同成分、近化学计量比铌酸锂晶体生长、性质及应用探索
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铌酸锂(LN)是一种重要的多功能晶体,具有优良的压电性能、非线性光学性能、电光及光折变性能等。能用提拉法生长出大尺寸晶体,而且易加工。因此,铌酸锂晶体是一种广泛应用重要功能材料。
     LN晶体是一种典型的非化学计量比晶体。一般条件下采用提拉法生长的同成分铌酸锂晶体(CLN)是在固液同成分配比([Li]/[Nb]=48.6/51.4)熔体中生长的,Li离子的缺失造成晶体中存在大量的空位缺陷,使LN晶体的许多物理性能受到很大影响。人们十分希望长出低缺陷浓度的近化学计量比铌酸锂(NSLN)晶体。与传统的同成分铌酸锂晶体相比,NSLN晶体中缺陷明显减少,许多重要的功能性质都要优于同成分铌酸锂晶体。然而,对于一般应用来说,CLN晶体已可满足要求,故目前广泛生长和使用的铌酸锂晶体大多为CLN晶体,按质量和用途区别,可以分为声学级和光学级铌酸锂晶体。声学级的铌酸锂晶体的生长和应用技术已经十分成熟,光学级及掺杂同成分铌酸锂晶体在实际应用中还存在一些问题,如组分均匀性,光学均匀性等。本论文对近化学计量比铌酸锂晶体及其掺杂晶体的生长、结构、缺陷及性质进行了系统的研究。同时探讨了光学级及掺杂同成分铌酸锂晶体在电光方面的应用。本论文的主要研究工作与LN晶体的生产和应用单位结合,具有重要的理论和应用价值。
     本论文的主要研究内容包括:
     一、湿化学法合成铌酸锂粉体:针对掺杂元素的不均匀和加料的需求,采用湿化学法合成了铌酸锂及掺杂铌酸锂粉体,合成的铌酸锂粉末具有较低的熔点,在用于双坩埚连续加料方面有重要的前景。
     二、晶体生长:在总结现在国际上生长化学计量比铌酸锂晶体的几种主要方法的基础上,采用大坩埚生长小晶体和连续加料法利用自行研制的悬挂坩埚连续加料系统从富锂熔体中生长出了较高质量的近化学计量比铌酸锂晶体。
     从晶体生长热力学和动力学的观点出发,系统讨论了在生长过程中影响晶体生长和晶体质量的主要因素。认为合理的温场,优质籽晶,合适工艺参数和控制锂从熔体的挥发是生长高质量晶体的前提条件。
     三、晶体的组分:铌酸锂晶体的[Li]/[Nb]比对晶体的性质有很大影响,大尺寸铌酸锂晶体组分的均匀性对铌酸锂晶体的产业化生产及其应用尤其重要,为此我们通过紫外吸收光谱,OH~-吸收谱,对铌酸锂晶体的组分及其均匀性进行了详细的分析。认为造成组分分布不匀的主要原因是由于Li元素的挥发。初步表征了Mg:NSLN晶体的组分,沿生长方向Mg:NSLN晶体的紫外吸收边没有变化,并详细分析了其中的原因。
     测定了晶体的红外吸收谱,发现在NSLN晶体红外吸收谱中存在3466 cm~(-1)处的尖吸收峰和3478 cm~(-1)处的伴峰。Mg:NSLN和Mg(6mol%):CLN晶体的OH~-红外吸收峰均位于3534 cm~(-1)左右,说明晶体中Mg~(2+)离子已经进入正常Nb位,可以初步判断所生长的掺镁晶体的掺镁量达到抗光损伤阈值的浓度。
     四、晶体的结构研究:采用高温X射线粉末衍射法研究了晶体结构随温度的变化。发现在温度1073 K以上沿z轴出现收缩现象。结合高温拉曼研究,研究了晶体E(TO_1)和A1(TO_1)模随温度的变化,从NbO_6结构分析铌酸锂晶体出现的反常现象。
     五、晶体的缺陷研究:采用同步辐射白光貌相术,结合光学显微术和其他分析技术,对铌酸锂晶体的面缺陷(孪晶)、线缺陷(位错)、体缺陷(包裹体)等进行了观测和研究,探讨缺陷的形成机制,为生长优质晶体提供了依据。并通过高能X射线研究了大尺寸晶体的质量。
     六、铌酸锂晶体的畴结构:采用化学腐蚀法对铌酸锂晶体的畴结构进行了研究,发现我们生长的NSLN晶体并没有完全单畴化,在少数区域有反转畴的存在。铌酸锂晶体的单畴化程度依赖晶体的组分。Mg:NSLN晶体中发现区域性畴结构。在Mg:CLN晶体中观察到同心环状结构,对不同位置进行了OH~-红外光谱放入研究,发现掺镁对畴的形成有一定影响。Mg~(2+)离子的极化对Mg:NSLN晶体的畴结构有一定影响。
     七、铌酸锂晶体的热学性质:包括晶体的熔点、居里点、热膨胀、比热、热扩散系数及热导率等热学性质,并根据晶体热学性质,结合晶体的结构的特点,分析了热学性能对晶体生长和光学应用的影响。
     八、晶体的基本物理性质及应用探索:测量了铌酸锂晶体的吸收、透过以及折射率,通过NSLN晶体电滞回线测得了晶体的矫顽场。利用本论文生长的晶体,制备了周期极化LN晶体。根据电光Q开关应用对铌酸锂晶体的要求,探索铌酸锂晶体生长、组分、均匀性与电光应用的关系,测试了铌酸锂晶体的动态消光比、半波电压、吸收边以及微量元素的分析,指出组分均匀光学质量好的CLN晶体可以满足电光Q开关的应用要求。但是有不同来源的光学级CLN晶体不能完全符合使用要求,在实验基础上指出了这些铌酸锂晶体存在的问题。并提出相应的解决方案。为了提高LN晶片制备器件的成品率和光刻精度,我们对CLN晶片在还原气氛下进行了还原处理。
Lithium niobate(LN) is an important multi-functional crystal,possessing good piezo-electric,nonlinear-optic,electro-optic and photorefractive properties.Lithium Niobate have been widely grown mainly by Czochralski method,and it is easy to be cut and polished for the fabrication of desired elements due to its excellent mechanical property.Based on the above merits,lithium niobate has been widely used in various areas and is still a promising crystal for new applications.
     Lithium niobate is a typical non-stoichiometry crystal.The deficiency of lithium ion in the crystal induced a number of vacancies reduction of some important function properties.Stoichiometric lithium niobate crystal(SLN) with low vacancy density has been grown and attracted many attentions recent years.Compared NSLN crystal with CLN crystal,the defect density of SLN crystal decreases obviously.In the meantime, many functional properties of SLN are better than those of CLN.The CLN crystal is widely used to fabricate the acoustic devices and called to be acoustic grade LN crystal. And those used to fabricate optics elements are called optical grade LN crystal.The application of acoustics grade LN crystal is very succeed,however,the applications of optical grade and doped CLN crystal has encountered some problems due to its component and refractive index homogeneous.In this thesis,we focused our attention to the crystal growth,determination of composition,observation of defects and basic properties of NSLN crystals.And we investigated the CLN and doped crystals for fabrication of electro-optic Q-switch.The main content of this thesis is described as follows:
     1.The synthesis of LiNbO_3 nanopowders through a wet chemical route:
     In order to reduce doped elementary inhomogeneity,undoped and doped LiNbO_3 powder have been successfully prepared by using commercial Nb(OH)_5 and nontoxic DL-Malic Acid as raw materials at relatively low temperatures through a wet chemical route.The powder prepared is suitable to be used as feeding powder in the double crucible technique growth of NSLN crystals due to its low melting point.
     2.Crystal growth:
     On the understanding of crystal growth methods of NSLN in this field,we adopted CZ technology to use a large crucible to grow a small SLN crystal.A modified suspend quazi double-crucible technology with continuous powder feeding system was designed so as to keep a composition homogeneity in grown crystal.By this technology,NSLN crystals with high optical quality were successfully grown from a rich lithium melt.
     The factors that determine quality of a crystal during the growth were analyzed,on the basis of thermodynamics and dynamics theories of crystal growth.In our understanding,the optimal thermal field,high quality seed,the optimal parameters and controlling lithium volatilization from the melt surface are the prerequisite for the crystal growth with high perfection.
     3.Crystal components:
     The ratio value of[Li]/[Nb]in LiNbO_3 crystal have great influence on crystal quality,And the components homogeneity of the large size LN crystal is very important in industrialization production.Therefore,components the analysis of crystal components is necessary.Here,crystals compositions were assessed by measuring the UV absorption edge and OH~- absorption.The reason of components inhomogeneity is volatilization of Li_2O.The absorption edge wavelength of Mg:SLN crystal have not obviously changed along Z axis,and the reason is discussed.
     The OH~- infrared absorption peak for NSLN crystal was located at 3466 cm~(-1) with a shoulder peak at the high wavenumber side.The absorption peak for Mg:SLN (2mol%) and Mg:CLN(6 mol%) crystal were located at 3534 cm~(-1),which indicated indirectly that the Mg~(2+) began to enter the Nb site as the substitiution of Nb~(5+).MgO doping concentration in the as-grown crystal has exceeded optical damage resistance threshold concentration.
     4.Crystal structures and defects
     High temperature X-ray diffraction,thermal expansion and Raman scattering measurements have been conducted to investigate the structural behavior of a nearly stoichiometric LiNbO_3.Abnormal expansion is observed within the temperature range of 1021 K to 1373 K.This abnormal behavior was discussed from E(TO1) and A1(TO1) modes Raman shifts at different temperature.
     5.Crystal defects:
     Defects of LN crystals have been observed by white-beam synchrotron radiation topography(WBSRT) technique,the chemical etching method and optical microscopy. The main defects in LN crystals were twins,inclusions and dislocations.Based on the observations of growth defects in LN crystals,the formation mechanisms of these defects were discussed.In order to avoid or decrease these defects,we take some corresponding steps according to the above discussions.The perfection of the crystal was assessed by high-energy X-ray diffraction.It could be helpful for the high quality LN single crystal growth.
     6.Crystal domain structure:
     Domain structure has also been observed by chemical etching method in acid solution of HF and HNO_3.The results showed that NSLN crystal possessed an incomplete single domain structure.The regional single domain structure and ring domain structure were found in Mg:NSLN crystal.Crystal components and polarization of Mg ion have an effect on the domain structure.
     7.Crystal thermal properties:
     The investigation of thermal properties including melt point,T_c,specific heat, thermal expansion coefficient,density changing along the temperature,thermal diffusion coefficient and thermal conductivity.The influence of these properties on growth and applications were also discussed.
     8.Basic physical properties:
     The transmission and absorption properties of NSLN crystals were studied.The refractive indices and optical homogeneity of LN crystals were measured.The ferroelectric hysteresis was obtained and the polarization mechanism was also discussed.At present,many of CLN crystal can only work stably at room temperature and light power laser.In order to suit the width temperature range high stable Q switch, we have analyzed the extinction ratio,half wave voltage,UV absorption edge and trace element of LN crystals.We reduced CLN slice to eliminate the pyroelectric discharge in SAW device manufacture.
引文
[1]马如璋,蒋民华,徐祖雄,功能材料学,冶金工业出版社,[M],1999年,323.
    [2]W.H.Zachariasen,Ski.Norske Vid.Ada.,Oslo,Mat.Naturv.[J].1928,8:150-155.
    [3]B.T.Matthias and J.P.Remeika,Ferroelectricity in the ilmenite structure[J].Phys.Rev.1949,76:1886-1889.
    [4]J.G.Bergman,A.A.skin,A.Ballman.et al.Appl Phys Lett[J].1968,12:92-94.
    [5]A.A.Ballman,et al.Growth of piezoelectric and ferroelectric materials by the Czochralski technique.J.Am.Ceram.Soc.[J].1965,48:112-116.
    [6]J.R.Carruthers,G.E.Perterson,M.Grasso,et al.J.Appl.Phys.[J].1971,(42):1846-1849.
    [7]黄庆捷,K_2O助熔剂提拉法生长近化学计量比铌酸锂晶体研究,山东大学硕士学位论文[M],(指导老师:王继扬教授)
    [8]Ammrauber.Chapter 4.Chemistry and Physics of Lithium Niobate,In Currebt Topics in Materials Science(Edited by E.Kaldis),1978,1:481 North-Holland,Amsterdam.
    [9]Bermudez V,Dutta P S,Serrano M D,et al.On the Single Domain Nature of Stoichiometric LiNbO_3 Grown from Melts Containing K_2O.Appl Phys.Lett.[J].1997,70(6):729.
    [10]Kitamura K,Yamamoto J K,Iyi N,Kimura S.Stichiometric LiNbO_3 single crystal growth by double crucible Czochralski method using automatic powder supply system.J.Crystal.Growth,[J].1992,116:327-332.
    [11]L.O.SVAASAND,M.ERIKSRUD,A.P.GRANDE and F.MO,Crystal Growth and Properties of LiNb_3O_8,J.Crystal Growth[J].1973,18:179-184.
    [12]P.Lerner,C.Legras and J.P.Dumas,J.Crystal Growth[J].1968,3/4:231.
    [13]Malovichko G I,Grachev V G;Yurchenko L P,et al.Improvement of LiNbO_3 Microstructure by Crystal Growth with Potassium. Phys. Stat. Sol., (a) [J].1992,133:K29.
    [14] Malovichko G I,Grachev V G,Yurchenko L P,et al. Characterization of Stoichiometric LiNbO_3 Grown from Melts Containing K_2O. Appl. Phys. A, [J].1998,56:103.
    [15] Malovichko G, Cerclier O, Estienne J, et al. Lattice Constants of K-and Mg-Doped LiNbO_3 Comparison with Nonstoichiometric Lithium Niobate. J.Appl. Chem. Solida, [J]. 1995, 56(9): 1285.
    [16] Luh Y S, Fejer M M, Byer R L, Felgelson R S, J. Crystal Growth, [J]. 1987, 85:264.
    [17] Jundt D H, Fejer M M, Byer R L, Optical Properties of Lithium-rich Lithium Niobate Fabricated by Vapor Transport Equilibration. IEEE. J. Quantum Electron, [J]. 1990,26(1): 135.
    [18] Bordui P F, Norwood R G, Jundt D H, Fejer M M. J. Appl. Phys. [J].1992, 71:875.
    [19] Gopalan V, Mitchell T E, Furukawa Y, et al. The Role of Nonstoichiometry in 180° Domain Switching of LiNbO_3 Crystals. Appl. Phys. Lett. [J]. 1998,72(16):1981.
    [20] Abdi F, Aillerie M, Bourson P, et al. Electro-optic Properties in Pure LiNbO_3 Crystals from the Congruent to the Stoichiometric Composition, J. Appl. Phys.,[J]. 1998, 84(4): 2251.
    [21] Jermann F, Sinmon M, Kratzig E. Photorefractive Properties of Congruent and Stoichiometric Lithium Niobate at High Light Intensities. J. Opt. Soc. Am. B,[J]. 1995, 12(11): 2066.
    [22] Kitamura K, Furukawa Y,Ji Y,et al. Photorefractive Effect in LiNbO_3 Crystals Enhanced by Stoichiometry Contorl. J.Appl.Phys. [J]. 1997, 82(3): 1006-1009.
    [23] Guerther H, Macfarlane R,Furukawa Y,et al. Two-color Holography in Reduced Near- Stoichiometric Lithium Niobate. Appl.Opt. [J]. 1998, 37(32): 7611.
    [24]仲跻国,徐观峰,物理学报,[J].高掺镁铌酸锂晶体的生长和倍频性能,1983,32(6):795-798.
    [25]Yongfa Kong,Jinke Wen,and Huafu Wang,New doped lithium niobate crystal with high resistance to photorefraction-LiNbO_3:In,1995,66(3):280-281.
    [26]G.Zhang and Y.Tomita,Broadband absorption changes and sensitization of near-infrared photorefractivity induced by ultraviolet light in LiNbO_3:Mg,J.Appl.Phys.[J].2002,(91):4177-4180.
    [27]G.Zhang and Y.Tomita,Ultraviolet-light-induced nearinfrared photorefractivity and two-color holography in highly Mg-doped LiNbO_3,J.Appl.Phys.[J].2003,(93):9456-9459.
    [28]Y.Tomita,S.Sunamo and G.Zhang,Ultraviolet-light-gating two-color photorefractive effect in Mg doped near-stoichiometric LiNbO_3,J.Opt.Soc.Am.B.2004,21:753-760.
    [29]E.P.Kokanyan,L.Razzari,I.Cristiani,V.Degiorgio,and J.B.Gruber,Reduced photorefraction in hafnium-doped single-domain and periodically poled lithium niobate crystals,Appl.Phys.Lett.2004,84,1880-1882.
    [30]Luca Razzari,Paolo Minzioni,Ilaria Cristiani,Vittorio Degiorgio,and Edvard P.Kokanyan,Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,Appl.Phys.Lett.,2005(86):131914-131917.
    [31]L Sun,F Guo,Q Lv,H Li,W Cai,Y Xu,L Zhao,Defect structure and photorefractive properties of In:Eu:Fe:LiNbO_3 Crystals with various Li/Nb ratios,Journal of Crystal Growth.2007,307(2):421-426.
    [32]Vadim Dobrusin,Shlomo Ruschin and Larisa Shpisman,Fabrication method of low-loss large single mode ridge Ti:LiNbO_3 waveguides,2007,29(12):1630-1634.
    [33]肖定全,王民,晶体物理学,[M].P232.
    [34]B.C.Grabnaier,F.Otto.J.Crystal Growth,1986,79:682.
    [35]D.Feng,N.B.Ming,J.F.Hong et al.Appl Phys Lett.1980,37:607.
    [36]Ya-lin Lu,Lun Mao,and Shi-de Cheng.Appl.Phys.Lett.1991,59(5):29.
    [37]Shi ning Zhu,Yong yuan Zhu,Zhen ju Yang,Hal feng Wang,Zhi yong Zhang.Appl.Phys.Lett.1995,67(3):17.
    [38]董孝义,王维导,电光学及其应用[J],物理,1993,22(1),22.
    [39]倪新蕾,电光调制及其应用,[J].中山大学学报论丛,2002,22(1):34-36.
    [40]U.vnastevendaal,K.Buse,H.Malz,H.Veehnuis,[J].J.Opt.Soc.1998,15(12):2868-2876.
    [41]孟繁华,曲阜师范大学硕士论文,指导老师:宋连科教授,P3-4.
    [42]吕衍秋,山东大学硕士论文,指导老师:袁多荣教授.
    [43]孔勇发,许京军,张光寅,刘思敏,多功能光电材料-铌酸锂晶体,[M].P300.
    [1]F.Abdi,M.Aillerie,P.Bourson,M.D.Fontana,K.Polgar,J.Appl.Phys.84(1998) 2251-2254.
    [2]Y.Furukawa,K.Kitamura,K.Niwa,H.Hatano,Opt.Lett.23(1998) 1892.
    [3]Wu.J.B,Yao.S.H,Wang,J.Y,Hong.L,硅酸盐学报,38(2008) 35-38
    [4]Emerson R.Camargo and Masato Kakihana,Chem.Mater.13(2001)1905-1909.
    [5]Nadine,P.C.;Duboin,F.;Ravez,J.J.Mater.Res.1999,3,557.
    [6]Yanovskaya,M.L.Turevskaya,E.P.Leonov,A.P.Ivanov,S.A.Kolganova,N.V.Stefanovich,S.Y.U.Turova,N.Y.A.;Venevtsev,Y.U.N.J.Mater.Sci.1998,23,395.
    [7]李铭华,杨春晖,徐玉恒,光折变晶体材料科学导论,北京,科学出版社,2003,P128-184.
    [8]罗超,大连理工大学硕士学位论文,指导老师:薛冬峰教授.
    [9]尹冬冬,主编,有机化学,高等教育出版社
    [10][美]J.A.迪安 主编,兰氏化学手册,科学出版社
    [11]E.Ruzdic,N.Bmicevic,Inorg.Chim.Acta 88(1984) 99.
    [12]K.Nakamoto,Infrared and Raman Spectra of Inorganic and Coordination Compounds,Part B:Applications in Coordination,Organometallic and Bioinorganic Chemistry,5th ed.,Wiley,New York,1997.
    [13]J.M.Jehng,I.E.Wachs,Chem.Mater.3(1991) 100.
    [14]Nakamoto,Infrared,Raman Spectra of Inorganic and coordination compounds,Beijing Chemical industry press,1986,p.337-338.
    [15]中奉一雄著,黄德如、汪仁庆译.无机和配位化舍物的虹卟和扛曼光谱(第一版).北京:化学工业出版社,P231-244。
    [16]陈吉书,罗裕基,梅宁毅。羟基羧酸钛(Ⅲ)配合物的合成和热性质研究。无 饥化学学报,13(1997)16-20.
    [17]S.H.Yao,X.B.Hu,J.Y.Wang,and H.Liu,Cryst.Res.Tech.42,114(2007).
    [18]N.Iyi,K.Kitamura,F.Izumi,J.K.Yamamoto,T.Hayashi,H.Asano,and S.Kimura,J.Sol.State Chem.101,340(1992).
    [19]王中林,曹茂盛,李金刚,纳米材料表征,北京,化学工业出版社,200
    [20]T.Tsukada,M.Hozawa and N.Imaishi:Global Analysis of Heat Transfer in CZ Crystal Growth of Oxide.J.Chem.Eng.Japan 27(1994) 25-29.
    [1]吕孟凯 著,固态化学,山东大学出版社,1996,P15
    [2]L.O.SVAASAND,M.ERIKSRUD,A.P.GRANDE and F.MO,Crystal Growth and Properties of LiNb3O8,J.Crystal Growth 18(1973) 179-184.
    [3]黄庆捷,王继扬.近化学计量比铌酸锂晶体组分测定与缺陷观察[J].人工晶体学报,2006,35(4):677-681.
    [4]Malovichko G I,Grachev V G,Yurchenko L P,et al.Improvement of LiNbO3Microstructure by Crystal Growth with Potassium.Phys.Stat.Sol.,(a),1992,133:K29.
    [5]Malovichko G I,Grachev V G,Yurchenko L P,et al.Characterization of Stoichiometric LiNbO_3 Grown from Melts Containing K_2O.Appl.Phys.,A1998,56:103-107.
    [6]Malovichko G,Cerclier O,Estienne J,et al.Lattice Constants of K-and Mg-Doped LiNbO_3 Comparison with Nonstoichiometric Lithium Niobate.J.Appl.Chem.Solida,1995,56(9):1285.
    [7]徐家跃,路宝亮..近化学计量比铌酸锂晶体的研究进展,[J].人工晶体学报,2003,32:626-630.
    [8]Jundt D H,Fejer M M,Byer R L,Optical Properties of Lithium-rich Lithium Niobate Fabricated by Vapor Transport Equilibration.IEEE.J.Quantum Electron,1990,26(1):135.
    [9]Bordui P F,Norwood R G,Jundt D H,Fejer M M.J.Appl.Phys.,1992(71):875.
    [10]Kitamura K,Yamamoto J K,IYI N,et al.Stichiometric LiNbO_3 single crystal growth by double crucible Czochralski method using automatic powder supply system[J].J Cryst Growth,1992,116:327-332.
    [11]吴剑波,姚淑华,秦小勇,高磊,刘宏,王继扬 硅酸盐学报36(2008)35-38.
    [12]高磊,近化学计量比铌酸锂晶体生长与性质研究[M]山东大学博士学位 论文(指导老师:王继扬教授).
    [13]王增梅,LGS构型系列晶体的生长及性能研究[M]山东大学博士学位论文(指导老师:袁多荣教授)
    [14]闵乃本,晶体生长的物理基础,[M],上海,上海科学出版社,1982:15.
    [15]张克从等,晶体生长科学与技术,科学出版社,1997.
    [16]Z.Galazka.J.Cryst Growth.178(1997)345.
    [17]M.W(o|¨)hlecke,G.Corradi,and K.Betzler,Optical methods to characterize the composition and homogeneity of lithium niobate single crystals.Appl.Phys.B 63(1996) 323-330.
    [18]闵乃本,晶体生长的物理基础 上海科学技术出版社 1982年5月第1版441-450.
    [19]洪静芬,朱永元,铌酸锂晶体小面生长动力学的实验研究.南京大学学报.1995,31(2):237-241.
    [20]K.Polgar,A.Peter,L.Kovacs,G.Corradi,Z.Szaller.J.Crystal Growth.177(1997)211
    [21]A.M.Prokhorov,Y.S.Kuzminov,Physics and Chemistry of Crystaline Lithium Niobate.Bristol and New york:Adam Hilger,1990
    [22]F.Ridah,M.Aillerie,P.Bourson et al.J Appl Phys,81(1998)2251
    [23]Svaasand L O,Eriksrud M,Nakken G,Grande A P.J.Crystal Growth,1974,22:230.
    [24]徐家跃,路宝亮,近化学计量比铌酸锂晶体的研究进展,人工晶体学报,2003,32.626-630.
    [25]蔡峰怡等编著,《光学》[M],国防工业出版社.
    [26]姚淑华 近化学计量比铌酸锂晶体生长与性质研究[M]山东大学硕士学位论文(指导老师:胡小波教授)
    [27]Tao Zhang,Biao Wang,Fu-Ri Ling,Shuang-Quan Fang,Yu-Heng Xu,Growth and optical property of Mg,Fe co-doped near-stoichiometric LiNbO_3 crystal Materials Chemistry and Physics,2004,83:350-353.
    [28]X.H.Zhen,L.C.Zhao,and Y.H.Xu,Defect structure and optical damage resistance of Zn:Fe:LiNbO_3 crystals.Appl.Phys.B 76,655(2003).
    [29]李铭华等编著,《光折变晶体材料导论》[M],科学出版社.
    [30]R.Gonzfilez,E.R.Hodgson,C.Ballesteros,Y.Chen:Phys.Rev.Lett.15,2057(1991)
    [31]R G Smith,D B Fraser,R T Denton et al.Correlation of Reduction in Optically Induced Refractive-Index Index Inhomogeneity with OH Content in LiTaO_3 and LiNbO_3.J.Appl.Phys,1968,39:4600-4602.
    [32]L.Kovfics,V.Szalay,R.Capelletti,Solid State Commun.1984,52:1029.
    [33]A Bryan,R Gerson,H E Tomaschke.Increased optical damage redistance in lithium niobate.Appl Phys Lett,1984,44:847-849.
    [34]T R Tan,YX Ma,QB Zhu et al.J.Crystal Growth,1994,19:933.
    [35]Furukawa Y,Kitamura K,Takekawa S,et al.The correlation of MgO-doped near-stoichiometric LiNbO_3 composition to the defect structure.J Crystal Growth,211(2000):230-236.
    [36]L Kovacs,V Szalay,R Capelletti.Solid State Commun,1984,52:1029.
    [37]D.L.Sun.et al,Growth of near-stoichiometric LiNbO_3 crystals and Li_2O contents determination.Cryst.Res.Technol.2004,39:511-515.
    [38]Niwa K,Furukawa Y,Takekawa S,et al.Growth and characterization of MgO doped near stoichiometric LiNbO_3 crystals as a new nonlinear optical material.J Crystal Growth,2000,208:493-500.
    [1]张克从 近代晶体学基础 上册 科学出版社 1987年 181页
    [2]姚连增,晶体生长基础,中国科学技术出版社,1995
    [3]张克从,张乐惠,晶体生长科学基础 科学出版社 1997年
    [4]J.H.Jr.Crawford,L.M.Slifkin.Point Defects in Solid,New York,Plenum Press,1972
    [5]E.K.伐因斯坦 著 吴自勤译 中国科学技术大学出版社 1992
    [6]A.Reisman,F.Holtzberg.J Am Chem Soc,80(1958) 6503.
    [7]A.Reisman,F.Holtzberg.J Am Chem Soc,80(1958) 35.
    [8]R.S.Weis and T.K.Gaylord.Lithium niobate:summary of physical properties and crystal structure,Appl.Phys.A 37(1985) 191-203,
    [9]B.D.Cullity.Ellements of X-ray Dffraction.Addision-Wesley,Reading,MA 1978,504.
    [10]S.C.Abrahams,J.M.Reddy.J Chem Phys Solids.27(1966)997.
    [11]S.C.Abrahams,W C Hamilton,J M Reddy.J Chem Phys Solids.27(1966)1019.
    [12]A M Prokhorov,Yu S Kuz'minov.Physics and chemistry of crystalline lithium niobate.IOP Publishing Ltd,Adam Hilger.
    [13]N.Iyi,K.Kitamura,F.Izumif,JK Yamamoto,T.Hayashi,H.Asano and S.Kimura,Comparative-study of defect structures in Lithium-Niobate with different compositions,J.Solid State chem.101(1992) 340.
    [14]R.F.Schaufele,M.J.Weber.Phys.Rev.152(1966)705.
    [15]A.S.Berker,R.Loudon.Phys.Rev.158(1967)433.
    [16]I.P.Kaminov,W.D.Johnston.Phys Rev.160(1967)519.
    [17]X.Yang,G.Lan,B.Li et al.Phys Stat Sol(B),141(1987)287.
    [18]R.F.Schaufele and M.J.Weber,"Raman scattering by Lithium Niobate",Phys.Rev.152(1966) 705.
    [19]G.Malovichko,V.G.Grache,L.P.Yurchenko,V.Ya.Proshko,E.P.Kokanyan and V.T.Gabrielyan,Improvement of LiNbO_3 microstructure by crystal-growth with potassium,Phys.Status Solidi.A,Appl.Res.133(1992) K29.
    [20]A.Ridah,P.Bourson,M.D.Fontana and G.Malovichko,"The composition dependence of the Raman spectrum and new assignment of the phonons in LiNbO_3",J.Phys.Condens.Matter 9(1997) 9687.
    [21]I.P.Kaminow and W.D.Johnston,Quantitative determination of sources of electro-optic effect in LiNbO_3 and LiTaO_3,Phys.Rev.160(1967) 519.
    [22]A.S.Barker and R.Loudon,Dielectric properties and optical phonons in LiNbO_3,Phys.Rev.158(2967) 433.
    [23]R.Claus,G.Borstel,L.Steffan and E.Wiesenda,Directional dispersion and assignment of optical phonons in LiNbO_3,Zeitschrift fur Naturforschung.A,Astrophysik,Physik und Physikalische Chemie 27(a)(1972) 1187.
    [24]V.Caciuc,A.V.Postnikov,and G.Borstel Ab initio structure and zone-center phonons in LiNbO_3,PHYSICAL REVIEW B.2000,61:8006.
    [25]Y.Repelin,E.Husson,F.Bennani and C.Proust,Raman spectroscopy of lithium niobate and lithium antalite.Force field calculations,J.Phys.Chem.Solids 60(1999) 819.
    [26]M.Veithen and Ph.Ghosez,First-principles study of the dielectric and dynamical properties of lithium niobate,Phys.Rev.B 65(2002) 214302.
    [27]V.Caciuc,A.V.Postnikov and G.Borstel,Ab initio structure and zone-center phonons in LiNbO_3,Phys.Rev.B 61(2000)8806.
    [28]K.Parlinski,Z.Q.Li and Y.Kawazoe,Ab initio calculations of phonons in LiNbO_3,Phys.Rev.B 61(2000) 272.
    [29]I.Noiret,J.Lefebvre,J.Schamps,F.Delattre,A.Brenier and M.Ferriol,Newstructural transformations in congruent ferroelectric LiNbO_3 fibres evidenced by 103Raman spectroscopy,J.Phys.:Condens.Matter,12(2000) 2305.
    [30]陈智勇,雷射加热提拉生长法生长不同配比铌酸锂晶体与性质之量测 指导教师,陈志臣 教授,国立中央大学博士论文
    [31]汪进,掺镁铌酸锂晶体结构的研究[J].物理学报,1999,48(6).
    [32]R Mouras,P B,et al.Raman Spectroscopy as a Probe of the Rare2earth Ions Location in LiNbO_3 Crystal[J].Optics Communication,2001,197:4392444.
    [33]R Mouras,M D F,et al.Lattice Site of Mg Ion in LiNbO3 Crystal Determined by Raman Spectroscopy[J].Journal of Physics:Condensed Matter,2000,12:505325059.
    [34]刘思敏,张光寅.LiNbO_3:MgO晶体的喇曼光谱研究[J].物理学报,1983,32(1).
    [35]李德敏.钽铌酸锂单晶的拉曼光谱分析[J].哈尔滨理工大学学报,2000,5(2):44246.
    [36]仇怀利,王爱华,尤静林,殷绍唐,铌酸锂晶体高温拉曼光谱研究,人工晶体学报,2004,33,177-179.
    [37]R.Mouras,P.Bourson,M.D.Fontana,G.Boulon,Optics Communications 197(2001) 439-444
    [38]R.Mouras,P.Bourson,M.D.Fontana,A.V.Postnikov,J.Phys.Condens.Matter 12(2000) 5053-5059.
    [40]张克从,张乐惠 主编,《晶体生长科学与技术》(下册)[M],科学出版社,第二版.
    [41]胡小波,博士后研究工作报告,山东大学,1999.
    [42]许顺生,冯端,X射线衍射衬貌相学,科学出版社,1988.
    [43]R.L.Byer,J.F.Young,R.S.Feigelson.J.Appl.Phys.41(1970) 2320.
    [44]李铭华等编著,《光折变晶体材料导论》[M],科学出版社
    [45]H Fay,W J Alford,H M Dess.Appl Phys Lett,1968(12):69.
    [46]N Iyi,K kitamura,F Izumi et al.J Solid State Chem,1992(43):336.
    [47]G E Peterson,A Camevale.J Chem Phys,1972(56):4848.
    [48]P Lerner,C Legras,J P Dumas.J Crystal Growth,1968(3):231.
    [49]陈小明,单晶结构分析与实践,第二版136页
    [50]吴剑波,姚淑华,王继扬,刘宏.硅酸盐学报,36,(2008)35-38.
    [51]Huang,X.,Jiang S.,Zeng,W.,Hu,X.and Liu,W.(1995).Appl.Phys.Lett.66, 2649-2452.
    [52]Hu,Z.,Huang,P.& Jiang,S.(1993).J.Appl.Phys.74,7124-7128.
    [53]Hu,X.,Wang,J.,Jiang,S.(2001).J.Cryst.Growth,229,252-255.
    [54]Bong,M.(1997).J.Cryst.Growth,180,101-104.
    [55]Bong,M.,Kenji Kitamura,(1997).J.Am.Ceram.Soc.80,2689-2692.
    [56]宣晓峰,赵均,张学进,朱永元。人工晶体学报,34(2005)43-47.
    [57]BongMo.Park,Kitamura.K,Yasunori.Furukawa,et al.J.Am.Ceram.Soc.80(1997) 2689.
    [58]闵乃本.晶体生长的物理基础[M]上海:上海科学技术出版社,1981:453.
    [59]张克从,近代晶体学基础(下册),科学出版社,1998年 71页
    [60]M.Stockmeier and A.Magerl,A focusing Laue diffractometer for the investigation of bulk crystals,J.Appl.Cryst.(2008).41,754-760
    [61]C.Seitz,M.Weisser,M.Gomm,R.Hock and A.Magerl,A high-energy triple-axis X-ray diffractometer for the study of the structure of bulk crystals,J.Appl.Cryst.(2004).37,901-910.
    [62]肖定全,王民编著,《晶体物理学》[M],四川大学出版社,1989.
    [63]王海丽,化学计量比铌酸锂晶体和钽酸锂晶体的生长和性能研究[M],中国科学院上海光学精密机械研究所博士论文,(指导老师:徐军教授).
    [64]钟维烈 铁电体物理学,科学出版社,227页.
    [65]K.Nassau,H.J.Levinstein,G.M.Loiacomo.Appl Phys Lett 6(1965)228.
    [66]V.Bermu'dez,P.S.Dutta,M.D.Serrano,and E.Die'guez.Appl.Phys.Lett.70(1997) 730.
    [67]Y.L.Chen,J.J.Xu,X.Z.Zhang,Y.F.Kong,X.J.Chen,and G.Y.Zhang.Appl.Phys.A74(2002) 187.
    [68]Dongfeng Xue,Sixin Wu,Yingchun Zhu,Kazuya Terabe,Kenji Kitamura,Jiyang Wang.Chemical Physics Letters,377(2003) 475.
    [69]Y.S.Luh,R.S.Feigelson,M.M.Fejer,and R.L.Byer,J.Cryst.Growth 78(1986) 135.
    [70]Yanqing Zheng_,Haikuan Kong,Hui Chen,Jun Xin,Zhiping Lu,Erwei Shi Growth and ferroelectric domain control of homogeneous MgO-doped near-stoichiometric lithium niobate single crystals by melt-supplying technique Journal of Crystal Growth, 310 (2008) 1966-1970.
    [71] Y Zheng, E Shi, S Wang, Z Lu, S Cui, L Wang, Crystal Research and Technology, 39 (2004) 387-395.
    [72] Hai Li Wang, Yin Hang, Jun Xu, Lian-Han Zhang, Shi-Ning Zhu, Yong-Yuan Zhu, Near-stoichiometric LiNbO_3 crystal grown using the Czochralski method from Li-rich melt, Materials Letters 58 (2004) 3119-3121.
    [73] D.L.Sun. et al, Growth of near-stoichiometric LiNbO_3 crystals and Li_2O contents determination. Cryst. Res. Technol. 2004, 39: 511-515.
    [74] A Bryan, R Gerson,H E Tomaschke. Increased optical damage redistance in lithium niobate. Appl Phys Lett, 1984,44: 847-849.
    [1](美)T·佐尔泰,《矿物学原理》,1992.
    [2]李铭华,杨春晖 编著,《光折变材料科学导论》,科学出版社.
    [3]江怀东,几种硼酸盐、钒酸盐光学晶体的生长及性能研究[M],山东大学博士学位论文.(指导老师:王继扬教授)
    [4]葛文伟,钨酸钡拉曼激光晶体的生长及其性质研究[M],山东大学硕士学位论文(指导老师:张怀金教授).
    [5]关振铎,张中太,焦金生,无机材料物理性能,清华大学出版社,108-154.
    [6]R.Gonzfilez,E.R.Hodgson,C.Ballesteros,Y.Chen:Phys.Rev.Lett.15,2057(1991).
    [7]陈云琳,楼慈波,黄自恒,陈绍林,张玲,刘士国,低电场周期极化化学比掺镁铌酸锂绿光倍频器,发光学报,2003,23:253-256.
    [8]陈千颂,杨成伟,潘志文,激光与红外,32(1)(2002)7.
    [9]蒋民华,[M].晶体物理,济南:山东科学技术出版社,1980,P362,p348.
    [10]Y Kondo,T Kukuda,Y Yamashita.Jpn.Jappl.Phys.2000,39:1477.
    [11]Bordui P.F.,Jundt D.H.,Standifer E.M.,et al.Chemically reduced lithium niobate single crystals:Processing,properties and improved surface acoustic wave device fabrication and performance[J].Journal of Applied Physics,1999,85(7):3766-3769.
    [12]SHEN J.,ROMEK B.,Black lithium niobate SAW device fabrication and performance evaluation[C].USA:Proceedings of the IEEE Ultrasonics Symposlum,2000.1:269-273
    [13]夏宗仁,崔坤,徐家跃.弱热释电效应黑色铌酸锂、钽酸锂晶体研究[J].压电与声光.2004.26(2):126-128
    [14]方俊鑫,殷之文.电介质物理[M].北京:科学出版社,1998:110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700