Ga_3PO_7晶体的熔盐法生长、结构及性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自从1880年居里兄弟在α-石英晶体上发现压电效应以来,利用晶体的压电效应制成的各种压电器件,如压电振荡器、压电换能器、压电式压力传感器、电声换能器以及超声波传感器等,已经被成功地应用于电子、激光、通讯、航空航天等领域,压电晶体也成为一类重要的功能材料。
     磷酸镓(GaPO_4)晶体作为一种类石英晶体,几乎具有了石英晶体所有的优点,并且其热稳定性、压电系数和机电耦合系数要优于石英。在高达933℃时,其物理特性也只有很小的变化,它是一种在高温条件下替代石英用于制作压电换能器和传感器非常有前途的压电晶体材料。GaPO_4晶体具有与石英相似的零频率温度系数切型,大的机电耦合系数,因此在体声波(BAW)和声表面波(SAW)应用方面,可以用它制成带宽很宽的带通滤波器,而且温度适应范围可以得到大幅度提高。为适应当前迅速发展的信息产业的需要,性能优异、易工业化生长的压电晶体的开发将具有重要的科学意义和实用价值。我们采用熔盐法生长GaPO_4晶体时,发现了Ga_2O_3—P_2O_5体系中的一种新相。对其组分和结构测定得知,其化学组分为Ga_3PO_7,其特殊的结构特点引起了我们的关注。Ga_3PO_7晶体与LiNbO_3和LiTaO_3晶体一样属于三方晶系,R3m空间群,晶胞参数a=b=7.885(1)(?),c=6.727(1)(?),Z=3。由于其不具有对称中心,且属于10种极性晶类之一,Ga_3PO_7晶体具有压电和热释电等电学性能。文献检索表明,仅有在高温(773K)、高压(210×10~6pa)条件下采用水热法合成Ga_3PO_7的简单报道,除此之外,还未见其它有关Ga_3PO_7单晶的生长方法和晶体性质、应用方面的研究报道。
     本文主要工作从GaPO_4晶体的熔盐法生长探索开始,在Ga_2O_3—P_2O_5体系中发现并获得了Ga_3PO_7单晶,进行了组分和结构测定。并且在Ga_3PO_7晶体生长熔盐体系研究基础上,首次采用熔盐法成功生长出厘米级、高质量的Ga_3PO_7晶体,进而通过大量的实验优化了Ga_3PO_7晶体的生长工艺参数,并对Ga_3PO_7晶体的基本物理化学性质,特别是热学、光学以及电学性质首次进行了系统的研究,主要研究工作和结果如下:
     1.GaPO_4晶体的熔盐法生长:采用助熔剂自发成核的方法,探索了GaPO_4晶体的助熔剂生长体系,得到MoO_3—Li_2CO_3、MoO_3—K_2CO_3、KPO_3—MoO_3—LiF三种能够生长出GaPO_4晶体的助熔剂体系;根据GaPO_4晶体的IR吸收光谱图,计算了晶体中OH~-的吸收系数,发现熔盐法可以有效地避免晶体中OH~-的存在;为了得到大尺寸晶体,我们又进一步采用顶部籽晶法探索了其生长工艺,发现上述三种助熔剂体系虽然能够成核出GaPO_4晶体,但是由于生长过程中助熔剂体系中的MoO_3挥发较严重,导致溶液组分不稳定,尤其是溶液表面过饱和度过高,晶体生长速度难控制,容易引起杂晶生长,难以得到大尺寸单晶。
     2.Ga_3PO_7晶体的熔盐法生长:通过自发成核试验找到了适合Ga_3PO_7晶体生长的助熔剂体系,成功地采用MoO_3—Li_2CO_3为助熔剂,自发成核出毫米级Ga_3PO_7晶体;在此基础上,通过优化籽晶采用顶部籽晶法生长出厘米级Ga_3PO_7晶体,并对其生长工艺进行了详细研究,确定晶体生长合适的溶液浓度为15wt%—20wt%,晶体转速为30rpm。探讨了不同方向的籽晶对晶体生长速度的影响,结果发现,(101)法线方向是晶体生长速度较快的方向,以其为籽晶生长出了尺寸为23×20×15 mm~3的形貌规则、透明的Ga_3PO_7单晶。采用化学腐蚀法和显微镜形貌观测观察了晶体的开裂、包裹体、位错等常见宏观和微观缺陷,结合晶体生长过程分析了各种缺陷的成因以及解决方法。
     3.测定了Ga_3PO_7晶体的一系列基本物理化学性质,包括结构、密度、硬度和稳定性。采用X射线单晶结构分析仪(四圆衍射仪)对其结构进行详细解析,得出Ga_3PO_7晶体属于三方晶系,R3m空间群,晶胞参数分别为a=b=7.897(3)(?),c=6.757(6)(?);采用浮力法测量了晶体在22℃下的密度,得到Ga_3PO_7晶体的密度为4.874 g·cm~(-3);采用维氏显微硬度和莫氏硬度分别测量了晶体的硬度,结果显示Ga_3PO_7晶体属于较硬晶体材料,其莫氏硬度大约为6.5,略低于石英晶体的硬度,晶体易于加工;Ga_3PO_7晶体稳定性良好,在空气中放置没有发现潮解和解离现象,在常温下也不溶于盐酸和硝酸,微溶于磷酸和氢氟酸,在沸腾的磷酸中有明显的腐蚀,可以此观察晶体微观形貌及缺陷。
     4.全面系统地测定了Ga_3PO_7晶体的热学性质。在室温至1500℃范围内,晶体差热分析结果表明,Ga_3PO_7晶体的热稳性较好,在室温至1364.8℃之间没有发生任何变化,当温度达到1364.8℃时,晶体开始发生分解,晶体在熔化前分解,晶体的熔点应高于这一温度;热膨胀测试结果显示Ga_3PO_7晶体具有较小的热膨胀系数,在a、c方向上的平均热膨胀系数分别为:α_a=1.66×10~(-6)K~(-1),α_c=3.53×10~(-6)K~(-1);通过测量Ga_3PO_7晶体的热扩散系数和比热计算了其热导率,发现Ga_3PO_7晶体具有较大的热导率值,晶体沿a、c方向在30℃时的热导率分别为6.34 Wm~(-1)K~(-1)和6.18 Wm~(-1)K~(-1),这将有利于晶体中热量的传递,实现晶体高温条件下的稳定应用。
     5.系统测量了Ga_3PO_7晶体光学性质,包括:不同波段的光学透过率、折射率以及非线性倍频效应。结果发现Ga_3PO_7晶体具有较宽的透过波段215nm~4300nm,并且在300nm—3750nm之间具有高的透过率,透过率达到80%以上,Ga_3PO_7晶体由于具有短的截至波段(215nm)和宽的透过波段,可能在光学方面有一定应用;通过对Ga_3PO_7晶体折射率的测量,得出Ga_3PO_7晶体的折射率值随着波长的增加而减小,在波长为633nm时的折射率为:n_o=1.7849,n_e=1.7739;并且n_o>n_e,可以判定晶体为光学负单轴晶;在粉末倍频实验中,我们没有发现Ga_3PO_7晶体明显的倍频效应,所以推断该晶体不会在非线性光学方面有所应用。
     6.系统测量了Ga_3PO_7晶体的自由介电常数、压电应变常数以及弹性柔顺常数。采用HP公司的4279A型LCR电桥分别测量x片和z片的电容,计算了Ga_3PO_7晶体的自由介电常数;采用准静态d_(33)测量仪测量Ga_3PO_7晶体的压电应变常数;采用谐振法测量了Ga_3PO_7晶体的弹性柔顺常数。此外,还通过测量Ga_3PO_7晶体的热释电电流,计算了其热释电系数。将实验所确定的Ga_3PO_7晶体的介电常数、压电常数、弹性常数以及热释电系数与现有的几种压电晶体性能相比较,我们发现Ga_3PO_7晶体压电系数要大于α—SiO_2,与GaPO_4的压电系数大小相当,再加上Ga_3PO_7晶体具有较好的热稳定,在0—1364℃没有发生相变,我们推断Ga_3PO_7晶体将在高温条件下的压电应用方面有一定的应用价值,但是由于其热释电系数较小,不会在热释电探测器以及摄像管方面有所应用。
Since piezoelectric effect was firstly found in quartz crystal in 1880 by the Curie brothers,various piezoelectric devices made by piezoelectric crystals,such as piezoelectric oscillator,piezoelectric transducer,piezoelectric presure sensor, electroacoustic transducer and ultrasonic transducer,have been successfully applied in the fields of electric,laser,communication and aeronautical technology,and piezoelectric crystals have been regarded as an important function materials.
     Quartz homotypic single crystal gallium orthophosphate(GaPO_4) is a new piezoelectric material which possesses nearly all the advantages of quartz,but has a much higher thermal stability,a higher piezoelectric effect,larger electromechanical coupling constants than quartz.There are only small changes of the physical properties up to 933℃,this property makes it a very attractive material for high temperature piezoelectric devices.Because it exists the temperature-compensated cuts like quartz,it is a promising material for bulk acoustic wave(BAW) and surface acoustic wave (SAW) applications and has a wide temperature ranges.Moreover,with the rapid development of high-speed electronic and communication,it will has significant science meanings and practical values to research new piezoelectric crystals with improved properties and easy to be grown.Recently,crystalline trigallium phosphate(Ga_3PO_7) has attracted our attention due to its special crystal structure.It crystallizes in a noncentrosymmetric trigonal crystal system with space group R3m,a=b=7.885(1)(?),c =6.727(1)(?),Z=3,which belongs to the same space group with LiNbO_3 and LiTaO_3, and belongs to one of the ten polar crystal systems that have excellent optical and electromechanical properties,it is a promising candidate for piezoelectric,pyroelectric and optical applications.Single crystal Ga_3PO_7 was first synthesized by Boudin et al.in 1997 using hydrothermal synthesis at high temperature(773K) and high pressure (210×10~6Pa).Up to now,there have been no other reports of Ga_3PO_7 single-crystal growth and properties characterization except for the above-mentioned work.
     In this work,we do some research on the growth of GaPO_4 crystals and Ga_3PO_7 crystals by flux method.Centimetre sized and high quality trigallium phosphate single crystals,Ga_3PO_7,have been grown for the first time by flux method.The growth process parameters,physical and chemical properties,especially the thermal,optical and electric properties of Ga_3PO_7 crystals are studied systematically,and the main research contents and results are as follows:
     1.Growth of GaPO_4 crystals by flux method:Firstly,a spontaneous nucleation method is used to find some proper solvents,after a lot of experiments,three different solvents which can be used to grow GaPO_4 are obtained,MoO_3—Li_2CO_3,MoO_3—K_2CO_3 and KPO_3—MoO_3—LiF.IR spectrum was carried out between 4000 and 2800 cm~(-1),which is used to calculate the absorption coefficient of OH~-.We find that OH~- in the crystal can be avoided by using flux method.In order to obtain large size GaPO_4 crystals,the top-seeded solution growth(TSSG) slow-cooling method is also used.However,it is difficult to get large size single crystal,because of the volatilization of the solvents,especially the component of MoO_3,which will destroy the component of the sulution and induce the change of supersaturation on the surface of the solution.
     2.Growth of Ga_3PO_7 crystals by flux method:Firstly,a spontaneous nucleation method is used to find the proper solvent,after a lot of experiments,millimeter sized Ga_3PO_7 crystals have been grown by a spontaneous nucleation method using Li_2CO_3-3MoO_3 as flux.On the basis of the millimeter size crystal,the top-seeded solution growth(TSSG) slow-cooling method is used to grow large size Ga_3PO_7 crystal.The growth process parameters are systematic studied.The results show that the proper concentration of the solution is 15wt%—20wt%,the rotation speed of the seed crystal is 30rpm.The crystal shows obviously anisotropy during the growth process,the orientation of perpendicular to(101) face is much better than the c-orientation.Transparent single crystal Ga_3PO_7 with size of 23×20×15 mm~3 has been grown by the top-seeded solution growth(TSSG) method from the Li_2CO-3MoO_3 flux system with the optimized process parameters.
     3.A series of physical and chemical properties of Ga_3PO_7 crystal are characterized, such as structure,density,hardness and stability.The crystal structure was determined using a Bruker APEX2 CCD area-detector diffractometer,the result show that Ga_3PO_7 crystallizes in the trigonal crystal system with a noncentrosymmetric space group R3m,the unit cell parameters are a= b=7.897(3)(?),c=6.757(6)(?).There are no distinct differences in our work from the above mentioned.The density of Ga_3PO_7 crystal was measured to be 4.874 g/cm~3 using Archimedes' method.The hardness test of Ga_3PO_7 crystal shows that it belongs to harder materials category,it's Mohs' hardness value is about 6.5,which is slightly lower than that of quartz.The crystal is stable and nonhygroscopic in the air, and it cannot be dissolved in dilute nitric acid,muriatic acid at room temperature.It can be dissolved in boiling phosphate.
     4.Thermal properties of the as-grown Ga_3PO_7 crystal have been carefully studied by measuring the DTA/TG,anisotropic thermal expansion,specific heat,thermal diffusion and thermal conductivity.The TG/DTA test shows that Ga_3PO_7 is stable over the temperature range of 25 to 1364.8℃with no mass change.It will be decomposed when the temperature is above 1364.8℃,and that its melting point was not reached.Ga_3PO_7 crystal possesses low thermal expansion coefficients and good thermal conductivity.The calculated average thermal expansion coefficients along a- and c-axis areα_a=1.66×10~(-6)K~(-1),α_c=3.53×10~(-6)K~(-1) from 293.15 to 773.15K.The thermal conductivities along a- and c-axis are up to 6.34Wm~(-1)K~(-1),6.18 Wm~(-1)K~(-1) at the temperature of 303.15K.It will be beneficial for the thermal transmitting in the bulk crystal.The crystal will have a stable application under the high temperature.
     5.The optical properties of the as-grown Ga_3PO_7 crystal have been carefully studied, including transmittance,refractive indices and the nonlinear optical effect.The results show that the Ga_3PO_7 crystal has a wide transmission range from 215 nm to 4300 nm,and the transmittance is above 80%over the range of 300nm to 3750nm. The refractive index of Ga_3PO_7 is decreasing with the increasing of the wavelength, and it's refractive index n_o=1.7849 and n_e=1.7739 are obtained at the wavelength of 633nm.The smaller difference between the refractive indices values of n_o and n_e indicated that the Ga_3PO_7 crystal is an optically uniaxial negative crystal.The result of the powder frequency-doubling experiment shows that there is no obvious frequency-doubling effect,and the crystal can not be used in the field of nonlinear optical application.
     6.The free dielectric constants,piezoelectric constants and elastic constants are measured through designing reasonable experiments.The capacitances of x-cut and z-cut wafers are measured by Agilent HP 4279A LCR meter,and then the free dielectric constants are calculated.The piezoelectric constants are characterized using a ZJ-3A Berlincourt-type quasi-static d33 meter,and the elastic constants are measured by resonance method.Moreover,the pyroelectric coefficient of Ga_3PO_7 is also tested by measuring the pyroelectrie current.The results of dielectric constants, piezoelectric constants,elastic constants and pyroelectric coefficient are compared with other common piezoelectric crystals.From the comparison,we can clearly see that Ga_3PO_7 has the best temperature stability up to 1364.8℃,and the piezoelectric constants are as good as GaPO_4 and greater thanα-SiO_2.Therefore it is a very promising candidate for use as a high temperature piezoelectric material.However, because of the small pyroelectric coefficient,it cannot be used in the fields of pyroelectric detector and pyroelectric vidicon.
引文
[1】 张沛霖,钟维烈等,压电材料与器件物理,济南:山东科学技术出版社,1997
    【2]A.A.丘里巴诺夫著,李杰萃,夏绍良译,石英片制造工艺.北京:国防工业出版社,1959
    [3]Kolb E.D.,Key P.L.,Pressure Volume-Temperature Behavior in the System H_2O-NaOH-SiO_2 and it's Relationship to the hydrothermal growth of quartz,Proc.37~(th) Ann.Freq.Contr.Symp.,1983:153-156
    [4】 张福学,孙慷,压电学.北京:国防工业出版社,1984
    [5]Laudise R.A.,Stevens S.,High performance quartz,Proc.42~(nd) Ann.Freq.Contr.Symp.,1988:116-126
    [6]Wemple S.H.,Dodomenico M.,Relationship between linear and quadratic electro-optic coefficients in LiNbO_3,LitaO_3 and other oxygen-octahedra ferroelectrics based on direct measurement of spontaneous polarization.Appl.Phys.Lett.,1968(12):209-211
    [7]Kaminow I.P.,Turner E.H.,Borns R.L.,Crystallographic and electrooptic properties of cleaved LiNbO_3,J.Appl.Phys.,51(8)1980:4379-4384
    [8]Carruthers T.R.,Peterson G.E.,Grasso M.,Nonstoichiometry and crystal growth of lithium niobate,J.Appl.Phys.1971(42):1846-1849
    [9]Takashige M.,Mitsui T.,Nakamura T.,Grain-size development in the crystallization process from amorphous PbTiO_3,Jpn.J.Appli.Phys.,1981(20):L159-162
    [10]Kaminow I.P.and Turner E.H.,On handbook of Laser.Edit by R.J.Pressley,Chemical Rubber Co.,Cleveland,Ohio,U.S.A.,1971
    [11]Yamada T.,Iwasaki H.and Niizeki N.,Piezoelectric and elastic properties of LiTaO_3 temperature characteristics,Jpn.J.Appl.Phys.,1969(8):1127-1132
    [12]I.Martynyuk-Lototska,T.Dudok,O.Mys and R.Vlokh,Elastic,piezooptic and acoustooptic properties of SrB_4O_7 and PbB_4O_7 crystals,Optical Materials,31(4)(2009)660-667
    [13]I.Martynyuk-Lototska,O.Mys,T.Dudok,V.Adamiv,Ye.Smimov and R.Vlokh,Acoustooptic interaction in α-BaB_2O_4 and Li_2B_4O_7 crystals,Appl.Opt.47(2008)3446
    [14]I.Martynyuk-Lototska,O.Mys,O.Krupych,V.Adamiv,Ya.Burak and R.Vlokh, Elastic,piezooptic and acousto-optic properties of borate crystals(BaB_2O_4,Li_2B_4O_7and CsLiB_6O_(10)),Integr.Ferroelectrics 63(2004) 99.
    [15]石绪忠,CNGS和CTGs晶体的生长及性能研究,山东大学博士学位论文,2007
    [16]W.Walln(o|¨)fer,P.W.Krempl and A.Asenbaum,Determination of the elastic and photoelastic constants of quartz-type GaPO_4 by Brillouin scattering,Phys.Rev.B 49,15(1994) 10075
    [17]Laudise R.A.,Crystals growth of electronic materials,ed.Kaldis.Elsevier Science Publ.,1985
    [18]Detaint J.,Philippot E.,Jumas J.C.,et al.,Crystal growth,physics characterization and baw devices application of berlinite.Proc.39~(th) Ann.Freq.Contr.Symp.,(1985)234-246
    [19]R.Mittal,S.L.C.,A.I.Kolesnikov,C.-K.Loong.Inelastic neutron scattering and lattice dynamics studies of AlPO_4 and GaPO_4,Physica B 385-386(2006):147-149
    [20]R.C.L.Mooney.The crystal structure of aluminium phosphate and gallium phosphate,low-cristobalite type.Acta Cryst.9(1956)728-734
    [21]Shin-ichi Hirano,Kazuo Miwa and Shigeharu Naka Hydrothermal synthesis of gallium orthophosphate crystals,Journal of Crystal Growth,79(1-3)1986,215-218
    [22]G.Engel,H.Klapper and P.Krempl,Growth twinning in quartz-homeotypic gallium orthophosphate crystals,Journal of Crystal Growth,94(3)1989,597-606
    [23]D.Palmier,A.Goiffon,Crystal growth and characterizations of quartz-like material:gallium phosphate(GaPO_4),Journal of Crystal Growth,166(1996)347-353
    [24]S.Defregger,G.F.Engel,and P.W.Krempl,Linear and nonlinear optical properties of quartz-type GaPO_4,Phys.Rev.B 43(1991) 6733-6738
    [25]E.Philippot,A.Ibanez and A.Goiffon,A quartz-like material:gallium phosphate (GaPO_4);crystal growth and characterization,Journal of Crystal Growth,130(1)1993:195-208
    [26]W.Walln(o|¨)fer,W.;Krempl,P.W._,SAW properties of quartz homeotypes with epitaxial films,Ultrasonics Symposium,1994.Proceedings.,1994 IEEE
    [27]W.Walln(o|¨)fer,J.Stadler,P.W.Krempl,Proceedings of the Ph European Frequency and Time Forum,Neuchatel,1993,p.653
    [28]W.Wallnofer,PhD-Theses,Technical University of Vienna,1993
    [29]P.W.Krempl,G.Voborsky,U.Posch,W.Walln(o|¨)fer,AT-PS 393 183B,1994,Vienna
    [30]P.Krempl,G.Schleinzer,W.Walln6fer,Gallium phosphate,GaPO_4:a new piezoelectric.crystal material for high-temperature sensories,sensors and Actuators A,61(1997) 361-363
    [31]H.Thanner,P.W.Krempl,W.Walln.ofer,P.M.WorschGaPO_4 high temperature crystal microbalance with zerotemperature coefficient,Vacuum 67(2002) 687-691
    [32]K.Jacobs,P.Hofmann,D.Klimm,OH impurities in GaPO_4 crystals:correlation between infrared absorption and mass loss during thermal treatment,J.Cryst.Growth 237-239(2002) 837-842
    [33]J.Hainesa,~*,O.Cambona,D.A.KeenNeutron powder diffraction and totalscattering studies of a- quartz-type piezoelectric materials at high temperature,Physica B 350(2004) e979-e981
    [34]J.D.pedarnig,m.peruzziF2-laser patterning of GaPO4 resonatorsfor humidity sensing,Appl.Phys.A 80,1401-1404(2005)
    [35]M.N.Hamidona,V.Skarda,N.M.White,et al.,Fabrication of high temperature surface acoustic wave devices for sensor applications,Sensors and Actuators A 123-124(2005) 403-407
    [36]P.Hofmann,K.Jacobs,H.Federmann,M.Schulz,H.Fritze,H.L.Tuller Growth and high-temperature properties of gallium orthophosphate,Solid State Ionics 177(2006)3175-3178
    [37]M.Beaurain,P.Armand,P.Papet,Growth of piezoelectric single crystals by the flux method,J.Cryst.Growth 275(2005) e279-e282
    [38]R.U.Barz,S.V.Ghemen,Water-free gallium phosphate single-crystal growth from the flux,J.Cryst.Growth 275(2005) e921-e926
    [39]Sophie boudin and Kwang-Hwa Lu,Acta Cryst.(1998),C54,5-7.
    [40]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,and Hong Liu,Flux Growth and Characterizations of Ga_3PO_7 Single Crystals,Cryst.Growth Des.8(10)(2008):3577-3580
    [41]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,Xiufeng Cheng,,Wenlan Gao,Growth and thermal properties of Ga_3PO_7 bulk single crystals,Appl.Phys.Lett.92,1(2008)
    【42】 张克从,张乐漶,晶体生长科学与技术(上),第二版,科学出版社,1997
    [43]Cheng L K,Bosenberg W R and Tang C L,Growth and characterization of nonlinear optical crystals suitable for frequency conversion.Prog.Cryst.Growth and Charac.20(1990)9-57
    [44]Scheel H,Prog.Cryst.Growth and Charac.,5,277,(1982)
    [45]Hagerman,M.E.,Poeppelmeir,K.R.,Review of the Structure and Processing-Defect-Property Relationships of Potassium Titanyl Phosphate:A Strategy for Novel Thin-Film Photonic Devices.Chem.Mater.7(1995) 602-621
    [46]L.K.Cheng,W.Bosenberg,C.L.Tang,Growth and characterization of low temperature phase barium metaborate crystals,J.Cryst.Growth,89(4)(1988) 553-559
    [47]M.Tseitlin,E.Mojaev,M.Roth,Growth of high resistivity RbTiOPO_4 crystals,J.Cryst.Growth,310(2008)1929-1933
    [48]C.V.Kannan,S.Ganesamoorthy,H.Kimura,A.Miyazaki,Top seeded solution growth of pure and Rh:KTiOPO_4 single crystals and their optical and electrical characterization,J.Cryst.Growth,.279(2005) 403-409
    [49]E.P.Kharitonova,V.I.Voronkova,V.K.Yanovskii,S.Yu.Stefanovich,Single crystal growth and physical properties of RbTiOPO_4 doped with niobium,J.Cryst.Growth,275(2005) e647-e650
    [50]J.X.Zhang,J.Y.Wang,X.B.Hu,H.J.Zang,X.X.Wang,Y.G.Liu,M.H.Jiang,Growth,defects,conductivity and other properties of Ga:KTiOPO_4 and Ce:KTiOPO_4crystals,J.Cryst.Growth,275(2005) e2113-e2116
    [51]Bordui,P.F.;Jacco,J.C.;Loiacono,G.M.;Stolzenberger,R.A.;Zola,J.J.J.Cryst.Growth 84(1987) 403-408
    [52]Eugene G.Tsvetkov,Galina G.Khranenko,Vladimir P.Solntsev,General approaches to design of a reproducible technique for the growth of large crystals of barium metaborate(BBO) for industrial application,J.Cryst.Growth,275(2005)e2123-e2128
    [53]Shaofan Wu,Guofu Wang,Jianling Xie,Xiquan Wu,Yangfen Zhang,Xiang Lin,Growth of large birefringent α-BBO crystal,J.Cryst.Growth,.245(2002)84-86
    [54]M.Roth,D.Perlov,Growth of barium borate crystals from sodium fluoride solutions,J.Cryst.Growth,169(1996)734-740
    [55]V.Nikolov,P.Peshev,The effect of variation of thermal field on the morphology of β-BaB_2O_4 single crystals grown by top-seeded solution growth,J.Cryst.Growth,147(1995)117-122
    [56]Tsvetkov,E.G.,Semenenko,V.N.Chranenko,G.G.,Tjurikov,V.I.Surf.,X-ray,Synchrotron Neutron Effort,5(2002)65-70
    [57]Satyanarayan,M.N.;Bhat,H.L.J.Cryst.Growth,181(1997)281-289
    [58]D.Eimeri,L.Davis,S.Velako,et al.,Optical,mechanical,and thermal properties of barium borate,J.Appl.Phys.62(1987) 1968-1983
    [60]Steven A.Markgraf,Yasunori Furukawa,Masayoshi Sato,Top-seeded solution growth of LiB_3O_5,J.Cryst.Growth,140(1994) 343-348
    [59]Yusuke Mori,Ikuo Kuroda,Satosi Nakajima,Akira Taguchi,Takatomo Sasaki,Sadao Nakai,Growth of a nonlinear optical crystal:cesium lithium borate,J.Cryst.Growth,156(1995) 307-309
    [61]D.P.Shumov,A.T.Nenov,D.D.Nihtianova,Inclusions in LiB_3O_5 crystals obtained by the top-seeded solution growth method in the Li_2O-B_2O_3 system.Part 1,J.Cryst.Growth,169(1996) 519-526
    [62]D.D.Nihtianova,D.P.Shumov,J.J.Macicek,A.T.Nenov,Inclusions in LiB_3O_5crystals,obtained by the top-seeded solution growth method in the Li_2O---B_2O_3system.Part 2,J.Cryst.Growth,169(1996) 527-533
    [63]Burton W.K.,Cabrera N.,and Frank F.C.Phil.Trans.A,243(1951)299
    [64]Elwell D.and Scheel H.J.,Crystal Growth from High-Temperature Solutions,Academic Press 1975
    [1]Shin-ichi Hirano,Kazuo Miwa and Shigeharu Naka Hydrothermal synthesis of gallium orthophosphate crystals,Journal of Crystal Growth,79(1-3)1986,215-218
    [2]G.Engel,H.Klapper and P.Krempl,Growth twinning in quartz-homeotypic gallium orthophosphate crystals,Journal of Crystal Growth,94(3)1989,597-606
    [3]D.Palmier,A.Goiffon,Crystal growth and characterizations of quartz-like material:gallium phosphate(GaPO_4),Journal of Crystal Growth,166(1996)347-353
    [4]P.Hofmann,H.Federmann,M.Schulz,H.Fritze,H.L.Tuller,Growth and high-temperature properties of gallium orthophosphate,Solid State Ionics 177(2006):3175-3178.
    [5]P.Yot,O.C.,D.Balitsky,A.Goiffon,E.Philippot,Advances in crystal growth and characterizations of gallium orthophosphate,GaPO4,Journal of Crystal Growth 224(2001) 294-302
    [6]K.Jacobs,P.H.,D.Klimm,OH impurities in GaPO4 crystals:correlation between infrared absorption and mass loss during thermal treatment,Journal of Crystal Growth 237-239(2002):837-842
    [7]R.C.L.Mooney.The crystal structure of aluminium phosphate and gallium phosphate,low-cristobalite type.Acta Cryst.9,(1956) 728-734
    【8]张克从,张乐漶主编,晶体生长科学与技术(上),第二版,科学出版社,1997
    []D.Elwell,H.J.Scheel,Crystal growth from high-temperature solutions,Academic Press,London(1975)
    [9]王继扬;李静;梁曦敏,磷酸镓晶体的助熔剂生长法,申请号:200510044842
    [10]李静,梁曦敏,徐国纲,赵洪阳,王继扬等,助熔剂法生长GaPO_4晶体,压电与声光,06(2007)695-696
    [11]M.Beaurain,P.A.,P.Papet(2005)."Growth of piezoelectric single crystals by the flux method." Journal of Crystal Growth 275(2005):e279-e282.
    [12]Katsuya Teshima,Yuichiro Kikuchi,Takaomi Suzuki,Shuji Oishi,Growth of ErAl_3(BO_3)_4 Single Crystals from a K_2Mo_3O_(10) Flux,Crystal Growth & Design,6,8,(2006)1766-1768
    [13]N.I.Leonyuk,E.V.Koporulina,V.V.Maltsev,J.Li,H.J.Zhang,J.X.Zhang,J.Y.Wang,Growth and characterization of(Tm,Y)Al_3(BO_3)_4 and(Yb,Y) Al_3(BO_3)_4crystals,Journal of Crystal Growth 277(2005) 252-257
    [14]Xiaoyang Wang,Xin Yuan,Wei Li,Jiabao Qi,Shengjun Wang and Dezhong Shen,Flux growth of large potassium titanyl phosphate crystals and their electro-optical applications,J.Cryst.Growth 237-239(2002)672-676
    [15]D.Y.Zhang,H.Y.Shen,W.Liu,W.Z.Chen,G.F.Zhang,G.Zhang,R.R.Zeng,C.H.Huang,W.X.Lin,J.K.Liang,Crystal growth,X-ray diffraction and nonlinear optical properties of Nb:KTiOPO_4 crystal,Journal of Crystal Growth,218(1)(2000)98-102
    [16]F.Joseph Kumar,S.Ganesa Moorthy,C.Subramanian,G.Bocelli,Growth and characterization of KTiOPO_4 single crystals,Materials Science and Engineering B,49(1)(1997)31-35
    [17]W.J.Liu,S.S.Jiang,X.R.Huang,X.B.Hu,W.Zeng,J.Q.Wei,J.Y.Wang,J.H.Jiang,Y.Han,Growth defects in Nb:KTP crystals observed by synchrotron radiation topography,Journal of Crystal Growth,169(3)(1996)534-538
    [18]I.F(o|¨)ldvari,E.Beregi,A.Baraldi,R.Capelletti,W.Ryba-Romanowski,G.Dominiak-Dzik,A.Munoz,R.Sosa,Growth and spectroscopic properties of rare-earth doped YAl_3(BO_3)_4 single crystals,Journal of Luminescence,102-103(2003) 395-401
    [19]Jing Li,Qiang Li,Jiyang Wang,Hongyang Zhao,Ximin Liang,Growth,thermal and optical properties of Yb:GdYAl_3(BO_3)_4 crystal,Optical Materials,29(12)(2007)1741-1745
    [20]Jing Li,Jiyang Wang,Xiufeng Cheng,Huaijin Zhang,Growth and thermal properties of Sm:YAl_3(BO_3)_4 crystal,Journal of Crystal Growth,265(1-2)(2004)111-114
    [21]Jing Li,Jiyang Wang,Hao Tan,Xiufeng Cheng,Feng Song,Huaijin Zhang,Shouren Zhao,Growth and optical properties of Ho,Yb:YAl_3(BO_3)_4 crystal,Journal of Crystal Growth,256(3-4)(2003) 324-327
    [22]P.Armand,M.Beaurain,B.Ruffle,B.Menaert,D.Balitsky,S.Clement,P.Papet,Characterizations of piezoelectric GaPO_4 single crystals grown by the flux method,J.Cryst.Growth,310(2008) 1455-1459
    [1]Sophie boudin and Kwang-Hwa Lu,Acta Cryst.(1998),C54,5-7.
    [2]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,and Hong Liu,Flux Growth and Characterizations of Ga3PO7 Single Crystals,Cryst.Growth Des.8(10)(2008):3577-3580
    [3]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,Xiufeng Cheng,Wenlan Gao,Growth and thermal properties of Ga_3PO_7 bulk single crystals,Appl.Phys.Lett.92,(2008)
    [4]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,Yonggui Yu,Optical properties of Ga_3PO_7 single crystals,J.Cryst.Growth,In Press
    [5]Ozima M.J.Cryst.Growth 1976,33,193.
    [6]Beaurain M.;Armand P.;Papet P.J.Cryst.Growth 2005,275,e279.
    [7]Li J.;Wang J.Y.;Tan H.;Zhang H.J.Mater.Res.Bull.2004,39,1329.
    [8]Chen C,Ye N,Lin J,Jiang J,et al.,Adv.Mater.,11(13)(1999)1071
    [9] 张克从,张乐潓,晶体生长科学与技术(上),第二版,科学出版社,1997。
    [10]Jing Li,Qiang Li,Jiyang Wang,Hongyang Zhao,Ximin Liang,Growth,thermal and optical properties of Yb:GdYAl_3(BO_3)_4 crystal,Optical Materials,29(12)(2007)1741-1745
    [11]Jing Li,Jiyang Wang,Xiufeng Cheng,Huaijin Zhang,Growth and thermal properties of Sm:YAl_3(BO_3)_4 crystal,Journal of Crystal Growth,265(1-2)(2004)111-114
    [12]Jing Li,Jiyang Wang,Hao Tan,Xiufeng Cheng,Feng Song,Huaijin Zhang,Shouren Zhao,Growth and optical properties of Ho,Yb:YAl_3(BO_3)_4 crystal,Journal of Crystal Growth,256(3-4)(2003) 324-327
    [13]张建秀,几种单斜双钨酸盐晶体的生长及性能表征,山东大学博士论文,2006
    [1】 方奇,于文涛,晶体学原理,国防工业出版社:北京,2002.1
    [2]Hammond C.Introduction to Crystallpgrapys.New York:Oxford University Press,1990
    [3】 肖序刚,晶体结构的几何理论,北京,高等教育出版社,1993
    [4】 徐宝琨,阎卫平,刘明登,结晶学,吉林大学出版社,1991
    [5】 姚连增,晶体生长基础,中国科学技术出版社,1995
    [6]张克从,张乐惠,晶体生长科学与技术,科学出版社,1997
    [7]J.H.Jr.Crawford,L.M.Slifkin.Point Defects in Solid,New York,Plenum Press,1972
    [8】 杨顺华,丁棣华,晶体位错理论基础(第二卷),科学出版社,1998
    【9】 J.弗里埃德尔著,王煜译,位错,科学出版社,1980
    【10】 张沛霖,钟维烈等,压电材料与器件物理,山东科学技术出版社,1997
    [11]Krcmpl,P.W.,Quartz Homeotypic Gallium-Orthophosphate-A New High Tech Piezoelectric Materials.1994 ULTRASONICS SYMPOSIUM,(1994)949-954
    【12】 张传忠,一种新压电材料——类石英晶体GaPO_4,压电与声光21(1999) 64-67
    [13]D.Palmier,A.Goiffon,Crystal growth and characterizations of quartz-like material:gallium phosphate(GaPO_4),Journal of Crystal Growth,166(1996)347-353
    [14]S.Defregger,G.F.Engel,and P.W.Krempl,Linear and nonlinear optical properties of quartz-type GaPO_4,Phys.Rev.B 43(1991) 6733-6738
    [15]E.Philippot,A.Ibanez and A.Goiffon,A quartz-like material:gallium phosphate (GaPO_4);crystal growth and characterization,Journal of Crystal Growth,130(1)(1993)195-208
    [16]W.Walln(o|¨)fer,W.;Krempl,P.W.__,SAW properties of quartz homeotypes with epitaxial films,Ultrasonics Symposium,1994.Proceedings,1994 IEEE
    [17]Sophie boudin and Kwang-Hwa Lu,Acta Cryst.,C54,(1998)5-7
    【18】 胡晓波,博士后研究工作报告,山东大学,1999
    [19]D.Rytz,H.J.Scheel,J.Cryst.Growht,59(1982) 468
    [20]B.l Hellermann,F.Baller,B.Gather,H.Hesse,J.Schnitter,Ferroelectrics,124,67(1991)
    [21]赵珊茸,博士学位论文(导师:王继扬教授),山东大学,2001
    [1]张克从,张乐漶,晶体生长科学与技术(上),第二版,科学出版社,1997。
    [2】 张福学,孙慷,压电学.北京:国防工业出版社,1984
    [3】 肖定全,王民主编,晶体物理学,四川大学出版社,1989
    【4]晶体光学,旺相编著,南京大学出版社,2003
    [5]张沛霖,钟维烈等,压电材料与器件物理,山东科学技术出版社,1997
    [6】 T.左尔泰,矿物学原理,1992
    【7】 吕孟凯著,固态化学,山东大学出版社,1996
    [8】 杨迪,李福欣编著,显微硬度实验,中国计量出版社,1988
    [9]E.M.Onitsch,Microscopia 2(1941)131.
    [10]Banwari Lal,K.K.Bamzai,P.N.Kotru,B.M.Wanklyn,Microhardness,fracture mechanism and dielectric behaviour of flux-grown GdFeO_3 single crystals,Mater.Chem.Phys.85(2004)353-359
    [11]K.Jagannathan,S.Kalainathan,T.Gnanasekaran,Microhardness studies on 4-Dimethylamino-N-methyl 4-Stilbazolium Tosylate(DAST),Matterals Letters,61(2007)4485-4488
    [12]K.A.Jackson,Liquid metals and solidification,ASM Cleveland,174(1958)
    [13]闵乃本著,晶体生长的物理基础,上海科学技术出版社,1982
    【14】 杨南如主编,无机非金属材料测试方法,武汉工业大学出版社,1993
    [15]J.X.Zhang,K.P.Wang,J.Y.Wang,H.J.Zhang,W.T.Yu,X.P.Wang,Z.P.Wang,Q.M.Lu,M.F.Ba,Appl.Phys.Lett.87(2005)061104
    [16]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,Xiufeng Cheng,,Wenlan Gao,Growth and thermal properties of Ga_3PO_7 bulk single crystals,Appl.Phys.Lett.92,1(2008)
    【17】 张建秀,山东大学博士学位论文(导师:王继扬教授),2006年
    [18】 关振铎,张中太,焦金生编著,无机材料物理性能,清华大学出版社,1992
    [19]J.F.Nye,Physical properties of crystals,Oxford University Press,1985,printed in Great Britain
    [20]W.Ge,H.Zhang and J.Wang,J.Liu,X.Xu,X.Hu and M.Jiang,J.Appl.Phys. 98(2005)013542
    [21]Z.H.Yang,Q.C.Guan,J.Q.Wei and J.Y.Wang,Journal of Thermal Analysis,297(1995)45
    [22]W.W.Ge,H.J.Zhang,J.Y.Wang J.H.Liu,H.X.Li,et al.,The thermal and optical properties of BaWO_4 single crystal,J.Cryst.Growth,276(2005)208-214
    【23】 杨志文等编著,光学测量,北京理工大学出版社,1995
    [24]W.G.Zhang,X.T.Tao,C.Zhang,Z.Gao,Y.Zhang,W.Yu,X.Cheng,X.Liu,and M.Jiang,Bulk Growth and Characterization of a Novel Nonlinear Optical Crystal BaTeMo2O9,Cryst.Growth Desin.,8(2008)304-307
    [25]Y.Li,Y.Wu,G.Zhang,P.Fu,X.Bai,Flux growth and optical properties of Na_3La_9O_3(BO_3)_8 crystals,J.Cryst.Growth,292(2006)468-471
    [26]Guogang Xu,Jing Li,Jiyang Wang,Hongyang Zhao,Yonggui Yu,Optical properties of Ga_3PO_7 single crystals,J.Cryst.Growth,In Press
    [1]张沛霖,钟维烈等,压电材料与器件物理[M],山东科学技术出版社,1997.
    [2]张福学,孙慷,压电学【M】,北京:国防工业出版社,1984.
    [3]尹鑫,张囡,袁多荣,蒋民华,干涉法测量Cd(C_4H_8N_2S)_3Cl_2晶体的压电系数,人工晶体学报,18(4)(1989)337-340.
    【4】 易明,廖理几,用布里渊散射法测量Li2B4O7单晶的弹性系数和压电系数,北京工业大学学报,18(1)(1992)23-29.
    [5]IEEE Standard on Piezoelectricity.ANSI/IEEE Standards 176-1987,1-66.
    【6】 压电晶体电弹常数测试方法,GB/T 12634-90,1990.
    [7]Hassel Ledbetter,Hirotsugu Ogi,Nobutomo Nakamura,Elastic,anelastic,piezoelectric coefficients of monocrystal lithium niobate,Mechanics of Materials,36(2004) 941-947
    [8]Damie,J.,Elastic constants of lithium niobate.Journal of Physics D:Applied Physics 25,1992.1091-1095.
    [9]Warner,A.,Onoe,M.,Coquin,G.,Determination of elastic and piezoelectric constants for crystals in class(3m).Journal of the Acoustical Society of America 42,1967.1223-1231.
    【10】 石绪忠,CNGS和CTGS晶体的生长及性能研究,山东大学博士学位论文,2007.
    [11]P.Krempl,G.Schleinzer,W.Walln6fer,Gallium phosphate,GaPO_4:a new piezoelectric.crystal material for high-temperature sensories,sensors and Actuators A,61(1997) 361-363.
    [12]E.Philippot,A.Ibanez and A.Goiffon,A quartz-like material:gallium phosphate (GaPO_4);crystal growth and characterization,Journal of Crystal Growth,130(1)1993:195-208.
    [13】夏宗仁,崔坤,徐家跃,弱热释电效应黑色铌酸锂、钽酸锂晶体研究,压电与声光,26(2)(2004)126-128.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700