher,S.W.;Fan,J.;Tsung,C.K.;Shi,Q.H.;Stucky,G.D.Harnessing the sol-gel process for the assembly of non-silicate mesostructured oxide materials.Acc.Chem.Res.2007,40,784-792.
    40.Wan,Y.;Zhao,D.Y.On the controllable soft-templating approach to mesoporous silicates.Chem.Rev.2007,107,2821-2860.
    41.Kim,S.W.;Kim,M.;Lee,W.Y.;Hyeon,T.Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions.J.Am.Chem.Soc.2002,124,7642-7643.
    42.Bertling,J.;Blomer,J.;Kummel,R.Hollow microspheres.Chem.Eng.Technol.2004,27,829-837.
    43.Cao,S.W.;Zhu,Y.J.;Ma,M.Y.;Li,L.;Zhang,L.Hierarchically nanostructured magnetic hollow spheres of Fe_3O_4 and gamma-Fe_2O_3:Preparation and potential application in drug delivery.J.Phys.Chem.C 2008,112,1851-1856.
    44.Caruso,F.Nanoengineering of particle surfaces.Adv.Mater 2001,13,11-22.
    45.Zhao,W.R.;Chen,H.R.;Li,Y.S.;Li,L.;Lang,M.D.;Shi,J.L.Uniform Rattle-type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and their Sustained-Release Property.Adv.Funct.Mater 2008,18,2780-2788.
    46.Sun,X.M.;Li,Y.D.Ga_2O_3 and GaN semiconductor hollow spheres.Angew.Chem.,Int.Ed.2004,43,3827-3831.
    47.Titirici,M.M.;Antonietti,M.;Thomas,A.A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach.Chem.Mater.2006,18,3808-3812.
    48.Wang,J.;Loh,K.P.;Zhong,Y.L.;Lin,M.;Ding,J.;Foo,Y.L.Bifunctional FePt core-shell and hollow spheres:Sonochemical preparation and self-assembly.Chem.Mater.2007,19,2566-2572.
    49.Nakashima,T.;Kimizuka,N.Interfacial synthesis of hollow TiO_2microspheres in ionic liquids.J.Am.Chem.Soc.2003,125,6386-6387.
    50.Sun,Y.G.;Xia,Y.N.Shape-controlled synthesis of gold and silver nanoparticles.Science 2002,298,2176-2179.
    51.Zhao,X.F.;Li,T.K.;Xi,Y.Y.;Ng,D.H.L.;Yu,J.G..Synthesis of BaWO_4 hollow structures.Crys.Growth & Design 2006,6,2210-2213.
    52.Xu,H.L.;Wang,W.Z.Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall.Angew.Chem.,Int.Ed 2007,46,1489-1492.
    53.Yin,Y.D.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Somorjai,G.A.;Alivisatos,A.P.Formation of hollow nanocrystals through the nanoscale Kirkendall Effect.Science 2004,304,711-714.
    54.Liu,B.;Zeng,H.C.Fabrication of ZnO "dandelions" via a modified kirkendall process.J.Am.Chem.Soc.2004,126,16744-16746.
    55.Liu,B.;Zeng,H.C.Mesoscale organization of CuO nanoribbons:Formation of "dandelions".J.Am.Chem.Soc.2004,126,8124-8125.
    56.Li,J.;Zeng,H.C.Nanoreactors - Size tuning,functionalization,and reactivation of Au in TiO_2 nanoreactors.Angew.Chem.,Int.Ed.2005,44,4342-4345.
    57.Park,S.;Lim,J.H.;Chung,S.W.;Mirkin,C.A.Self-assembly of mesoscopic metal-polymer amphiphiles.Science 2004,303,348-351.
    58.Storhoff,J.J.;Mirkin,C.A.Programmed materials synthesis with DNA.Chem.Rev.1999,99,1849-1862.
    59.Zhang,Y.J.;Zhang,Y.;Wang,Z.H.;Li,D.;Cui,T.Y.;Liu,W.;Zhang,Z. D.Controlled synthesis of cobalt flowerlike architectures by a facile hydrothermal route.Eur.J.Inorg.Chem.2008,2733-2738.
    60.Yang,J.;Li,C.;Quan,Z.;Zhang,C.;Yang,P.;Li,Y.;Yu,C.;Lin,J.Selfassembled 3D flowerlike Lu_2O_3 and Lu_2O_3:Ln~(3+)(Ln = Eu,Tb,Dy,Pr,Sm,Er,Ho,Tm) microarchitectures:Ethylene glycol-mediated hydrothermal synthesis and luminescent properties.J.Phys.Chem.C 2008,112,12777-12785.
    61.Shang,X.;Lu,W.;Yue,B.;Zhang,L.;Ni,J.;Lv,Y.;Feng,Y.Synthesis of Three-Dimensional Hierarchical Dendrites of NdOHCO_3 via a Facile Hydrothermal Method.Cryst.Growth Des.2009,9,1415-1420.
    62.Yang,H.;Wu,X.L.;Cao,M.H.;Guo,Y.G.Solvothermal Synthesis of LiFePO_4 Hierarchically Dumbbell-Like Microstructures by Nanoplate Self-Assembly and Their Application as a Cathode Material in Lithium-Ion Batteries.J Phys.Chem.C 2009,113,3345-3351.
    63.Gu,Z.J.;Zhai,T.Y.;Gao,B.F.;Zhang,G.J.;Ke,D.M.;Ma,Y.;Yao,J.N.Controlled hydrothermal synthesis of nickel phosphite nanocrystals with hierarchical superstructures.Cryst.Growth Des.2007,7,825-830.
    64.Gorai,S.;Ganguli,D.;Chaudhuri,S.Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process.Cryst.Growth Des.2005,5,875-877.
    65.Gou,X.L.;Cheng,F.Y.;Shi,Y.H.;Zhang,L.;Peng,S.J.;Chen,J.;Shen,P.W.Shape-controlled synthesis of ternary chalcogenide ZnIn_2S_4 and CuIn(S,Se)_2 nano-/microstructures via facile solution route.J.Am.Chem.Soc.2006,128,7222 -7229.
    66.Martin,C.R.Nanomaterials:A Membrane-Based Synthetic Approach.Science 1994,266,1961-1966.
    67.Martin,C.R.Membrane-Based Synthesis of Nanomaterials.Chem.Mater.1996,14,1739-1746.
    68.Kresge,C.T.;Leonowicz,M.E.;Roth,W.J.;Vartuli,J.C.;Beck,J.S.Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism Nature 1992,359,710-712.
    69.Zhu,J.;Zhang,T.S.;Ma,J.;Tay,B.Y.Fabrication of porous/hollow tin(Ⅳ)oxide skeletons from polypeptide mediated self-assembly.J.Mater.Res.2007,22,2448-2453.
    70.Zhang,G.J.;Shen,Z.R.;Liu,M.;Guo,C.H.;Sun,P.C.;Yuan,Z.Y.;Li,B.H.;Ding,D.T.;Chen,T.H.Synthesis and characterization of mesoporous ceria with hierarchical nanoarchitecture controlled by amino acids.J.Phys.Chem.B 2006,110,25782-25790.
    71.Guerret,C.;Bouar Y,L.;Lolseau,A.Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes.Nature 1994,372,761 -765.
    72.Ajcyan,P.M;Stephan,O;Redlich,P.H.Carbon nanotubes as removable templates for metal oxide nanocomposites and nanostruetures.Nature 1995,375,564-567.
    73.Yuan,R.S.;Fu,X.Z.;Wang,X.C.;Liu,P.;Wu,L.;Xu,Y.M.;Wang,X.X.;Wang,Z.Y.Template synthesis of hollow metal oxide fibers with hierarchical architecture.Chem.Mater.2006,18,4700-4705.
    74.Smatt,J.H.;Weidenthaler,C.;Rosenholm,J.B.;Linden,M.Hierarchically porous metal oxide monoliths prepared by the nanocasting route.Chem.Mater.2006,18,1443-1450.
    75.Colfen,H.;Mann,S.Higher-order organization by mesoscale selfassembly and transformation of hybrid nanostructures.Angew.Chem.,Int.Ed.2003,42,2350-2365.
    76.Naka,K.;Tanaka,Y.;Chujo,Y.Effect of anionic starburst dendrimers on the crystallization of CaCO_3 in aqueous solution:Size control of spherical vaterite particles.Langmuir 2002,18,3655-3658.
    77.Hiral,T.;Hariguchi,S.;Komasawa,I.Biomimetic Synthesis of Calcium Carbonate Particles in a Pseudovesicular Double Emulsion.Langmuir 1997,13,6650-6653.
    78.Polshettiwar,V.;Varma,R.S.Aqueous microwave chemistry:a clean and green synthetic tool for rapid drug discovery.Chem.Soc.Rev.2008,37,1546-1557.
    79.Polshettiwar,V.;Varma,R.S.Microwave-assisted organic synthesis and transformations using benign reaction media.Acc.Chem.Res.2008,41,629-639.
    80.Polshettiwar,V.;Varma,R.S.Greener and sustainable approaches to the synthesis of pharmaceutically active heterocycles.Curr.Opin.Drug Discovery Dev.2007,10,723-737.
    81.Polshettiwar,V.;Varma,R.S.Olefin ring closing metathesis and hydrosilylation reaction in aqueous medium by Grubbs second generation ruthenium catalyst.J.Org.Chem.2008,73,7417-7419.
    82.Polshettiwar,V.;Varma,R.S.Tandem bis-aldol reaction of ketones:A facile one-pot synthesis of 1,3-dioxanes in aqueous medium.J.Org.Chem.2007,72,7420-7422.
    83.Gerbec,J.A.;Magana,D.;Washington,A.;Strouse,G.F.Microwaveenhanced reaction rates for nanoparticle synthesis.J.Am.Chem.Soc.2005,127,15791-15800.
    84.Sommer,W.J.;Week,M.Facile functionalization of gold nanoparticles via microwave-assisted 1,3 dipolar cyeloaddition.Langmuir 2007,23,11991-11995.
    85.Gao,F.;Lu,Q.Y.;Komameni,S.Interface reaction for the self-assembly of silver nanocrystals under microwave-assisted solvothermal conditions.Chem.Mater.2005,17,856-860.
    86.Hu,X.L.;Yu,J.C.;Gong,J.M.Fast production of self-assembled hierarchical alpha-Fe_2O_3 nanoarchitectures.J.Phys.Chem.C 2007,111,11180-11185.
    87.Polshettiwar,V.;Nadagouda,M.N.;Varma,R.S.The synthesis and applications of a micro-pine-structured nanocatalyst.Chem.Commun.2008,6318-6320.
    88.Polshettiwar,V.;Nadagouda,M.N.;Varma,R.S.Self-Assembly of Palladium Nanoparticles:Synthesis of Nanobelts,Nanoplates and Nanotrees Using Vitamin B1 and Their Application in Carbon-Carbon Coupling Reactions.J.Mat.Chem.2009,19.2026-2031
    89.Polshettiwar,V.;Varma,R.S.Nanoparticle-Supported and Magnetically Recoverable Ruthenium Hydroxide Catalyst:Efficient Hydration of Nitriles to Amides inAqueous Medium.Chem.Eur.J.2009,15,1582-1586.
    90.Polshettiwar,V.;Varma,R.S.Nanoparticle-Supported and Magnetically Recoverable Palladium(Pd) Catalyst:A Selective and Sustainable Oxidation Protocol with High Turnover Number.Org.Bio.Chem.2009,7,37-40.
    91.Polshettiwar,V.;Baruwati,B.;Varma,R.S.Nanoparticle-Supported and Magnetically Recoverable Nickel Catalyst:A Robust and Economic Hydrogenation and Transfer Hydrogenation Protocol.Green.Chem.2009,11,127-131.
    92.Baruwati,B.;Nadagouda,M.N.;Varma,R.S.Bulk Synthesis of Monodisperse Ferrite Nanoparticles at Water-Organic Interfaces under Conventional and Microwave Hydrothermal Treatment and Their Surface Functionalization.J.Phys.Chem.C 2008,112,18399-18404.
    93.Polshettiwar,V.;Baruwati,B.;Varma,R.S.Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures:Synthesis and Application in Catalysis.ACS Nano 2009,3,728-736.
    94.Dallinger,D.;Kappe,C.O.Microwave-assisted synthesis in water as solvent.Chem.Rev.2007,107,2563-2591.
    95.Brus,L.E.Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites:The Size Dependence of the Lowest Excited Electronic State.J.Chem.Phys.1984,80,4403-4409.
    96.Yong,K.T.;Sahoo,Y.;Swihart,M.T.;Prasad,P.N.Growth of CdSe quantum rods and multipods seeded by noble-metal nanoparticles.Adv.Mater.2006,18,1978-1982.
    97.Milliron,D.J.;Hughes,S.M.;Cui,Y.;Manna,L.;Li,J.B.;Wang,L.W.;Alivisatos,A.P.Colloidal nanocrystal heterostructures with linear and branched topology.Nature 2004,430,190-195.
    98.Xu,L.Q.;Zhang,W.Q.;Ding,Y.W.;Yu,W.C.;Xing,J.Y.;Li,F.Q.;Qian,Y.T.Shape-controlled synthesis of PbS microcrystals in large yields via a solvothermal process.J.Cryst.Growth 2004,273,213-219.
    99.Lee,S.M.;Jun,Y.W.;Cho,S.N.;Cheon,J.Single-crystalline star-shaped nanocrystals and their evolution:Programming the geometry of nano-building blocks.J.Am.Chem.Soc.2002,124,11244-11245.
    100.Jun,Y.W.;Lee,S.M.;Kang,N.J.;Cheon,J.Controlled synthesis of multi - armed CdS nanorod architectures using monosurfactant system.J.Am.Chem.Soc.2001,123,5150-5151.
    101.Manna,L.;Scher,E.C.;Alivisatos,A.P.Synthesis of soluble and processable rod-,arrow-,teardrop-,and tetrapod-shaped CdSe nanocrystals,J.Am.Chem.Soc.2000,122,12700-12706.
    102.Zettsu,N.;McLellan,J.M.;Wiley,B.;Yin,Y.D.;Li,Z.Y.;Xia,Y.N.Synthesis,stability,and surface plasmonic properties of rhodium multipods,and their use as substrates for surface-enhanced Raman scattering.Angew.Chem.,Int.Ed.2006,45,1288-1292.
    103.Teng,X.W.;Yang,H.Synthesis of platinum multipods:An induced anisotropic growth.Nano Lett.2005,5,885-891.
    104.Hoefelmeyer,J.D.;Niesz,K.;Somorjai,G.A.;Tilley,T.D.Radial anisotropic growth of rhodium nanoparticles.Nano Lett.2005,5,435-438.
    105.Ould-Ely,T.;Prieto-Centurion,D.;Kumar,A.;Guo,W.;Knowles,W.V.;Asokan,S.;Wong,M.S.;Rusakova,I.;Luttge,A.;Whitmire,K.H.Manganese(Ⅱ) oxide nanohexapods:Insight into controlling the form of nanocrystals.Chem.Mater 2006,18,1821-1829.
    106.Zitoun,D.;Pinna,N.;Frolet,N.;Belin,C.Single crystal manganese oxide multipods by oriented attachment.J.Am.Chem.Soc.2005,127,15034-15035.
    107.Zhou,H.J.;Cai,W.P.;Zhang,L.D.Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica.Appl.Phys.Lett. 1999,75,495-497.
    108.Gurlo,A.;Ivanovskaya,M.;Barsan,N.;Schweizer-Berberich,M.;Weimar,U.;Gopel,W.;Dieguez,A.Grain size control in nanocrystalline In_2O_3 semiconductor gas sensors.Sens.Actuators B 1997,44,327-333.
    109.Gopchandran,K.G.;Joseph,B.;Abraham,J.T.;Koshy,P.;Vaidyan,V.K.The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation.Vacuum 1997,48,547-550.
    110.Cui,J.;Wang,A.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Indium tin oxide alternatives - High work function transparent conducting oxides as anodes for organic light-emitting diodes.Adv.Mater.2001,13,1476-1480.
    111.Wu,C.C.;Wu,C.I.;Sturm,J.C.;Kahn,A.Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency,brightness,and reliability of organic light emitting devices.Appl.Phys.Lett.1997,70,1348-1350.
    112.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv.Mater.2003,15,795-797.
    113.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G..Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    114.Liu,Q.S.;Lu,W.G.;Ma,A.H.;Tang,J.K.;Lin,J.;Fang,J.Y.,Study of quasi-monodisperse In_2O_3 nanocrystals:Synthesis and optical determination.J..Am.Chem.Soc.2005,127,5276-5277.
    115.Lee,C.H.;Kim,M.;Kim,T.;Kim,A.;Pack,J.;Lee,J.W.;Choi,S.Y.;Kim,K.;Park,J.B.;Lee,K.Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes.J.Am.Chem.Soc.2006,128,9326-9327.
    116.Yu,D.B.;Yu,S.H.;Zhang,S.Y.;Zuo,J.;Wang,D.B.;Qian,Y.T.Metastable hexagonal In_2O_3 nanofibers templated from InOOH nanofibers under ambient pressure.Adv.Funct.Mater 2003,13,497-501.
    117.Liang,C.H.;Meng,G.W.;Lei,Y.;Phillipp,F.;Zhang,L.D.Catalytic growth of semiconducting In_2O_3 nanofibers.Adv.Mater 2001,13,1330-1333.
    118.Li,C.;Zhang,D.H.;Han,S.;Liu,X.L.;Tang,T.;Zhou,C.W.,Diameter -controlled growth of single-crystalline In_2O_3 nanowires and their electronic properties.Adv.Mater 2003,15,143-146.
    119.Cheng,B.;Samulski,E.T.Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3.J.Mater.Chem.2001,11,2901-2902.
    120.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater 2003,15,581-585.
    121.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin corundumtype In_2O_3 nanotubes derived from orthorhombic InOOH:synthesis and formation mechanism.Chem.Comm.2006,4632-4634.
    122.Yura,K.;Freddkson,K.;Matijevic,E.Preparation and Properties of Uniform Colloidal Indium Compounds of Different Morphologies.Colloids Surf.1990,50,281-293.
    123.Yang,J.;Lin,C.K.;Wang,Z.L.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties.Inorg.Chem.2006,45,8973-8979.
    124.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    125.Zhu,H.;Wang,X.;Wang,Z.J.;Yang,C.;Yang,F.;Yang,X.R.Selfassembled 3D microflowery In(OH)_3 architecture and its conversion to In_2O_3.J.Phys.Chem.C 2008,112,15285-15292.
    1.Service,R.F.How far can we push chemical self-assembly.Science 2005,309,95-95.
    2.Park,S.;Lim,J.H.;Chung,S.W.;Mirkin,C.A.Self-assembly of mesoscopic metal-polymer amphiphiles.Science 2004,303,348-351.
    3.Ewers,T.D.;Sra,A.K.;Norris,B.C.;Cable,R.E.;Cheng,C.H.;Shantz,D.F.;Schaak,R.E.Spontaneous hierarchical assembly of rhodium nanopartieles into spherical aggregates and superlattices.Chem.Mater.2005,17,514-520.
    4.Yang,H.G.;Zeng,H.C.Self-construction of hollow SnO_2 octahedra based on two-dimensional aggregation of nanocrystallites.Angew.Chem.,Int.Ed.2004,43,5930-5933.
    5.Chen,X.Y.;Wang,X.;Wang,Z.H.;Yang,X.G.;Qian,Y.T.Hierarchical growth and shape evolution of HgS dendrites.Cryst.Growth Des.2005,5,347-350.
    6.Mao,Y.B.;Kanungo,M.;Hemraj-Benny,T.;Wong,S.S.Synthesis and growth mechanism of titanate and titania one-dimensional nanostructures self-assembled into hollow micrometer-scale spherical aggregates.J.Phys.Chem.B 2006,110,702-710.
    7.Cao,A.M.;Hu,J.S.;Liang,H.P.;Wan,L.J.Self-assembled vanadium pentoxide(V_2O_5) hollow microspheres from nanorods and their application in lithium-ion batteries.Angew.Chem.,Int.Ed.2005,44,4391-4395.
    8.Mo,M.;Yu,J.C.;Zhang,L.Z.;Li,S.Self-assembly of ZnO nanorods and nanosheets into hollow microsemispheres and microspheres.Adv.Mater.2005,17,756-760.
    9.Cheng,Y.;Wang,Y.S.;Zheng,Y.H.;Qin,Y.Two-step self-assembly of nanodisks into plate-built cylinders through oriented aggregation.J.Phys. Chem.B 2005,109,11548-11551.
    10.Zhong,L.S.;Hu,J.S.;Liang,H.P.;Cao,A.M,;Song,W.G.;Wan,L.J.Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment.Adv.Mater.2006,18,2426-2431.
    11.Duan,G T.;Cai,W.P.;Luo,Y.Y.;Li,Z.G.;Lei,Y.Hierarchical structured Ni nanoring and hollow sphere arrays by morphology inheritance based on ordered through-pore template and electrodeposition.J.Phys.Chem.B 2006,110,15729- 15733.
    12.Qu,L.T.;Dai,L.M.Novel silver nanostructures from silver mirror reaction on reactive substrates.J.Phys.Chem.B 2005,109,13985-13990.
    13.Lou,X.W.;Zeng,H.C.Complex alpha-MoO_3 nanostructures with external bonding capacity for self-assembly.J.Am.Chem.Soc.2003,125,2697-2704.
    14.Li,Z.Q.;Ding,Y.;Xiong,Y.J.;Yang,Q.;Xie,Y.One-step solution-based catalytic route to fabricate novel alpha-MnO_2 hierarchical structures on a large scale.Chem.Commun.2005,918-920.
    15.Liang,J.B.;Liu,J.W.;Xie,Q.;Bai,S.;Yu,W.C.;Qian,Y.T.Hydrothermal growth and optical properties of doughnut-shaped ZnO microparticles,J.Phys.Chem.B 2005,109,9463-9467.
    16.Cao,M.H.;Liu,T.F.;Gao,S.;Sun,G.B.;Wu,X.L.;Hu,C.W.;Wang,Z.L.Single-crystal dendritic micro-pines of magnetic alpha-Fe_2O_3:Large-scale synthesis,formation mechanism,and properties.Angew.Chem.,Int.Ed.2005,44,4197-4201.
    17.Fang,X.S.;Ye,C.H.;Zhang,L.D.;Zhang,J.X.;Zhao,J.W.;Yan,P.Direct observation of the growth process of MgO nanoflowers by a simple chemical route.Small 2005,1,422-428.
    18.Li,Z.Q.;Ding,Y.;Xiong,Y.J.;Xie,Y.Rational growth of various alpha-MnO_2 hierarchical structures and beta-MnO_2 nanorods via a homogeneous catalytic route.Cryst.Growth Des.2005,5,1953-1958.
    19.Xu,Y.Y.;Chen,D.R.;Jiao,X.L.Fabrication of CuO pricky microspheres with tunable size by a simple solution route.J.Phys.Chem.B 2005,109,13561-13566.
    20.Zhang,Z.P.;Sun,H.P.;Shao,X.Q.;Li,D.F.;Yu,H.D.;Han,M.Y.Three-dimensionally oriented aggregation of a few hundred nanoparticles into monocrystalline architectures.Adv.Mater 2005,17,42-47.
    21.Gao,F.;Lu,Q.Y.;Xie,S.H.;Zhao,D.Y.A simple route for the synthesis of multi-armed CdS nanorod-based materials.Adv.Mater 2002,14,1537-1540.
    22.Huang,Y.;Duan,X.F.;Lieber,C.M.Nanowires for integrated multicolor nanophotonics.Small 2005,1,142-147.
    23.Khomenkova,L.;Fernandez,P.;Piqueras,J.ZnO nanostructured microspheres and elongated structures grown by thermal treatment of ZnS powder.Cryst.Growth Des.2007,7,836-839.
    24.Zhao,N.;Qi,L.M.Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants.Adv.Mater 2006,18,359-362.
    25.He,Z.B.;Yu,S.H.;Zhou,X.Y.;Li,X.G.;Qu,J.F.Magnetic-field-induced phase-selective synthesis of ferrosulfide mierorods by a hydrothermal process:Microstructure control and magnetic properties.Adv.Funct.Mater 2006,16,1105-1111.
    26.Gou,X.L.;Cheng,F.Y.;Shi,Y.H.;Zhang,L.;Peng,S.J.;Chen,J.;Shen,P.W.Shape-controlled synthesis of ternary chalcogenide ZnIn_2S_4 and CuIn(S,Se)_2 nano-/microstructures via facile solution route.J.Am.Chem.Soc.2006,128,7222 -7229.
    27.Zhang,Z.P.;Shao,X.Q.;Yu,H.D.;Wang,Y.B.;Han,M.Y.Morphosynthesis and ornamentation of 3D dendritic nanoarchitectures.Chem.Mater 2005,17,332 -336.
    28.Zhang,J.;Liu,S.J.;Lin,J.;Song,H.S.;Luo,J.J.;Elssfah,E.M.;Ammar,E.;Huang,Y.;Ding,X.X.;Gao,J.M.;Qi,S.R.;Tang,C.C.Self-assembly of flowerlike AlOOH(boehmite) 3D nanoarchitectures.J.Phys.Chem.B 2006, 110,14249-14252.
    29.Chen,D.;Tang,K.B.;Li,F.Q.;Zheng,H.G.A simple aqueous mineralization process to synthesize tetragonal molybdate microcrystallites.Cryst.Growth.Des.2006,6,247-252.
    30.Gong,Q.;Qian,X.F.;Ma,X.D.;Zhu,Z.K.Large-scale fabrication of novel hierarchical 3D CaMoO_4 and SrMoO_4 mesocrystals via a microemulsion-mediated route.Cryst.Growth.Des.2006,6,1821-1825.
    31.Shi,H.T.;Qi,L.M.;Ma,J.M.;Cheng,H.M.;Zhu,B.Y.Synthesis of hierarchical superstructures consisting of BaCrO_4 nanobelts in catanionic reverse micelles.Adv.Mater.2003,15,1647-1651.
    32.Shi,H.T.;Qi,L.M.;Ma,J.M.;Wu,N.Z.Architectural control of hierarchical nanobelt superstructures in catanionic reverse micelles.Adv.Funct.Mater.2005,15,442-450.
    33.Cheng,Y.;Wang,Y.S.;Chen,D.;Bao,F.Evolution of single crystalline dendrites from nanoparticles through oriented attachment.J.Phys.Chem.B 2005,109,794-798.
    34.Gopchandran,K.G.;Joseph,B.;Abraham,J.T.;Koshy,P.;Vaidyan,V.K.The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation.Vacuum 1997,48,547-550.
    35.Cui,J.;Wang,A.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Indium tin oxide alternatives-High work function transparent conducting oxides as anodes for organic light-emitting diodes.Adv.Mater.2001,13,1476-1480.
    36.Bogdanov,P.;Ivanovskaya,M.;Comini,E.;Faglia,G.;Sberveglieri,G.Effect of nickel ions on sensitivity of In_2O_3 thin film sensors to NO_2.Sens.Actuators B 1999,57,153-158.
    37.Wu,C.C.;Wu,C.I.;Sturm,J.C.;Kahn,A.Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency,brightness,and reliability of organic light emitting devices.Appl.Phys.Lett.1997,70,1348-1350.
    38.Zhao,Y.B.;Zhang,Z.J.;Wu,Z.S.;Dang,H.X.Synthesis and characterization of single-crystalline In_2O_3 nanocrystals via solution dispersion.Langmuir 2004,20,27-29.
    39.Liu,Q.S.;Lu,W.G.;Ma,A.H.;Tang,J.K.;Lin,J.;Fang,J.Y.Study of quasi-monodisperse In_2O_3 nanocrystals:Synthesis and optical determination.J.Am.Chem.Soc.2005,127,5276-5277.
    40.Soulantiea,K.;Erades,L.;Sauvan,M.;Senocq,F.;Maisonnat,A.;Chaudret,B.Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing.Adv.Funct.Mater.2003,13,553-557.
    41.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv.Mater.2003,15,795-797.
    42.Murali,A.;Barve,A.;Leppert,V.;Risbud,S.Synthesis and characterization of indium oxide nanoparticles.Nano Lett.2001,1,287-289.
    43.Tamaki,J.;Naruo,C.;Yamamoto,Y.;Matsuoka,M.Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation.Sens.Actuators B 2002,83,190-194.
    44.Liess,M.Electric-field-induced migration of chemisorbed gas molecules on a sensitive film - a new chemical sensor.Thin Solid Films 2002,410,183-187.
    45.Pan,Z.W.;Dai,Z.R.;Wang,Z.L.Nanobelts of semiconducting oxides.Science 2001,291,1947-1949.
    46.Jeong,J.S.;Lee,J.Y.;Lee,C.J.;An,S.J.;Yi,G.C.Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature.Chem.Phys.Lett.2004,384,246-250.
    47.Peng,X.S.;Meng,G.W.;Wang,X.F.;Wang,Y.W.;Zhang,J.;Liu,X.;Zhang,L.D.Synthesis of oxygen-deficient indium-tin-oxide(ITO) nanofibers.Chem.Mater.2002,14,4490-4493.
    48.Liang,C.H.;Meng,G.W.;Lei,Y.;Phillipp,F.;Zhang,L.D.Catalytic growth of semiconducting In_2O_3 nanofibers.Adv.Mater.2001,13,1330-1333.
    49.Li,C.;Zhang,D.H.;Han,S.;Liu,X.L.;Tang,T.;Zhou,C.W.Diametercontrolled growth of single-crystalline In_2O_3 nanowires and their electronic properties.Adv.Mater.2003,15,143-146.
    50.Nguyen,P.;Ng,H.T.;Yamada,T.;Smith,M.K.;Li,J.;Han,J.;Meyyappan,M.Direct integration of metal oxide nanowire in vertical field-effect transistor.Nano Lett.2004,4,651-657.
    51.Peng,X.S.;Meng,G.W.;Zhang,J.;Wang,X.F.;Wang,Y.W.;Wang,C.Z.;Zhang,L.D.Synthesis and photoluminescence of single-crystalline In_2O_3nanowires.J.Mater.Chem.2002,12,1602-1605.
    52.Zheng,M.J.;Zhang,L.D.;Li,G.H.;Zhang,X.Y.;Wang,X.F.Ordered indium-oxide nanowire arrays and their photoluminescence properties.Appl.Phys.Lett.2001,79,839-841.
    53.Zhang,D.H.;Li,C.;Han,S.;Liu,X.L.;Tang,T.;Jin,W.;Zhou,C.W.Electronic transport studies of single-crystalline In_2O_3 nanowires.Appl.Phys.Lett.2003,82,112-114.
    54.Cheng,B.;Samulski,E.T.Fabrication and characterization of nanotubular semiconductor oxides In_2O_3 and Ga_2O_3.J.Mater.Chem.2001,11,2901-2902.
    55.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    56.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin cortmdumtype In_2O_3 nanotubes derived from orthorhombic InOOH:synthesis and formation mechanism.Chem.Commun.2006,4632-4634.
    57.Lao,J.Y.;Huang,J.Y.;Wang,D.Z.;Ren,Z.F.Self-assembled In_2O_3nanocrystal chains and nanowire networks.Adv.Mater.2004,16,65-69.
    58.Tang,Q.;Zhou,W.J.;Zhang,W.;Ou,S.M.;Jiang,K.;Yu,W.C.;Qian,Y.T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes.Cryst.Growth Des.2005,5,147-150.
    59.Guha,P.;Kar,S.;Chaudhuri,S.Direct synthesis of single crystalline In_2O_3nanopyramids and nanocolumns and their photoluminescence properties.Appl.Phys.Lett.2004,85,3851-3853.
    60.Jia,H.B.;Zhang,Y.;Chen,X.H.;Shu,J.;Luo,X.H.;Zhang,Z.S.;Yu,D.P.Efficient field emission from single crystalline indium oxide pyramids.Appl.Phys.Lett.2003,82,4146-4148.
    61.Yura,K.;Fredrikson,K.;Matijevic,E.Preparation and properties of uniform colloidal indium compounds of different morphologies.Colloids Surf.1990,50,281-293.
    62.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J.Am.Chem.Soc.2006,128,10310-10319.
    63.Yang,J.;Lin,C.K.;Wang,Z.L.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties.Inorg.Chem.2006,45,8973-8979.
    64.Ohhata,Y.;Shinoki,F.;Yoshida,S.Optical properties of r.f,reactive sputtered tin-doped In_2O_3 films.Thin Solid Films 1979,59,255-261.
    65.Banfield,J.F.;Welch,S.A.;Zhang,H.Z.;Ebert,T.T.;Penn,R.L.Aggregation- based crystal growth and microstrueture development in natural iron oxyhydroxide biomineralization products.Science 2000,289,751-754.
    66.Penn,R.L.;Banfield,J.F.Imperfect oriented attachment:Dislocation generation in defect-free nanocrystals.Science 1998,281,969-971.
    67.Lee,M.S.;Choi,W.C.;Kim,E.K.;Kim,C.K.;Min,S.K.Characterization of the oxidized indium thin films with thermal oxidation.Thin Solid Films 1996,279,1-3.
    1.Demazeau,G.Solvothermal processes:a route to the stabilization of new materials,J.Mater Chem.1999,9,15-18.
    2.Cushing,B.;Kolesnichenko,V.;O'Connor,C.Recent advances in the liquid-phase syntheses of inorganic nanoparticles.Chem.Rev.2004,104,3893-3946.
    3.Gopchandran,K.G.;Joseph,B.;Abaham,J.T.;Koshy,P.;Vaidyan,V.K.The preparation of transparent electrically conducting indium oxide films by reactive vacuum evaporation.Vacuum 1997,48,547-550.
    4.Cui,J.;Wang,A.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Indium tin oxide alternatives - High work function transparent conducting oxides as anodes for organic light-emitting diodes.Adv.Mater 2001,13,1476-1480.
    5.Bogdanov,P.;Ivanovskaya,M.;Comini,E.;Faglia,G.;Sberveglieri,G.Effect of nickel ions on sensitivity of In_2O_3 thin film sensors to NO_2.Sens.Actuators,B 1999,57,153-158.
    6.Wu,C.;Wu,C.;Sturm,J.;Kahn,A.Surface modification of indium tin oxide by plasma treatment:An effective method to improve the efficiency,brightness,and reliability of organic light emitting devices.Appl.Phys.Lett.1997,70,1348-1350.
    7.Zheng,M.J.;Zhang,L.D.;Li,G.H.;Zhang,X.Y.;Wang,X.F.Ordered indium- oxide nanowire arrays and their photoluminescence properties.Appl.Phys.Lett.2001,79,839-841.
    8.Peng,X.S.;Meng,G.W.;Zhang,J.;Wang,X.F.;Wang,Y.W.;Wang,C.Z.;Zhang,L.D.Synthesis and photoluminescence of single-crystalline In_2O_3nanowires.J.Mater.Chem.2002,12,1602-1605.
    9.Liang,C.H.;Meng,G.W.;Lei,Y.;Phillipp,F.;Zhang,L.D.Catalytic growth of semiconducting In_2O_3 nanofibers.Adv.Mater.2001,13,1330-1333.
    10.Li,C.;Zhang,D.H.;Han,S.;Liu,X.L.;Tang,T.;Zhou,C.W.Diametercontrolled growth of single-crystalline In_2O_3 nanowires and their electronic properties.Adv.Mater.2003,15,143-146.
    11.Hao,Y.F.;Meng,G.W.;Ye,C.H.;Zhang,L.D.Controlled synthesis of In_2O_3 octahedrons and nanowires.Cryst.Growth Des.2005,5,1617-1621.
    12.Cao,H.Q.;Qiu,X.Q.;Liang,Y.;Zhu,Q.M.;Zhao,M.J.Room-temperature ultraviolet-emitting In_2O_3 nanowires.Appl.Phys.Lett.2003,83,761-763.
    13.Xu,J.Q.;Chen,Y.P.;Pan,Q.Y.;Xiang,Q.;Cheng,Z.X.;Dong,X.W.A new route for preparing corundum-type In_2O_3 nanorods used as gas-sensing materials.Nanotechnology 2007,18,115615-115621.
    14.Xu,J.;Chen,Y.;Shen,J.Ethanol sensor based on hexagonal indium oxide nanorods prepared by solvothermal methods.Mater.Lett.2008,62,1363-1365.
    15.Chang,S.C.;Huang,M.H.Formation of short In_2O_3 nanorod arrays within mesoporous silica.J.Phys.Chem.C 2008,112,2304-2307.
    16.Kuo,C.Y.;Lu,S.Y.;Wei,T.Y.In_2O_3 nanorod formation induced by substrate structure.J.Cryst.Growth 2005,285,400-407.
    17.Jeong,J.S.;Lee,J.Y.;Lee,C.J.;An,S.J.;Yi,G.C.Synthesis and characterization of high-quality In_2O_3 nanobelts via catalyst-free growth using a simple physical vapor deposition at low temperature.Chem.Phys.Lett.2004,384,246-250.
    18.Kong,X.Y.;Wang,Z.L.Structures of indium oxide nanobelts.Solid State Commun.2003,128,1-4.
    19.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Wang,C.Q.Ultrathin corundum-type In_2O_3 nanotubes derived from orthorhombic InOOH:synthesis and formation mechanism.Chem.Commun.2006,4632-4634.
    20.Li,Y.B.;Bando,Y.;Golberg,D.Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    21.Tang,Q.;Zhou,W.J.;Zhang,W.;Ou,S.M.;Jiang,K.;Yu,W.C.;Qian,Y.T.Size-controllable growth of single crystal In(OH)_3 and In_2O_3 nanocubes.Cryst.Growth Des.2005,5,147-150.
    22.Lee,C.H.;Kim,M.;Kim,T.;Kim,A.;Paek,J.;Lee,J.W.;Choi,S.Y.;Kim,K.;Park,J.B.;Lee,K.Ambient pressure syntheses of size-controlled corundum-type In_2O_3 nanocubes.J.Am.Chem.Soc.2006,128,9326-9327.
    23.Zhang,Y.J.;Ago,H.;Liu,J.;Yumura,M.;Uchida,K.;Ohshima,S.;Iijima,S.;Zhu,J.;Zhang,X.Z.The synthesis of In,In_2O_3 nanowires and In_2O_3nanoparticles with shape-controlled.J.Cryst.Growth 2004,264,363-368.
    24.Zhao,Y.B.;Zhang,Z.J.;Wu,Z.S.;Dang,H.X.Synthesis and characterization of single-crystalline In_2O_3 nanocrystals via solution dispersion.Langmuir 2004,20,27-29.
    25.Guha,P.;Kar,S.;Chaudhuri,S.Direct synthesis of single crystalline In_2O_3nanopyramids and nanocolumns and their photoluminescence properties.Appl.Phys.Lett.2004,85,3851-3853.
    26.Jia,H.B.;Zhang,Y.;Chen,X.H.;Shu,J.;Luo,X.H.;Zhang,Z.S.;Yu,D. P.Efficient field emission from single crystalline indium oxide pyramids.Appl.Phys.Lett.2003,82,4146-4148.
    27.Liu,Q.L.,W.;Ma,A.;Tang,J.;Lin,J.;Fang,J.Study of quasi-monodisperse In_2O_3 nanocrystals:Synthesis and optical determination.J.Am.Chem.Soc.2005,127,5276-5277.
    28.Soulantica,K.;Erades,L.;Sauvan,M.;Senocq,F.;Maisonnat,A.;Chaudret,B.Synthesis of indium and indium oxide nanoparticles from indium cyclopentadienyl precursor and their application for gas sensing.Adv.Funct.Mater.2003,13,553-557.
    29.Murali,A.;Barve,A.;Leppert,V.J.;Risbud,S.H.;Kennedy,I.M.;Lee,H.W.H.Synthesis and characterization of indium oxide nanoparticles.Nano Lett.2001,1,287-289.
    30.Chen,C.L.;Chen,D.R.;Jiao,X.L.;Chen,S.H.In_2O_3 nanocrystals with a tunable size in the range of 4-10 nm:One-step synthesis,characterization,and optical properties.J.Phys.Chem.C 2007,111,18039-18043.
    31.Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Preparation and optical properties of highly crystalline,colloidal,and size-controlled indium oxide nanoparticles.Adv.Mater.2003,15,795-797.
    32.Zhou,H.J.;Cai,W.P.;Zhang,L.D.Photoluminescence of indium-oxide nanoparticles dispersed within pores of mesoporous silica.Appl.Phys.Lett.1999,75,495-497.
    33.Lao,J.;Huang,J.;Wang,D.;Ren,Z.Self-assembled In_2O_3 nanocrystal chains and nanowire network.Adv.Mater.2004,16,65-69.
    34.Hsin,C.L.;He,J.H.;Chen,L.J.Growth of In_2O_3 nanocrystal chains by a vapor transport and condensation method.Appl.Surf.Sci.2005,244,101-106.
    35.Yura,K.;Fredrikson,K.C.;Matijevic,E.Preparation and properties of uniform colloidal indium compounds of different morphologies.Colloids Surf.1990,281-293.
    36.Yang,J.;Lin,C.K.;Wang,Z.L.;Lin,J.In(OH)_3 and In_2O_3 nanorod bundles and spheres:Microemulsion-mediated hydrothermal synthesis and luminescence properties,Inorg.Chem.2006,45,8973-8979.
    37.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    38.Chen,L.Y.;Zhang,Y.G.;Wang,W.Z.;Zhang,Z.D.Tunable synthesis of various hierarchical structures of In(OH)_3 and In_2O_3 assembled by nanocubes.Eur J.Inorg.Chem.2008,1445-1451.
    39.Du,J.M.;Yang,M.;Cha,S.N.;Rhen,D.;Kang,M.;Kang,D.J.Indium hydroxide and indium oxide nanospheres,nanoflowers,microcubes,and nanorods:Synthesis and optical properties.Cryst.Growth Des.2008,8,2312-2317.
    40.Wang,C.Q.;Chen,D.R.;Jiao,X.L.;Chen,C.L.Lotus-root-like In_2O_3nanostructures:Fabrication,characterization,and photoluminescence properties.J..Phys.Chem.C 2007,111,13398-13403.
    41.Narayanaswamy,A.;Xu,H.F.;Pradhan,N.;Kim,M.;Peng,X.G.Formation of nearly monodisperse In_2O_3 nanodots and oriented-attached nanoflowers:Hydrolysis and alcoholysis vs pyrolysis.J..Am.Chem.Soc.2006,128,10310-10319.
    42.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    43.Zhu,H.;Wang,X.;Wang,Z.J.;Yang,C.;Yang,F.;Yang,X.R.Selfassembled 3D microflowery In(OH)_3 architecture and its conversion to In_2O_3.J.Phys.Chem.C 2008,112,15285-15292.
    44.Larcher,D.;Sudant,G.;Patrice,R.;Tarascon,J.M.Some insights on the use of polyols-based metal alkoxides powders as precursors for tailored metal-oxides particles.Chem.Mater.2003,15,3543-3551.
    45.Yang,J.;Li,C.X.;Quan,Z.W.;Kong,D.Y.;Zhang,X.M.;Yang,P.P.;Lin,J.One-step aqueous solvothermal synthesis of In_2O_3 nanocrystals.Cryst. Growth Des.2008,8,695-699.
    46.Nakamoto,K.(in Chinese;Huang,D.,Wang,R.,Translators) 4th Chemical Industry Press:Beijing.Infrared and Raman Spectra of Inorganic and Coordination Compounds 1991,p251.
    47.Hirotsu,Y.;Laughlin,D.E.;Bertero,G.;Herzer,G.;Hono,K.Special issue on "Nanostructured Advanced Magnetic Materials" based on a workshop held at Isree,Germany,9-13 June,2002 - Preface.2003,48,831-831.
    48.Xu,Y.Y.;Chen,D.R.;Jiao,X.L.;Xue,K.Y.Nanosized Cu_2O/PEG400composite hollow spheres with mesoporous shells.J.Phys.Chem.C 2007,111,16284-16289.
    49.Chen,W.Wuhan Institute of Food Industry:Wuhan.Lipidic chemistry 1993,p 16.
    50.Bradley,D.C.;Mehrotra,R.C.;Gaur,D.P.Metal Alkoxides,1978,p24.
    51.Ohhata,Y.;Shinoki,F.;Yoshida,S.Optical properties of r.f.reactive sputtered tin-doped In_2O_3 films.Thin Solid Films 1979,59,255-261.
    52.Wu,X.C.;Hong,J.M.;Han,Z.J.;Tao,Y.R.Fabrication and photoluminescence characteristics of single crystalline In_2O_3 nanowires.Chem.Phys.Lett.2003,373,28-32.
    53.Vanheusden,K.;Warren,W.L.;Seager,C.H.;Tallant,D.R.;Voigt,J.A.;Gnade,B.E.Mechanisms behind green photoluminescence in ZnO phosphor powders.J.Appl.Phys.1996,79,7983-7990.
    1.Sun,X.M.;Li,Y.D.,Ga_2O_3 and GaN semiconductor hollow spheres. Angew.Chem.,Int.Ed.2004,43,3827-3831.
    2.Titirici,M.M.;Antonietti,M.;Thomas,A.A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach.Chem.Mater.2006,18,3808-3812.
    3.Kim,S.W.;Kim,M.;Lee,W.Y.;Hyeon,T.Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for Suzuki coupling reactions.J..Am.Chem.Soc.2002,124,7642-7643.
    4.Wang,J.;Loh,K.P.;Zhong,Y.L.;Lin,M.;Ding,J.;Foo,Y.L.,Bifunctional FePt core-shell and hollow spheres:Sonochemical preparation and self-assembly.Chem.Mater.2007,19,2566-2572.
    5.Nakashima,T.;Kimizuka,N.Interfacial synthesis of hollow TiO_2microspheres in ionic liquids,J.Am.Chem.Soc.2003,125,6386-6387.
    6.Sun,Y.G.;Xia,Y.N.Shape-controlled synthesis of gold and silver nanoparticles.Science 2002,298,2176-2179.
    7.Zhao,X.F.;Li,T.K.;Xi,Y.Y.;Ng,D.H.L.;Yu,J.G.Synthesis of BaWO_4hollow structures.Crys.Growth & Design 2006,6,2210-2213.
    8.Xu,H.L.;Wang,W.Z.Template synthesis of multishelled Cu_2O hollow spheres with a single-crystalline shell wall.Angew.Chem.,Int.Ed 2007,46,1489-1492.
    9.Liu,B.;Zeng,H.C.Fabrication of ZnO "dandelions" via a modified kirkendall process.J.Am.Chem.Soc.2004,126,16744-16746.
    10.Liu,B.;Zeng,H.C.Mesoscale organization of CuO nanoribbons:Formation of"dandelions"J.Am.Chem.Soc.2004,126,8124-8125.
    11.Li,J.;Zeng,H.C.Nanoreactors - Size tuning,functionalization,and reactivation of Au in TiO_2 nanoreactors.Angew.Chem.,Int.Ed 2005,44,4342-4345.
    12.Bang,J.H.;Suslick,K.S.Sonochemical synthesis of nanosized hollow hematite.J.Am.Chem.Soc.2007,129,2242-2243.
    13.Yin,Y.D.;Rioux,R.M.;Erdonmez,C.K.;Hughes,S.;Somorjai,G.A.; Alivisatos,A.P.Formation of hollow nanocrystals through the nanoscale Kirkendall Effect.Science 2004,304,711-714.
    14.Dong,A.G.;Ren,N.;Tang,Y.;Wang,Y.J.;Zhang,Y.H.;Hua,W.M.;Gao,Z.General synthesis of mesoporous spheres of metal oxides and phosphates.J.Am.Chem.Soc.2003,125,4976-4977.
    15.Caruso,F.;Caruso,R.A.;Mohwald,H.Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating.Science 1998,282,1111-1114.
    16.Djojoputro,H.;Zhou,X.F.;Qiao,S.Z.;Wang,L.Z.;Yu,C.Z.;Lu,G.Q.Periodic mesoporous organosilica hollow spheres with tunable wall thickness.J.Am.Chem.Soc.2006,128,6320-6321.
    17.Schacht,S.H.,Q.;Voigt-Martin,I.G.;Stucky,G.D.;Schuth,F.Oil-Water Interface Templating of Mesoporous Macroscale Structures.Science 1996,273,768-771.
    18.Sun,Q.;Kooyman,P.J.;Grossmann,J.G.;Bomans,P.H.H.;Frederik,P.M.;Magusim,P.;Beelen,T.P.M.;Santen,R.A.;Sommerdijk,N.A.J.M.The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure.Adv.Mater.2003,15,1097-1100.
    19.Katcho,N.A.;Urones-Garrote,E.;Avila-Brande,D.;Gomez-Herrero,A.;Urbonaite,S.;Csillag,S.;Lomba,E.;Agullo-Rueda,F.;Landa-Canovas,A.R.;Otero-Diaz,L.C.Carbon hollow nanospheres from chlorination of ferrocene.Chem.Mater.2007,19,2304-2309.
    20.Sertchook,H.;Elimelech,H.;Makarov,C.;Khalfin,R.;Cohen,Y.;Shuster,M.;Babonneau,F.;Avnir,D.,Composite particles of polyethylene @ silica,J.Am.Chem.Soc.2007,129,98-108.
    21.Li,B.X.;Xie,Y.;Jing,M.;Rong,G.X.;Tang,Y.C.;Zhang,G.Z.In_2O_3hollow microspheres:Synthesis from designed In(OH)_3 precursors and applications in gas sensors and photocatalysis.Langmuir 2006,22,9380-9385.
    22.Chen,L.Y.;Zhang,Y.G.;Wang,W.Z.;Zhang,Z.D.Tunable synthesis of various hierarchical structures of In(OH)_3 and In_2O_3 assembled by nanocubes.Eur.J.Inorg.Chem.2008,1445-1451.
    23.Chen,L.Y.;Zhang,Z.D.Biomolecule-Assisted Synthesis of In(OH)_3Hollow Spherical Nanostructures Constructed with Well-Aligned Nanocubes and Their Conversion into C-In_2O_3.J.Phys.Chem.C 2008,112,18798-18803.
    24.Zhao,P.T.;Huang,T.;Huang,K.X.Fabrication of indium sulfide hollow spheres and their conversion to indium oxide hollow spheres consisting of multipore nanoflakes.J.Phys.Chem.C 2007,111,12890-12897.
    25.Cao,A.M.;Hu,J.S.;Liang,H.P.;Wan,L.J.Self-assembled vanadium pentoxide(V_2O_5) hollow microspheres from nanorods and their application in lithium-ion batteries.Angew.Chem.,Int.Ed.2005,44,4391-4395.
    26.Jiang,X.C.;Wang,Y.L.;Herricks,T.;Xia,Y.N.Ethylene glycol-mediated synthesis of metal oxide nanowires.J.Mater.Chem.2004,14,695-703.
    27.Wang,Y.L.;Jiang,X.C.;Xia,Y.N.A solution-phase,precursor route to polycrystalline SnO_2 nanowires that can be used for gas sensing under ambient conditions.J.Am.Chem.Soc.2003,125,16176-16177.
    28.Chakroune,N.;Viau,G.;Ammar,S.;Jouini,N.;Gredin,P.;Vaulay,M.J.;Fievet,F.Synthesis,characterization and magnetic properties of disk-shaped particles of a cobalt alkoxide:Co-Ⅱ(C_2H_4O_2).New J.Chem.2005,29,355-361.
    29.Zhong,L.S.;Hu,J.S.;Liang,H.P.;Cao,A.M.;Song,W.G.;Wan,L.J.Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment.Adv.Mater.2006,18,2426-2431.
    30.Cao,A.M.;Hu,J.S.;Liang,H.P.;Song,W.G.;Wan,L.J.;He,X.L.;Gao,X.G.;Xia,S.H.Hierarchically structured cobalt oxide(Co_3O_4):The morphology control and its potential in sensors.J.Phys.Chem.B 2006,110,15858-15863.
    31.Li,Z.Q.;Xiong,Y.J.;Xie,Y.Selected-control synthesis ofZnO nanowires and nanorods via a PEG-assisted route.Inorg.Chem.2003,42,8105-8109.
    32.Zhang,D.S.;Fu,H.X.;Shi,L.Y.;Pan,C.S.;Li,Q.;Chu,Y.L.;Yu,W.J. Synthesis of CeO_2 nanorods via ultrasonication assisted by polyethylene glycol.Inorg.Chem.2007,46,2446-2451.
    33.Santato,C.;Odziemkowski,M.;Ulmann,M.;Augustynski,J.Crystallographically oriented Mesoporous WO_3 films:Synthesis,characterization,and applications.J.Am.Chem.Soc.2001,123,10639-10649.
    34.Zhu,Y.F.;Zhang,L.;Wang,L.;Fu,Y.;Cao,L.L.The preparation and chemical structure of TiO_2 film photocatalysts supported on stainless steel substrates via the sol-gel method.J..Mater.Chem.2001,11,1864-1868.
    35.Xu,Y.Y.;Chen,D.R.;Jiao,X.L.;Ba,L.PEG-assisted fabrication of single-crystalline CuI nanosheets:A general route to two-dimensional nanostructured materials.J.Phys.Chem.C 2007,111,6-9.
    36.Xu,Y.Y.;Chen,D.R.;Jiao,X.L.;Xue,K.Y.Nanosized Cu_2O/PEG400composite hollow spheres with mesoporous shells.J.Phys.Chem.C 2007,111,16284-16289.
    37.Xu,Y.Y.;Jiao,X.L.;Chen,D.R.PEG-Assisted Preparation of Single-Crystalline CU20 Hollow Nanocubes.J.Phys.Chem.C 2008,112,16769 - 16773.
    38.Cheng,Y.;Wang,Y.S.;Chen,D.;Bao,F.Evolution of single crystalline dendrites from nanoparticles through oriented attachment.J.Phys.Chem.B 2005,109,794-798.
    39.Bernson,A.;Lindgren,G.;Huang,W.;Frech,R.Coordination and conformation in PEO,PEGM and PEG systems containing lithium or lanthanum triflate.Polymer 1995,36,4471-4478.
    40.Gurlo,A.;Barsan,N.;Weimar,U.;Ivanovskaya,M.;Taurino,A.;Siciliano,P.Polycrystalline well-shaped blocks of indium oxide obtained by the sol-gel method and their gas-sensing properties.Chem.Mater.2003,15,4377-4383.
    41.Ohhata,Y.S.,F.;Yoshida,S.Optical properties of r.f.reactive sputtered tin-doped In_2O_3 films.Thin Solid Films 1979,59,255-261.
    42.Zheng,M.J.;Zhang,L.D.;Li,G.H.;Zhang,X.Y.;Wang,X.F.Ordered indium-oxide nanowire arrays and their photoluminescence properties.Appl.Phys.Lett.2001,79,839-841.
    43.Liang,C.H.;Meng,G.W.;Lei,Y.;Phillipp,F.;Zhang,L.D.Catalytic growth of semiconducting In_2O_3 nanofibers.Adv.Mater.2001,13,1330-1333.
    44.Cao,H.Q.;Qiu,X.Q.;Liang,Y.;Zhu,Q.M.;Zhao,M.J.Room-temperature ultraviolet-emitting In_2O_3 nanowires.Appl.Phys.Lett.2003,83,761-763.
    45.Wang,C.;Chen D.;Jiao,X.;Chen,C.Lotus-Root-Like In_2O_3 Nano-structures:Fabrication,Characterization,and Photoluminescence Properties.J.Phys.Chem.C.2007,111,13398-13403.
    46.Guha,P.;Kar,S.;Chaudhuri,S.Direct synthesis of single crystalline In_2O_3nanopyramids and nanocolumns and their photoluminescence properties.Appl.Phys.Lett.2004,85,3851-3853.
    47.Wu,X.C.;Hong,J.M.;Han,Z.J.;Tao,Y.R.Fabrication and photoluminescence characteristics of single crystalline In_2O_3 nanowires.Chem.Phys.Lett.2003,373,28-32.
    48.Li,Y.B.;Bando,Y.;Golberg,D.,Single-crystalline In_2O_3 nanotubes filled with In.Adv.Mater.2003,15,581-585.
    (1) (a) Service, R. F. Science 2005,309, 95. (b) Park, S.; Lim, J. H.; Chung, S. W.; Mirkin, C. A. Science 2004,303, 348.
    (2) (a) Ewers, T. D.; Sra, A. K.; Norris, B. C.; Cable, R. E.; Cheng, C. H.; Shantz, D. F.; Schaak, R. E. Chem. Mater. 2005,17, 514. (b) Yang, H.; Zeng, H. Angew. Chem., Int. Ed. 2004, 43, 5930.
    (3) (a) Chen, X.; Wang, X.; Wang, Z.; Yang, X.; Qian, Y. Cryst. Growth Des. 2005, 5, 347. (b) Mao, Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S. J. Phys. Chem. B 2006,110, 702. (c) Cao, A.; Hu, J.; Liang, H.; Wan, L. Angew. Chem., Int. Ed. 2005, 44,4391.
    (4) (a) Mo, M.; Yu, J.; Zhang, L.; Li, S.-K. A. Adv. Mater. 2005,17, 756. (b) Cheng, Y.; Wang, Y.; Zheng, Y.; Qin, Y. J. Phys. Chem. B 2005,109, 11548. (c) Zhong, L.; Hu, J.; Liang, H.; Cao, A.; Song, W.; Wan, L. Adv. Mater. 2006,18,2426.
    (5) (a) Duan, G.; Cai, W.; Luo, Y.; Li, Z.; Lei, Y. J. Phys. Chem. B 2006,110, 15729. (b) Qu, L.; Dai, L. J. Phys. Chem. B 2005,109,13985.
    (6) (a) Lou, X.; Zeng, H. J. Am. Chem. Soc. 2003,125, 2697. (b) Li,Z.; Ding, Y.; Xiong, Y.; Yang, Q.; Xie, Y. Chem. Commun.2005, 918. (c)Liang, J.; Liu, J.; Xie, Q.; Bai, S.; Yu, W.; Qian, Y. J. Phys. Chem. B 2005, 109, 9463. (d) Cao, M.; Liu, T.; Gao, S.; Sun, G.; Wu, X.; Hu, C.;Wang, Z. Angew. Chem., Int. Ed. 2005, 44, 4197. (e) Fang, X.; Ye, C.;Zhang, L.; Zhang, J.; Zhao, J.; Yan,P.Small 2005,1,422.
    (f) Li,Z.;Ding,Y.;Xiong,Y.;Xie,Y.Cryst.Growth Des.2005,5,1953.
    (g) Xu,Y.;Chen,D.;Jiao,X.J.Phys.Chem.B 2005,109,13561.
    (h) Zhang,Z.;Sun,H.;Shao,X.;Li,D.;Yu,H.;Han,M.Adv.Mater 2005,17,42.
    (7)(a) Gao,F.;Lu,Q.;Xie,S.;Zhao,D.Adv.Mater.2002,14,1537.
    (b)Huang,Y.;Duan,X.;Lieber,C.M.Small 2005,1,142.
    (c) Khomenkova,L.;Fernandez,P.;Piqueras,J.Cryst.Growth Des.2007,7,836.
    (d) Zhao,N.;Qi,L.Adv.Mater.2006,18,359.
    (e) He,Z.;Yu,S.;Zhou,X.;Li,X.;Qu,J.Adv.Funct.Mater 2006,16,1105.
    (f) Gou,X.;Cheng,F.;Shi,Y.;Zhang,L.;Peng,S.;Chen,J.;Shen,P.J.Am.Chem.Soc.2006,128,7222.
    (8)(a) Zhang,Z.;Shao,X.;Yu,H.;Wang,Y.;Han,M.Chem.Mater.2005,17,332.
    (b) Zhang,J.;Liu,S.;Lin,J.;Song,H.;Luo,J.;Elssfah,E.M.;Ammar,E.;Huang,Y.;Ding,X.;Gao,J.;Qi,S.;Tang,C.J..Phys.Chem.B 2006,110,14249.
    (9)(a) Chen,D.;Tang,K.;Li,F.;Zheng,H.Cryst.Growth Des.2006,6,247.
    (b) Gong,Q.;Qian,X.;Ma,X.;Zhu,Z.Cryst.Growth Des.2006,6,1821.
    (c)Shi,H.;Qi,L.;Ma,J.;Cheng,H.;Zhu,B.Adv.Mater.2003,15,1647.
    (d) Shi,H.;Qi,L.;Ma,J.;Wu,N.Adv.Funct.Mater.2005,15,442.
    (e) Cheng,Y.;Wang,Y.;Chen,D.;Bao,F.J.Phys.Chem.B 2005,109,794.
    (10)(a) Gopchandran,K.G.;Joseph,B.;Abaham,J.T.;Koshy,P.;Vaidyan,V.K.Vacuum 1997,48,547.
    (b) Cui,J.;Wang,A.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Adv.Mater.2001,13,1476.
    (c) Bogdanov,P.;Ivanovskaya,M.;Comini,E.;Faglia,G.;Sberveglieri,G.Sens.Actuators B 1999,57,153.
    (d) Wu,C.;Wu,C.;Sturm,J.C.;Kahn,A.Appl.Phys.Lett.1997,70,1348.
    (11)(a) Zhao,Y.;Zhang,Z.;Wu,Z.;Dang,H.Langmuir 2004,20,27.
    (b) Liu,Q.;Lu,W.;Ma,A.;Tang,J.;Lin,J.;Fang,J.J.Am.Chem.Soc.2005,127,5276.
    (c) Soulantica,K.;Erades,L.;Sauvan,M.;Senocq,F.;Maisonnat,A.Adv.Funct.Mater.2003,13,553.
    (d) Seo,W.S.;Jo,H.H.;Lee,K.;Park,J.T.Adv.Mater.2003,15,795.
    (e) Murali,A.;Barve,A.;Leppert,V.J.;Risbud,S. H.Nano Lett.2001,1,287.
    (12)(a) Tamaki,J.;Naruo,C.;Yamamoto,Y.;Matsuoka,M.Sens.Actuators B 2002,83,190.
    (b) Liess,M.Thin Solid Films 2002,410,183.
    (13)(a) Pan,Z.;Dai,Z.;Wang,Z.Science 2001,291,1947.
    (b) Jeong,J.S.;Lee,J.Y.;Lee,C.J.;An,S.J.;Yi,G.C.Chem.Phys.Lett.2004,384,246.
    (14)(a) Peng,X.;Meng,G.;Wang,X.;Wang,Y.;Zhang,J.;Liu,X.;Zhang,L.Chem.Mater.2002,14,4490.
    (b) Liang,C.;Meng,G.;Lei,Y.;Phillipp,F.;Zhang,L.Adv.Mater.2001,13,1330.
    (c) Li,C.;Zhang,D.;Han,S.;Liu,X.;Tang,T.;Zhou,C.Adv.Mater.2003,15,143.
    (d) Nguyen,P.;Ng,H.T.;Yamada,T.;Smith,M.K.;Li,J.;Han,J.;Meyyappan,M.Nano Lett.2004,4,651.
    (e) Peng,X.;Meng,G.;Zhang,J.;Wang,X.;Wang,Y.;Wang,C.;Zhang,L.J.Mater Chem.2002,12,1602.
    (f) Zheng,M.;Zhang,L.;Li,G.;Zhang,X.;Wang,X.Appl.Phys.Lett.2001,79,839.
    (g) Zhang,D.;Li,C.;Han,S.;Liu,X.;Tang,T.;Jin,W.;Zhou,C.Appl.Phys.Lett.2003,82,112.
    (15)(a) Cheng,B.;Samulski,E.T.J.Mater Chem.2001,11,2901.
    (b) Li,Y.;Bando,Y.;Golberg,D.Adv.Mater.2003,15,581.
    (c) Chen,C.;Chen,D.;Jiao,X.;Wang,C.Chem.Commun.2006,4632.
    (16) Lao,J.;Huang,J.;Wang,D.;Ren,Z.Adv.Mater.2004,16,65.
    (17)(a) Tang,Q.;Zhou,W.;Zhang,W.;Ou,S.;Jiang,K.;Yu,W.;Qian,Y.Cryst.Growth Des.2005,5,147.
    (b) Guha,P.;Kar,S.;Chaudhuria,S.Appl.Phys.Lett.2004,85,3851.
    (c) Jia,H.;Zhang,Y.;Chen,X.;Shu,J.;Luo,X.;Zhang,Z.;Yu,D.Appl.Phys.Lett.2003,82,4146.
    (18) Yura,K.;Fredrikson,K.C.;Matijevic,E.Colloids Surf.1990,50,281.
    (19)(a) Narayanaswamy,A.;Xu,H.;Pradhan,N.;Kim,M.;Peng,X.J.Am.Chem.Soc.2006,128,10310.
    (b) Yang,J.;Lin,C.;Wang,Z.;Lin,J.Inorg.Chem.2006,45,8973.
    (20)(a) Ohhata,Y.;Shinoki,F.;Yoshida,S.Thin Solid Films 1979,59,255.
    (b)Cao,H.;Qiu,X.;Liang,Y.;Zhu,Q.Appl.Phys.Lett.2003,83,761.
    (c) Lee,M.S.;Choi,W.C.;Kim,E.K.;Kim,C.K.;Min,S.D.K.Thin Solid Films 1996,279,1.
    (21) (a) Banfield, J. F.; Welch, S. A.; Zhang, H.; Ebert, T. T.; Penn, R. L. Science 2000, 289, 751. (b) Penn, R. L. Science 1998,281, 969.
    (1)(a) Gopchandran,K.G.;Joseph,B.;Abaham,J.T.;Koshy,P.;Vaidyan,V.K.Vacuum 1997,48,547.
    (b) Cui,J.;Wang,A.;Edleman,N.L.;Ni,J.;Lee,P.;Armstrong,N.R.;Marks,T.J.Adv.Mater.2001,13,1476.
    (c) Bogdanov,P.;Ivanovskaya,M.;Comini,E.;Faglia,G.;Sberveglieri,G.Sens.Actuators B 1999,57,153.
    (d) Wu,C.;Wu,C.;Sturm,J.C.;Kahn,A.Appl.Phys.Lett.1997,70,1348.
    (2)(a) Zheng,M.;Zhang,L.;Li,G.;Zhang,X.;Wang,X.Appl.Phys.Lett.2001,79,839.
    (b) Peng,X.;Meng,G.;Zhang,J.;Wang,X.;Wang,Y.;Wang,C.;Zhang,L.J.Mater.Chem.2002,12,1602.
    (c) Liang,C.;Meng,G.;Lei,Y.;Phillipp,F.;Zhang,L.Adv.Mater.2001,13,1330.
    (d) Li,C.;Zhang,D.;Han,S.;Liu,X.;Tang,T.;Zhou,C.Adv.Mater.2003,15,143.
    (e) Hao,Y.;Meng,G.;Ye,C.;Zhang,L.Cryst.Growth Des.2005,5,1617.
    (f) Cao,H.;Qiu,X.;Zhu,Q.;Zhao,M.Appl.Phys.Lett.2003,83,761.
    (3)(a) Xu,J.;Chen,Y.;Pan,Q.;Xiang,Q.;Cheng,Z.;Dong,X.Nanotechnology 2007,18,115615.
    (b) Xu,J.;Chen Y.;Shen,J.Mater.Lett.2008,62,1363.
    (c) Chang,S.;Huang,M.J Phys.Chem.C 2008,112,2304.
    (d) Kuo,C.;Lu,S.;Wei,T.J..Cryst.Growth 2005,285,400.
    (4)(a) Jeong,J.;Lee,J.;Lee,C.;An,S.;Yi,G.Chem.Phys.Lett.2004,384, 246.
    (b) Kong,X.;Wang,Z.Solid State Commun.2003,128,1.
    (c) Gao,T.;Wang,T.J.Cryst.Growth 2006,290,660.
    (5) Chen,C.;Chen,D.;Jiao,X.;Wang,C.Chem.Commun.2006,4632.
    (6) Li,Y.;Bando,Y.;Golberg,D.Adv.Mater.2003,15,581.
    (7)(a) Tang,Q.;Zhou,W.;Zhang,W.;Qu,S.;Jiang,K.;Yu,W.;Qian,Y.Cryst.Growth Des.2005,5,147.
    (b) Lee,C.;Kim,M.;Kim.T.;Kim,A.;Paek,J.;Lee,J.;Choi,S.;Kim,K.;Park,J.;Lee,K.J.Am.Chem.Soc.2006,128,9326.
    (c) Zhang,Y.;Ago,H.;Liu,J.;Yumura,M.;Uchida,K.;Ohshima,S.;Iijima,S.;Zhu,J.;Zhang,X.J.Cryst.Growth 2004,264,363.
    (d) Zhao,Y.;Zhang,Z.;Wu,Z.;Dang,H.Langmuir 2004,20,27.
    (e) Guha,P.;Kar,S.;Chaudhuria,S.Appl.Phys.Lett.2004,85,3851.
    (f) Jia,H.;Zhang,Y.;Chen,X.;Shu,J.;Luo,X.;Zhang,Z.;Yu,D.Appl.Phys.Lett.2003,82,4146.
    (g)Liu,Q.;Lu,W.;Ma,A.;Tang,J.;Lin,J.;Fang,J.J.Am.Chem.Soc.2005,127,5276.
    (h) Soulantica,K.;Erades,L.;Sauvan,M.;Senocq,F.;Maisonnat,A.;Chaudret,B.Adv.Funct.Mater.2003,13,553.
    (i) Murali,A.;Barve,A.;Leppert,V.J.;Risbud,S.H.Nano Lett.2001,1,287.
    (j) Chen,C.;Chen,D.;Jiao,X.;Chen,S.J.Phys.Chem.C 2007,111,18039.
    (k) Seo,W.;Jo,H.;Lee,K.;Park,J.Adv.Mater.2003,15,795.
    (l) Zhou,H.;Cai,W.;Zhang,L.Appl.Phys.Lett.1999,75,495.
    (8)(a) Lao,J.;Huang,J.;Wang,D.;Ren,Z.Adv Mater.2004,16,65.
    (b) Hsin,C.;He,J;Chen,L.Appl.Surf Sci.2005,244,101.
    (9)(a) Yura,K.;Fredrikson,K.C.;Matijevic,E.Colloids Surf 1990,50,281.
    (b) Yang,J.;Lin,C.;Wang,Z.;Lin,J.Inorg.Chem.2006,45,8973.
    (c) Li,B.;Xie,Y.;Jing,M.;Rong,G.;Tang,Y.;Zhang,G.Langmuir 2006,22,9380.
    (d)Chen,L.;Zhang,Y.;Wang,W.;Zhang,Z.Eur.J.Inorg.Chem.2008,1445.
    (e) Du,J.;Yang,M.;Cha,S.;Rhen,D.;Kang,M.;Kang,D.Cryst.Growth Des.2008,8,2312.
    (f) Wang,C.;Chen,D.;Jiao,X.;Chen,C.J.Phys.Chem.C 2007,111,13398.
    (10) Narayanaswamy,A.;Xu,H.;Pradhan,N.;Kim,M.;Peng,X.J.Am.Chem.Soc.2006,128,10310.
    (11)(a) Zhao,P.;Huang,T.;Huang,K.J.Phys.Chem.C 2007,111,12890.
    (b) Zhu,H.;Wang,X.;Wang,Z.;Yang,C.;Yang,F.;Yang,X.J.Phys.Chem.C 2008,112,15285.
    (12) Larcher,D.;Sudant,G.;Patrice,R.;Tarascon,J.-M.Chem.Mater.2003,15,3543
    (13) Yang,J.;Li,C.;Quan,Z.;Kong,D.;Zhang,X.;Yang,P.;Lin,J.Cryst.Growth Des.2008,8,695.
    (14) Nakamoto,K.Infrared and Raman Spectra of Inorganic and Coordination Compounds 4th(in Chinese,Translators:Huang,D.;Wang,R.),Chemical Industry Press:Beijing,1991,p251.
    (15)(a) Spectral Database for Organic Compounds SDBS,No.40030(http://www.aist.go.Jp/R/ODB/SDBS/).
    (b) Xu,Y.;Chen,D.;Jiao,X.;Xue,K.J..Phys.Chem.C 2007,111,16284.
    (16) Chen,W.Lipidic Chemistry,Wuhan Institute of Food Industry:Wuhan,1993,p16.
    (17) Bradley,D.C.;Mehrotra,R.C.;Gaur,D.P.Metal Alkoxides,Academic Press:London,1978,p24.
    (18) Ohhata,Y.;Shinoki,F.;Yoshida,S.Thin Solid Films 1979,59,255.
    (19) Wu,X.;Hong,J.;Han,Z.;Tao,Y.Chem.Phys.Lett.2003,373,28.
    (20) Vanheusden,K.;Warren,W.L.;Seager,C.H.;Tallant,D.R.;Voigt,J.A.;Gnade,B.E.J.Appl.Phys.1996,79,7983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700