石墨烯衍生物及其聚酰亚胺纳米复合膜的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯及其衍生物因其独特的蜂窝状二维结构,表现出优异的物理化学性能,如优异的力学性能、高的透光率、极大的比表面积和阻隔性等。这些优异的性质使石墨烯及其衍生物在多个领域具有广泛的应用前景,其中与聚合物复合制备高性能和多功能化复合材料是近年来一个重要的研究方向。氟化石墨烯和氧化石墨烯是受到最多关注的两种石墨烯衍生物。氟化石墨烯的低成本、高效率制备以及在聚合物纳米复合材料中的应用仍是一个有待深入研究的课题。而有关氧化石墨烯的基础研究、有机功能化以及应用等仍具有较大的研究空间。将石墨烯及其衍生物应用于高性能、多功能化聚酰亚胺(PI)复合膜制备是近几年来聚酰亚胺无机纳米改性的研究热点之一。本文基于以上研究背景,开展了氟化石墨烯和氧化石墨烯及其有机功能化的制备工作,同时将制备获得的石墨烯衍生物应用于聚酰亚胺纳米复合膜中,详细研究了PI复合膜的力学、耐热、介电和吸水性等性能。
     本文对氟化石墨烯的简便、低成本和高效制备方法进行了探索。以F/C比分别为0.6和1.08的氟化石墨(记作GIF-L、GIF-H)为原料,分别通过改进Hummers法和NaOH强碱溶液方法,制备了含氧氟化石墨,再以氧氟化石墨为前驱体,通过液相超声剥离过程制备了氧氟化石墨烯。相比强碱改性-剥离过程,氧化-剥离过程更易制备获得F/C比基本保持不变、易在有机溶剂中稳定分散且层数更少(1-5层)的氧氟化石墨烯。这是源于氧化-剥离过程能在GIF-L结构中更为有效地引入含氧基团,从而增大了氧氟化石墨烯与极性有机溶剂间强的界面作用。
     采用三种不同粒径的石墨为原料,通过氧化-剥离制备了氧化石墨烯(GO)。详细研究原料尺寸、超声条件(功率、时间和介质)等因素对GO横向尺寸大小及分布的影响。结果表明,在水和NMP介质中均可超声剥离制备GO,GO横向尺寸随超声功率、超声时间的增加以及原料粒径的减小而降低。在超声时间为60min时,不同原料制得的GO横向尺寸差别不大,平均横向长度都在1μm左右。
     将葵二酸和1,5-二-(4-胺基苯基)-1,4-戊二烯-3-酮(DAPD)作为有机修饰剂,对GO进行有机功能化,制备了两种功能化氧化石墨烯(记为MGO-1和MGO-2)。两种有机分子的成功引入,增加了其在有机溶剂中的溶解性。DAPD分子赋予了MGO-2良好的光敏性,紫外(UV)光辐照338s时,DAPD分子间的α,β-不饱和酮结构中C=C键的[2+2]光环化反应程度达到平衡,约为41%。
     探索了氧氟化石墨烯(GFO)和功能化氧化石墨烯(MGO-1)分别改性聚酰亚胺复合膜。以4,4’-二氨基二苯醚(ODA)和均苯四甲酸酐(PMDA)为单体,采用原位聚合法分别制备了聚酰亚胺/氧氟化石墨烯(PI/GFO)和聚酰亚胺/功能化氧化石墨烯(PI/MGO)复合膜。研究表明,在改性石墨烯较低含量(≤2wt%)时,可以均匀分散于PI基体中,且与PI链间存在较强的界面作用(包括氢键和共价键),因而有效改善了PI复合膜的力学、玻璃化转变温度、吸水性等综合性能。改性石墨烯含量的增加会导致其发生团聚以及与PI间界面作用下降,因而复合膜综合性能下降。两种复合膜在介电性能和热膨性能上存在较大差异,低极化率、易受热运动的C-F键的存在致使PI/GFO复合膜的介电常数下降(低GFO含量时),但线膨胀系数(CTE)升高;而MGO-1自身较多的极性基团、热亚胺化过程造成的MGO-1发生部分还原和团聚,以及MGO-1对PI分子链的热运动的限制作用等因素,使PI/MGO复合膜的介电常数升高、CTE降低。
For the unique2D-dimensional honeycomb structure, graphene and itsderivatives exhibits excellent physical and chemical properties, such as excellentmechanical properties, high transmittance, huge specific surface area and barrierproperties, etc. These excellent properties make graphene and its derivatives have awide range of applications in many fields, and the usage of graphenen and itsderivatives in fabrication of polymer composites with high performance andmulti-function is one of the important researches in recent years. Graphene fluorideand graphene oxide are the most concerned grahene derivatives. However, preparationof graphene fluoride by a low cost and high efficiency method, and the application ofgraphene fluoride in polymer nanocomposites are needed further study. Furthermore,the basic research, organic functionalization and application researches on thegraphene oxide still have a large research space. On the field of the modifiedpolyimide by nano-inorganic materials, the application of graphene and its derivativeshas become a research hotspot. Based on the above research background, we carriedout some research work, including preparation of graphene fluoride, graphene oxideand its organic functional products. Meantime, the graphene derivatives above wereused in preparation of polyimide nanocomposite films, and the properties of polymercomposites, including mechanical properties, thermal stability, dielectric propertiesand water absorption rate, were studied in details.
     In this paper, we had explored the simple, low cost and efficient methods topreparation graphene fluoride. The graphite fluoride with the F/C atomic ratio of o.6and1.08was used as stating materials (denoted as GIF-L and GIF-H, respetively).The GIF-L and GIF-H were both firstly modified by improved Hummers methods andNaOH solution with high concentration, respectively, and then the correspondingproducts were liquid-phase exfoliation into graphene fluoroxide by ultrasonication.Compared to alkali modification–exfoliation process, the oxidation-exfoliationprocess offered more advantages in preparing graphene fluoride, because the later method could obtain graphene fluoride with F content ramainning, better dispersion inorganic solvents and fewer layers (layers1-5). This result is due to the more effectiveto introduce oxygen-containing groups in the GIF-L configuration by the oxidation-exfoliation process,which led to enhencing the interface interaction between modifiedgraphene fluoride and polar organic solvents.
     Graphene oxide was preparation through the processes of oxidization andexfoliation by using three particle sizes of graphite as the raw materials. The effects offactors on the lateral size and lateral size distribution of GO were studied in details,and the factors included the particle size of graphite, ultrasonication conditions(power, time and solvents). The results shown that the lateral size of GO decreasedwith increasing the ultrasonication power, time and decreasing the particle size of theraw materials, but when the ultrasonication time was up to60min, the average oflateral size of GO was similar and less than1μm. The changes of lateral size of GOobtained by ultrasonication in NMP was similar to in water, whereas, the yield of GOin NMP is smaller than in water.
     The sebacic acid and1,5-bis(4-aminophenyl)-1,4-pentadiene-3-ketone (DAPD)were used as organic modifiers, and two type of organic functional GO (MGO-1andMGO-2) were preparation by the reaction between the modifiers and GO. Introducingthe organic molecules onto the GO flakes lead to the increasing the solubility offunctional GO in organic solvents. The DAPD molecules endowed MGO-2a goodphotosensitivity. The [2+2] photocycloaddition reaction between the C=C from theα,β-unsaturated ketone structure in the DAPD occurred under the ultraviolet (UV)light irradiation, and when the irradiation time was338s, the equilibrium extent ofphotocycloaddition reached up to41%
     We had explored the effects of the fillers, modified graphene fluoride (GFO) andfunctional graphene oxide (MGO-1), on the properties of polyimide composite films.The polyimide/modified graphene fluoride (PI/GFO) and polyimide/functionalgraphene oxide (PI/MGO) composite films were preparation by in situpolymerization, in which the4,4’-diaminodiphenyl ether (ODA) and pyromelliticanhydride (PMDA) were used as monomers. The study demonstrated that the fillers could be uniformly dispersed in the PI matrix when the filler content was low (≤2wt%), and there existed strong interface interaction (hydrogen bonding and covalentbonding) between the filler and PI matrix.Therefore, the over performance includingmechanical properties, glass-transition temperature and water absorption of PIcomposite films were effectively improved. However, adding fillers content resultedin agglomeration of fillers and weakening the interface interaction between thefillers and matrix, and finally led to decreasing the overall performance of PIcomposite films. There were big differences in dielectric properties and thermalexpansion properties between these two types of PI composite films. The presence ofC-F bonds, which possess the properties of low polarizability and susceptible tothermal motion, caused reduction of dielectric constant (only for the low GFOcontent) but giving rise to the increasing line expansion coefficient (CTE) of thePI/GFO composite films. For PI/MGO composite films, because of being affected bythe following factors, the more polar groups existing in MGO-1structure, theagglomeration of partially reduction of MGO-1resulting from thethermalimidization and the limitation of MGO-1for the thermal motion of PI molecules, sothe dielectric constant and CTE of PI/MGO composite films obviously increased anddecreased, respectively.
引文
[1]Peierls R.E.. Bemerkungen über Umwandlungstemperaturen[J]. Helv. Phys. Acta1934,7:81-83
    [2] Landau L.D.. Zur Theorie der Phasenumwandilungen Ⅱ[J]. Phys. Z. Sowjetumion,1937,11:26-35
    [3]Lu X.K., Yu M.F., Huang H., et al. Tailoring grapgite with the goal of achieving single sheets.Nanotechnol[J].1999,10(3):269-272
    [4] Zhang Y.B., Small J.P., Pontius W.V., et al. Fabrication and electric-firld-dependent transportmeasurements of mesoscopic graphite devices[J]. Appl. Phys. Lett.,2005,86(7):073104
    [5] Berger C., Song Z.M., Li T.B., et al. Ultrathin epitaxial graphite:2D electron gas properties anda route toward graphene-based nanoelectronics[J]. J. Phys. Chem. B.,2004,108(52):19912-19916
    [6] Novoselov K.S., Geim A.K., MorozovS.V., et al. Electric field effect in atomically thin carbonfilm[J]. Science,2004,306(5296):666-669
    [7] Meyer J.C., Geim A.K., Katsnelson M.I., et al. The structure of suspended graphene sheets[J].Nature,2007,446(7131):60-63
    [8]Stolyarova E., Rim K.T., Ryu S., et al. High-resolution scanning tunneling microscopy imagingof mesoscopic graphene sheets on an insulating surface[J]. P Natl Acad Sci., USA,2007,104(22):9209-9212
    [9] Nair R.R., Blake P., Grigorenko. A.N., et al, Fine structure constant defines visual transparencyof graphene[J]. Science,2008,320(5881):1308
    [10] Kim K.S., Zhao Y., Jang H., et al. Large-scale pattern growth of graphene films forstretchable transparent electrodes[J]. Nature,2009,457(7230):706-710
    [11] Novoselov K.S., Geim A.K., Morozov S.V., et al. Two-dimensional gas of massless doracfermions in graphene[J]. Nature,2005,438(7065):197-200
    [12] Zhang Y.B., Tan Y.W., Stormer HL, et al. Experimental observation of the quantum hall effectand berry’s phase in graphene[J]. Nature,2005,438(7065):201-204
    [13]陈永胜,黄毅,等.石墨烯——新型二维碳纳米材料[M],北京:科学出版社,2013
    [14] Balandin A.A., Ghosh S., Bao W.Z., et al. Superior thermal conductivity of single-layergraphene[J]. Nano. Lett.,2008,8(3):902-907
    [15] Lee C., Wei X., Kysar J.W., et al. Measurement of the electric properties and intrinsicstrength of monolayer graphene[J]. Science,2008,321(5887):385-388
    [16] Vivekchand S.R.C., Rout C.S., Subrahmanyam K.S., et al. Graphene-based electrochemicalsupercapacitors[J]. Chem. Sci.,2008,120:9-13
    [17] Stankovich S, Dikin D.A., Piner Rr.D.,et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:2929-2937
    [18] Wang H., Hao Q., Yang X., et al. Effect of graphene oxide on the properties of its compositeswith polyaniline[J].ACSAppl Mater. Inter.,2010,2:821-828
    [19]Cai D.D.; Wang S.Q., Ding L.X., et al. Superior cycle stability of graphene nanosheetsprepared by freeze-drying process as anodes for lithium-ion batteries[J]. JOURNAL OF POWERSOURCES,2014,254:198-203
    [20] Zhou X.Y.; Zou Y.L.; Yang J.. Periodic structures of Sn self-inserted between grapheneinterlayers as anodes for Li-ion battery[J]. JOURNALOF POWER SOURCES,2014,253:287-293
    [21]Yin Z., Sun S., Salim T., et al. Organic Photovoltaic Devices Using Highly Flexible ReducedGraphene Oxide Films as Transparent Electrodes[J].ACS Nano,2010,4(9):5263–5268
    [22]Wu J., Agrawal M., Becerril H., et al. Organic light-emitting diodes on solution-processedgraphene transparent electrodes[J].ACS Nano,2010,4(1):43-48
    [23] WangX., Zhi L., Mullen K, et al. Conductive Graphene Electrodes for Dye-Sensitized SolarCells[J]. Nano Letter,2008,8(1):323-327
    [24] Chaudhary N., Srivastava R., Sharma G. D., et al. Luminscent Graphene Quantum Dots forOrganic Photovoltaic Devices[J]. J.Am. Chem. Soc.,2011,133(26):9960–9963
    [25] Zhang D.W., Li X.D., Li H.B., et al. Graphene-based counter electrode for dye-sensitizedsolar cells[J]. Carbon,2011,49(15):5382-5388
    [26] Zhen X. and Chao G.. In situ Polymerization Approach to Graphene-Reinforced Nylon-6Composites[J]. Macromolecules2010,43(16):6716–6723
    [27] Bao C.L., Song L., Xing W.Y., et al. Preparation of graphene by pressurized oxidation andmultiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. J.Mater. Chem.,2012,22:6088-6096
    [28] Raghu A.V., Lee Y.., Jeong, H.M, et al. Preparation and physical properties of waterbornepolyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys[J].2008,209(24):2487–2493
    [29] Chen S.; Zhu J., Wu X., et al. Graphene Oxide MnO2Nanocomposites forSupercapacitors[J]. ACS Nano,2010,4(5):2822–2830
    [30] Yang X.Y., Zhang X.Y., Ma Y.F., et al. Superparamagnetic graphene oxide–Fe3O4nanoparticles hybrid for controlled targeted drug carriers[J]. J. Mater. Chem.,2009,19,2710-2714
    [31] Fowler J.D., Allen M.J., Tung V.C., et al. Chemical Sensors from Chemically DerivedGraphene[J]. ACS Nano.,2009,3(2):301-306
    [32] Robinson J.T., Perkins F., Snow E.S., et al. Reduced Graphene Oxide Molecular Sensors[J].Nano Lett.,2008,8(10):3137–3140
    [33] Lerf A., He H., Forster M., et al. Structure of graphite oxide revisited[J]. J Phys. Chem. B,1998,102:4477-4482
    [34] He H.Y., Klinowski J., Forster M., et al. A new structural model for graphite Oxide [J]. Chem.Phys. Lett.,1998,287(1-2):53-56
    [35] Tran M H., Jeong H.K.. Influence of the Grain Size of Precursor Graphite on the Synthesis ofGraphite Oxide[J]. New Physics: Sae Mulli,2013,63(2):206-209
    [36] Kang D.W. and Suk H.S.. Control of size and physical properties of graphene oxide bychanging the oxidation temperature[J]. Carbon Letters,2012,13,(1):39-43
    [37] Marcano D.C., Kosynkin D.V., Berlin J.M., et al. Improved Synthesis of Graphene Oxide [J].2010,4(8):4806-4814
    [38] Shao G.L.,Lu Y.G., Wu F.F., et al.Graphene oxide: the mechanisms of oxidation andexfoliation [J]. J Mater Sci,2012,47:4400–4409
    [39] Zhang T.Y. and Zhang D.. Aqueous colloids of graphene oxide nanosheets by exfoliation ofgraphite oxide without ultrasonication [J]. Bull. Mater. Sci.,2011,34,(1):25–28
    [40]Gomez-Navarro C., Burghard M., Kern K.. Elastic properties of chemically derived singlegraphene sheets[J]. Nano Lett,2008,8:2045–2049
    [41] Ezawa M.. Supersymmetry and unconventional quantum Hall effect in monolayer, bilayerand trilayer graphene[J]. Physica E:Low dimensional systems andNanostructures,2007,40(2):269-272
    [42] Loh K.P., Bao Q., Eda G., et al. Graphene oxide as a chemically tunable platform for opticalapplications[J]. Nat. Chem.2010,2:1015-1024
    [43] Lu C.H., Yang H.H., Zhu C.L., et al. Graphene platformfor sensing biomolecules [J]. Angew.Chem. Int. Edit.,2009,48:4785-4787
    [44]Stankovich S., Dikin D.A.,Piner R.D., et al. Synthesis of graphene-based nanosheets viachemical reduction ofexfoliated graphite oxide[J]. Carbon,2007,45:1558-1565
    [45]Paredes J.I., Villar-Rodil S., Martinez-Alonsoet A., et al. Graphene oxide dispersions inorganic solvents [J]. Solvents Langmuir,2008,24,10560-10564
    [46] Ruiz H.E.. Conducting polymers intercalated in layered solids[J]. Adv. Mater.,1993,5(5):334-340
    [47] Bagri A., Mattevi C., Acik M., et al. Structural evolution during the reduction of chemicallyderived graphene oxide[J]. Nature Chemistry,2010,2:581-589
    [48] Nakajima T., Mastsuo Y.. Formation process and structure of graphite oxide[J]. Carbon,1994,32(3):469-475
    [49] Li D., Müller M. B., Gilje S., et al. Processable aqueous dispersions of graphenenanosheets[J]. Nature nanotechnology,2008,3(2):101-105
    [50] Fernandez-Merino M.J., Guardia L., Paredes J.I., et al. Vitamin C is an ideal substitute forhydrazine in the reduction of graphene oxide suspensions[J]. The Journal of Physical Chemistry C,2010,114(14):6426-6432
    [51] Zangmeister C.D.. Preparation and evaluation of graphite oxide reduced at220℃[J].Chemistry of Materials,2010,22(19):5625-5629
    [52] Lv W., TangD.M., He T.B., et al. Low-Temperature Exfoliated Graphenes: Vacuum-PromotedExfoliation and Electrochemical Energy Storage[J]. ACS Nano,2009,3(11):3730-3736
    [53] Matsumoto Y., Koinuma M., Kim S.Y., et al. Simple photoreduction of graphene oxidenanosheet under mild conditions[J].ACS applied materials&interfaces,2010,2(12):3461-3466
    [54] Cote L.J., Cruz-Silva R., Huang J.. Flash reduction and patterning of graphite oxide and itspolymer composite[J]. Journal of theAmerican Chemical Society,2009,131(31):11027-11032
    [55] Lin Z., Yao Y., Li Z., et al. Solvent-assisted thermal reduction of graphite oxide[J]. TheJournal of Physical Chemistry C,2010,114(35):14819-14825
    [56] Fan X., Peng W., Li Y., et al. Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation[J]. Advanced Materials,2008,20(23):4490-4493.
    [57] Wang G., Yang J., Park J., et al. Facile synthesis and characterization of graphenenanosheets[J]. The Journal of Physical Chemistry C,2008,112(22):8192-8195
    [58] Si Y., Samulski E.T.. Synthesis of water soluble graphene[J]. Nano Letters,2008,8(6):1679-1682
    [59] Shin H.J., Kim K.K., Benayad A., et al. Efficient reduction of graphite oxide by sodiumborohydride and its effect on electrical conductance[J]. Advanced Functional Materials,2009,19(12):1987-1992
    [60] Moon I.K., Lee J., Ruoff R.S., et al. Reduced graphene oxide by chemical graphitization[J].Nature communications,2010,1:73
    [61] Layek R.K., Samanta S., Chatterjee D.P., et al. Physical and mechanical properties ofpoly(methyl methacrylate)–functionalized graphene/poly(vinylidine fluoride) nanocomposites:Piezoelectric b polymorph formation[J]. Polymer,2010,51:5846-5856
    [62] Gao J., Bao F., Feng L.L., et al. Functionalized graphene oxide modified polysebacicanhydride as drug carrier for levofloxacin controlled release[J]. RSC Advances,2011,1:1737-1744
    [63]Loh K.P., Bao Q.L., Ang P.K., et al. The Chemistry of Graphene[J]. Journal of MaterialsChemistry,2010,20:2277-2289
    [64] Pad J.T., Belytsehko T., Schatz G.C.. Computational studies of the structure, behavior uponheating,and mechanical properties of graphite oxide[J]. J. Phys. Chem. C.,2007,111(49):18099-18111
    [65] Carroll D.. Ion exchange in clays and other minerals[J]. Geological Society of AmericaBulletin,1959,70,(6):749-779
    [66]马建中,陈新江,储芸,等.蒙脱土纳米复合材料的制备及应用研究[J].中国皮革,2002,31(21):14-19
    [67] Liu Z., Robinson J.T., Sun X.M., et al. PEGylated Nanographene Oxide for Delivery ofWater-Insoluble Cancer Drugs[J]. J. Am. Chem. Soc.,2008,130(33):10876–10877
    [68] Sun X., Liu Z., Welsher K., et al. Nano-Graphene Oxide for Cellular Imaging and DrugDelivery[J].Nano Res.2008,1(3):203-212
    [69] Yang K., Zhang S., Zhang G., et al. Graphene in mice: ultrahigh in vivo tumor uptake andefficient photothermal therapy[J].Nano Lett.,2010,10(9):3318-3323.
    [70]Parvizi F., Teweldebrhan D., Ghosh S. I., et al. Properties of graphene produced by the highpressure-high temperature growth process[J]. Micro&Nano Letters,2008,3(1):29-34
    [71]Wang J. J., Zhu M. Y., Outlaw R.A., et al. Free-standing subnanometer graphite sheets[J].Applied Physics Letter,2004,85(7):1265-1268
    [72] DatoA., Radmilovic V., Lee Z. H., et al. Substrate Free Gas-Phase Synthesis of GrapheneSheets[J]. Nano. Lett.,2008,8:2012-2016
    [73]Sun G.L., Li X.J., Qu Y.D., et al. Preparation and characterization of graphite nanosheets fromdetonation technique[J]. Materials Letters,2008,62:703-706
    [74] Mcallister M. J., Li J. L., Adamson D. H., et al. Single sheet functionalized graphene byoxidation and thermalexpansion of graphite[J]. Chem. Mater.,2007,19(18):4396-4404
    [75] Oh W.C., Chen M.L., Zhang K., et al. The effect of thermal and ultrasonictreatment on theformation of graphene oxide nanosheets[J]. J. Korean. Phys. Soc.,2010,56(4):1097-1102
    [76] Karim M.R., Hatakeyama K., Matsui T., et al. Graphene Oxide Nanosheet with High ProtonConductivity[J]. J. Am. Chem. Soc.,2013,135:80978100
    [77]吉莉,张天友,张东.超声波频率和作用方式对剥离氧化石墨的影响[J].材料开发与应用,2011,26(1):42-45
    [78] Bai H., Li C., and Shi G.Q.. Functional Composite Materials Based on Chemically ConvertedGraphene[J]. Adv. Mater.,2011,23:1089–1115
    [79]Zhang L., Li X., Huang Y., et al. Controlled synthesis of few-layered graphene sheets on alarge scale using chemical exfoliation[J]. Carbon,2010,48(2):2361-2380
    [80] Brodie B.C.. On the atomic weight of graphene[J]. Phil. Trans. Roy. Soe.,1859,149:249-59
    [81] Staudenmaier L.. Veffahren zur darsteilung der graphitsaure[J]. Bet. Dtsh. Chem. Ges.,1898,31:1481-1487
    [82] Hummers W.S., Offman R.E., Preparation of graphitic oxide[J]. J. Am. Chem. Soc.,1958,80:13389
    [83] Bao C., Song L., Xing W., et al. Preparation of graphene by pressurized oxidation andmultiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J]. J.Mater. Chem.,2012,22:6088-6096
    [84]朱宏伟,徐志平,谢丹,等.石墨烯:结构、制备方法与性质[M],北京:清华大学出版社,2011
    [85] Sun X., Liu Z., Welsher K., et al. Nano-graphene oxide for cellular imaging and drugdelivery[J]. Nano research[J],2008,1(3):203-212
    [86] YangK., Feng L., Shi X., et al.Construction of a graphene oxide based noncovalent multiplenanosupramolecular assembly as a scaffold for drug delivery[J]. Chem. Eur. J.,2012,18:4208-4215
    [87] Feng L., Zhang S. and Liu Z.. Graphene based gene transfection[J]. Nanoscale,2011,3:1252-1257
    [88] Zhang L.M., Xia, J.G., Zhang Q.H., et al. Functional graphene oxide as nanocarriers forcontrolled loading and targeted delivery of mixed anticancer drugs[J]. Small,2010,6(4):537-544
    [89] Mohanty N., Berry V.. Graphene-Based Single-Bacterium Resolution Biodevice and DNATransistor: Interfacing Graphene Derivatives with Nanoscale and Microscale Biocomponents[J].Nano Lett.,2008,8(12):4469–4476.
    [90] Liu Y., Yu D., Zeng C., et al. Biocompatible Graphene-Oxide-Base Glucose Biosensors[J].Langmuir,2010,26:6158-6160
    [91] Huang J., Zhang L., Chen B., et al. Nanocomposites of size-controlled gold nanoparticles andgraphene oxide: formation and applications in SERS and catalysis[J]. Nanoscale,2010,2(12):2733-2738
    [92] Chen S., Zhu J., Wu X., et al. Graphene oxide MnO2nanocomposites for supercapacitors[J].ACS nano,2010,4(5):2822-2830
    [93] Yang X., Zhang X., Ma Y., et al. Superparamagnetic graphene oxide–Fe3O4nanoparticleshybrid for controlled targeted drug carriers[J]. Journal of Materials Chemistry,2009,19(18):2710-2714
    [94]Cao A., Liu Z., Chu S., et al. A Facile One-step Method to Produce Graphene-CdS QuantumDot Nanocomposites as Promising Optoelectronic Materials[J]. Advanced Materials,2010,22(1):103-106
    [95]Huang X., Qi X., Boey F., et al. Graphene-based composites[J]. Chemical Society Reviews,2012,41(2):666-686
    [96]Salavagione H.J., Martínez G., Ellis G.. Recent advances in the covalent modification ofgraphene with polymers[J]. Macromolecular rapid communications,2011,32(22):1771-1789
    [97] Nair R. R., Ren W., Jalil R., et al. Fluorographene: A Two-Dimensional Counterpart ofTeflon[J]. Small,2010,6(24):2877-2884
    [98]Chang H., Cheng J., Liu X., et al. Facile Synthesis of Wide‐Bandgap Fluorinated GrapheneSemiconductors[J]. Chemistry-AEuropean Journal,2011,17(32):8896-8903
    [99]蒲琳钰.氟化石墨烯的制备与表征[D].绵阳:西南科技大学,2012
    [100]Gong P., Wang Z., Wang J., et al. One-pot sonochemical preparation of fluorographene andselective tuning of its fluorine coverage[J]. Journal of Materials Chemistry,2012,22(33):16950-16956.
    [101]Wang X., Dai Y., Gao J., et al. High-Yield Production of Highly Fluorinated Graphene byDirect Heating Fluorination of Graphene-oxide[J]. ACS applied materials&interfaces,2013,5(17):8294-8299
    [102]Wang Z., Wang J., Li Z., et al. Synthesis of fluorinated graphene with tunable degree offluorination[J]. Carbon,2012,50(15):5403-5410
    [103]Zbo il R., Karlicky F., Bourlinos A.B., et al. Graphene fluoride: a stable stoichiometricgraphene derivative and its chemical conversion to graphene[J]. small,2010,6(24):2885-2891
    [104]Jankovsky O., imek P., Sedmidubsky D., et al. Water-soluble highly fluorinated graphiteoxide[J]. RSCAdvances,2014,4(3):1378-1387
    [105] Karlicky F., Kumara Ramanatha Datta K., Otyepka M., et al. Halogenated Graphenes:Rapidly Growing Family of Graphene Derivatives[J].ACS nano,2013,7(8):6434-6464
    [106] Withers F., Russo S., Dubois M., et al. Tuning the electronic transport properties of graphenethrough functionalisation with fluorine[J]. Nanoscale research letters,2011,6(1):1-11
    [107] Jeon K.J., Lee Z., Pollak E., et al. Fluorographene: a wide bandgap semiconductor withultraviolet luminescence[J].ACS nano,2011,5(2):1042-1046
    [108]Feng Q., Cao Q., Li M., et al. Synthesis and photoluminescence of fluorinated graphenequantum dots[J]. Applied Physics Letters,2013,102(1):013111
    [109]Robinson J.T., Burgess J.S., Junkermeier C. E., et al. Properties of fluorinated graphenefilms[J]. Nano letters,2010,10(8):3001-3005
    [110] Bourlinos A.B., Safarova K., Siskova K., et al. The production of chemically convertedgraphenes from graphite fluoride[J]. Carbon,2012,50(3):1425-1428
    [111]Worsley K.A., Ramesh P., Mandal S.K., et al. Soluble graphene derived from graphitefluoride[J]. Chemical Physics Letters,2007,445(1):51-56
    [112]Markevich A, Jones R, Briddon PR. Doping of fluorographene by surface adsorbates[J].Physical Review B,2011,84(11):115439
    [113] Wang Y., Lee W.C., Manga K.K., et al. Fluorinated Graphene for Promoting Neuro‐Induction of Stem Cells[J].Advanced Materials,2012,24(31):4285-4290
    [114] Wang B., Sparks J.R., Gutierrez H.R., etal. Photoluminescence from nanocrystallinegraphite monofluoride[J]. Applied Physics Letters,2010,97(14):141915
    [115] Bourlinos A.B., Bakandritsos A., Liaros N., et al. Water dispersible functionalized graphenefluoride with significant nonlinear optical response[J]. Chemical Physics Letters,2012,543:101-105
    [116]Yang Y., Lu G., Li Y., et al. One-Step Preparation of Fluorographene: A Highly Efficient,Low-Cost, and Large-Scale Approach of Exfoliating Fluorographite[J]. ACS applied materials&interfaces,2013
    [117] Chen M., Zhou H., Qiu C., et al. Layer-dependent fluorination and doping of graphene viaplasma treatment[J]. Nanotechnology,2012,23(11):115706
    [118] Yang H., Chen M., Zhou H., et al. Preferential and reversible fluorination of monolayergraphene[J]. The Journal of Physical Chemistry C,2011,115(34):16844-16848
    [119]Lee W.H., Suk J.W., Chou H., et al. Selective-area fluorination of graphene withfluoropolymer and laser irradiation[J]. Nano letters,2012,12(5):2374-2378
    [120]Pu L., Ma Y., Zhang W., et al. Simple method for the fluorinated functionalization ofgraphene oxide[J]. RSCAdvances,2013,3(12):3881-3884
    [121] Gong P., Wang Z., Li Z., et al. Photochemical synthesis of fluorinated graphene via asimultaneous fluorination and reduction route[J]. RSCAdvances,2013,3(18):6327-6330
    [122]Samanta K., Some S., Kim Y., et al. Highly hydrophilic and insulating fluorinated reducedgraphene oxide[J]. Chemical Communications,2013,49(79):8991-8993
    [123]Bourlinos A. B., Bakandritsos A., Liaros N, et al. Water dispersible functionalized graphenefluoride with significant nonlinear optical response[J]. Chemical Physics Letters,2012,543:101-105
    [124] Lee W.K., Haydell M., Robinson J.T., et al. Nanoscale Reduction of Graphene Fluoride viaThermochemical Nanolithography[J].ACS nano,2013,7(7):6219-6224
    [125]Lee W.K., Tsoi S., Whitener K.E., et al. Robust reduction of graphene fluoride using anelectrostatically biased scanning probe[J]. Nano Research,2013,6(11):767-774
    [126]丁孟贤. PI-化学、结构与性能的关系及材料[M].北京:科学出版社,2006
    [127]谭麟.甚低介电常数聚酰亚胺/多金属氧酸盐复合薄膜的制备及性能[D].广州:华南理工大学,2010
    [128]牟书香.聚酰亚胺表面功能化复合材料的制备及结构与性能研究[D].北京:北京化工大学,2010
    [129]高秋爽.聚酰亚胺_梯形聚倍半硅氧烷杂化薄膜的制备及其结构与性能的研究[D].北京:北京化工大学,2012
    [130] Shahram M.A., Naeemeh B.B.. Synthesis and Properties of Polyimides andCopolyimidesContaining Pyridine Units: AReview[J]. Iranian Polymer Journal,2008,17(2):54-124
    [131]刘秋萍.聚酰亚胺/无机纳米复合材料的制备与表征[D].陕西:陕西师范大学,2007.
    [132]曹红葵.聚酰亚胺性能及合成方法[J].化学推进剂与高分子材料,2008,6(3):24-26
    [133]翟燕. PMDA-ODA型聚酰亚胺聚集态结构的可控制备及其薄膜性能研究[D].成都:四川大学,2007
    [134] Hyunsoo C., Yungil J., Haksoo H.. The Effect of Curing History on the Residual StressBehaviors of Polyimide Thin Films[J].Journal ofApplied Polymer Science,1999,74:3287-3298
    [135]丁孟贤,何天白.聚酰亚胺新型材料[M].北京:科学出版社,1998
    [136] Hasegawa M., Koyanaka N.. Polyimides containing trans-1,4-cyclohexane unit:Polymerizability of their precursors and Low-CTE, low-K and high-Tg properties[J]. Highperformance polymer,2003,15(1):47-64
    [137] Bouder T.L., Maury O., Bozec H.L.. Synthesis of a highly thermally stable octupolarpolyimide for nonlinear optics[J]. Chemical Communications,2001,23:2430-2431
    [138] Neuber C., Giesa R., Schmidt H.W.. Polyimide Orientation Layers Prepared from LyotropicAromatic Poly(Amic Ethyl Ester)s[J]. Advanced Functional Materials2003,13(5):387-391
    [139] Patel K.S., Desai K.R.. Polyimides based on poly(2-furanmethanol-formaldehyde)[J].Advances in Polymer Technology,2004,23(1):76-80
    [140]张俊彦,刘维民,薛群基.聚酰亚胺膜的热性能分析[J].化学物理学报,1999,12(2):197-200
    [141] Ueda M., Nakayama T.. A New Negative-Type Photosensitive Polyimide BasedonPoly(hydroxyimide), a Cross-Linker and a Photoacid Generator[J], Macromolecules,1996,29(20):6427-6431
    [142] Zhai F., Guo X., Fang J., et al. Synthesis and Properties of Novel Sulfonated PolyimideMembranes for Direct Methanol Fuel CellApplication[J]. Journal of Membrane Science,2007,296(1-2):102-109
    [143] Saeed M.B., Zhan M.. Effect of Monomer Structure and Imidization Degree on MechanicalProperties and Viscoelastic Behavior of Thermoplastic Polyimide Films[J]. European PolymerJournal,2006,42(8):1844-1854
    [144] Zhang Q., Dai H.M., Ding M.X., et al. Mechanical Properties of BPDA-ODA PolyimideFibers[J]. European Polymer Journal,2004,40(11):2487-2493
    [145] Dorsey K.D., Desai P. Abhiraman A.S., et al. Structure and properties of melt‐extrudedlaRC‐IA(3,4’-ODA4,4’-ODPA) polyimide fibers[J]. Journal of applied polymer science,1999,73(7):1215-1222.
    [146]汪称意,光李,江建明,等.聚酰亚胺研究新进展[J].化学进展,2009,21(1):174-181
    [147]蔡辉,闫逢元,陈建敏,等.聚酰亚胺的改性研究[J].材料科学与工程学报,2003,21(1):95-98
    [148] Chung I.S., Kim S.Y.. Soluble Polyimides from Unsymmetrical Diamine withTrifluoromethyl Pendent Group[J]. Macromolecules,2000,33(9):3190-3193
    [149] Liaw D.J., Wang K.L., Chang F.C., et al. Novel poly(pyridine imide) with pendentnaphthalene groups: Synthesis and thermal, optical, electrochemical, electrochromic, andprotonation characterization[J]. Journal of Polymer Science Part A: Polymer Chemistry,2007,45(12):2367-2374
    [150] Ge Z., Fan L., Yang S.. Synthesis and characterization of novel fluorinated polyimidesderived from1,1'-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane andaromatic dianhydrides[J]. European Polymer Journal,2008,44(4):1252-1260
    [151]葛建芳,卢风纪.可溶性聚酞亚胺研究新进展[J].绝缘材料通讯,1999,(6):22-27
    [152] Liaw D.J., Chang F.C., Leung M.k., et al. High Thermal Stability and Rigid Rod of NovelOrganosoluble Polyimides and Polyamides Based on Bulky and Noncoplanar Naphthalene-Biphenyldiamine[J]. Macromolecules,2005,38(9):4024-4029
    [153] Chen J.P., NatansohnA.. Synthesis and Characterization of Novel Carbazole-ContainingSoluble Polyimides[J]. Macromolecules,1999,32(10):3171-3177
    [154] Wang J., Wang L.. The lower surface free energy achievements from ladderpolysilsesquioxanes with fluorinated side chains[J]. Journal of Fluorine Chemistry,2006,127(2):287-290
    [155] Miyatake K., Zhou H., Matsuo T., et al. Proton Conductive Polyimide electrolytescontaining trifluoromethyl groups:synthesis,propertiesand DMFC Performance[J].Maeromolecules,2004,37(13):4961-496
    [156] Cheng C.F., Cheng H.H., Cheng P.W., et al. Effect of reactive channel functional groups andnanoporosity of nanoscale mesoporous silica on properties of polyimide composite[J].Maeromoleeules,2006,39(22):7583-7590
    [157] Kumar D., Fohlen G.M., Parker J.A.. Fire-and heat-resistant laminating resins based onmaleimido-substituted aromatic cyclotriphosphazenes[J]. Macromolecules,1983,16(8):1250-1257
    [158] Kumar D., Fohlen G.M., Parker J.. Fire-and heat-resistant polymer based on maleimido-substituted2,2-bis (anilino)-4,4,6,6-tetrakis-(4-aminophenoxy)-cyclotriphosphazene [J].Journal of Polymer Science: Polymer Chemistry Edition,1984,22(5):1141-1151
    [159] Chen J., Zhang J., Zhu T., et al. Blends of thermoplastic polyurethane andpolyether–polyimide: preparation and properties[J]. Polymer,2001,42(4):1493-1500
    [160] Yun H.K., Cho K., Kim J.K., et al. Adhesion improvement of epoxy resin/polyimide jointsby amine treatment of polyimide surface[J]. Polymer,1997,38(4):827-834
    [161] Han M.G., Im S.S.. Electrical and structural analysis of conductive polyaniline/polyimideblends[J]. Journal of applied polymer science,1999,71(13):2169-2178
    [162]宋景达.纳米碳材料与聚酰亚胺复合薄膜的制备与性能研究[D].北京:北京化工大学,2012
    [163]王丹丹.聚酰亚胺_碳纳米管复合材料的制备与性能研究[D].哈尔滨:哈尔滨工业大学,2012
    [164] Yoshida M., Lal M., Kumar N.D., et al. TiO2nano-particle-dispersed polyimide compositeoptical waveguide materials through reverse micelles[J]. Journal of materials science,1997,32(15):4047-4051
    [165] Ding Y., Hu Y., Jiang X., et al. Polymer–monomer pairs as a reaction system for thesynthesis of magnetic Fe3O4–polymer hybrid hollow nanospheres[J]. Angewandte ChemieInternational Edition,2004,43(46):6369-6372
    [166] Xu Y., Hong W., Bai H., et al. Strong and ductile poly (vinyl alcohol)/graphene oxidecomposite films with a layered structure[J]. Carbon,2009,47(15):3538-3543
    [167] Yang H., Shan C., Li F., et al. Convenient preparation of tunably loaded chemicallyconverted graphene oxide/epoxy resin nanocomposites from graphene oxide sheets throughtwo-phase extraction[J]. Journal of Materials Chemistry,2009,19(46):8856-8860
    [168]Yan X., Chen J., Yang J., et al. Fabrication of free-standing, electrochemically active, andbiocompatible graphene oxide polyaniline and graphene polyaniline hybrid papers[J]. ACSapplied materials&interfaces,2010,2(9):2521-2529
    [169]Xu Z., Gao C.. In situ polymerization approach to graphene-reinforced nylon-6composites[J]. Macromolecules,2010,43(16):6716-6723
    [170]Fang M., Wang K., Lu H., et al. Covalent polymer functionalization of graphene nanosheetsand mechanical properties of composites[J]. Journal of Materials Chemistry,2009,19(38):7098-7105
    [171]Vermant J., Ceccia S., Dolgovskij M. K., et al. Quantifying dispersion of layerednanocomposites via melt rheology[J]. Journal of Rheology (1978-present),2007,51(3):429-450
    [172]Kim H, Macosko C.W.. Processing-property relationships of polycarbonate/graphenecomposites[J]. Polymer,2009,50(15):3797-3809
    [173]Kim H., Abdala A.A., Macosko C.W.. Graphene/polymer nanocomposites[J].Macromolecules,2010,43(16):6515-6530
    [174] Bao C., Song L., Xing W., et al. Preparation of graphene by pressurized oxidation andmultiplex reduction and its polymer nanocomposites by masterbatch-based melt blending[J].Journal of Materials Chemistry,2012,22(13):6088-6096
    [175] Zhang H.B., Zheng W.G., Yan Q., et al. Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding[J]. Polymer,2010,51(5):1191-1196
    [176] Li X, Wang X, Zhang L, et al. Chemically derived, ultrasmooth graphene nanoribbonsemiconductors[J]. Science,2008,319(5867):1229-1232
    [177] Park O.K., Hwang J.Y., Goh M., et al. Mechanically Strong and Multifunctional PolyimideNanocomposites Using Amimophenyl Functionalized Graphene Nanosheets[J]. Macromolecules,2013,46(9):3505-3511
    [178]Ma W., Wu L., Zhang D., et al. Preparation and properties of3-aminopropyltriethoxysilanefunctionalized graphene/polyurethane nanocomposite coatings[J]. Colloid and Polymer Science,2013,291(12):2765-2773
    [179] Yoonessi M., Shi Y., Scheiman D.A., et al. Graphene polyimide nanocomposites; thermal,mechanical, and high-temperature shape memory effects[J]. ACS nano,2012,6(9):7644-7655
    [180] Zhang P., Jiang K., Ye C., et al. Facile synthesis of V-shaped copolymer brushes grafted ontothe surface of graphene oxide via coupling reactions[J]. Chemical Communications,2011,47(33):9504-9506
    [181] Zhu S., Li J., Chen Y., et al. Grafting of graphene oxide with stimuli-responsive polymers byusingATRPfor drug release[J]. Journal of Nanoparticle Research,2012,14(9):1-11
    [182] Zheng Z., Wang Z., Feng Q., et al. Preparation of surface-silveredgraphene-CNTs/polyimide hybrid films: Processing, morphology and properties[J]. MaterialsChemistry and Physics,2013,138(1):350-357
    [183] Ha H.W., Choudhury A., Kamal T., et al. Effect of chemical modification of graphene onmechanical, electrical, and thermal properties of polyimide/graphene nanocomposites[J]. ACSapplied materials&interfaces,2012,4(9):4623-4630
    [184] Park O.K., Kim S.G., You N.H., et al. Synthesis and properties of iodo functionalizedgraphene oxide/polyimide nanocomposites[J]. Composites Part B: Engineering,2014,56:365-371
    [185] Heo C., Chang J.H.. Polyimide nanocomposites based on functionalized graphene sheets:Morphologies, thermal properties, and electrical and thermal conductivities[J]. Solid StateSciences,2013,24:6-14
    [186] Tseng I., Chang J.C., Huang S.L., et al. Enhanced thermal conductivity and dimensionalstability of flexible polyimide nanocomposite film by addition of functionalized graphene oxide[J].Polymer International,2013,62(5):827-835
    [187] Dong J., Yin C., Zhao X., et al. High strength polyimide fibers with functionalizedgraphene[J]. Polymer,2013,54(23):6415-6424
    [188] Huang T., Xin Y., Li T., et al. Modified Graphene/Polyimide Nanocomposites: Reinforcingand Tribological Effects[J]. ACS applied materials&interfaces,2013,5(11):4878-4891
    [189] Tsai M.H., Tseng I., Liao Y.F., et al. Transparent polyimide nanocomposites with improvedmoisture barrier using graphene[J]. Polymer International,2013,62(9):1302-1309
    [190] Chang K.C., Hsu C.H., Lu H.I., et al. Advanced anticorrosive coatings prepared fromelectroactive polyimide/graphene nanocomposites with synergistic effects of redox catalyticcapability and gas barrier properties[J]. Express Polymer Letters,2014,8(4):243–255
    [191]Yoonessi M., Scheiman D.A., Dittler M., et al. High-temperature multifunctionalmagnetoactive nickel graphene polyimide nanocomposites[J]. Polymer,2013,54(11):2776-2784
    [192]Niu Y., Zhang X., Pan W., et al. Enhancement and wettability of self-assembled GO sheets asinterfacial layers of CF/PI composites[J]. RSCAdvances,2014,4(15):7511-7515
    [193]Ma L., Niu H., Cai J., et al. Photoelectrochemical and electrochromic properties ofpolyimide/graphene oxide composites[J]. Carbon,2014,67:488-499
    [194]Kong J.Y., Choi M.C., Kim G.Y., et al. Preparation and properties of polyimide/grapheneoxide nanocomposite films with Mg ion crosslinker[J]. European Polymer Journal,2012,48(8):1394-1405
    [195]Wang J.Y., Yang S.Y., Huang Y.L., et al. Preparation and properties of grapheneoxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situpolymerization[J]. Journal of Materials Chemistry,2011,21(35):13569-13575
    [196]Wang Z., Wang J., Li Z., et al. Cooperatively exfoliated fluorinated graphene with full-coloremission[J]. RSCAdvances,2012,2(31):11681-11686
    [197]Hernandez Y., Nicolosi V., Lotya M., et al. High-yield production of graphene byliquid-phase exfoliation of graphite[J]. Nature Nanotechnology,2008,3(9):563-568
    [198] Coleman J.N.. Liquid exfoliation of defect-free graphene[J]. Accounts of chemical research,2012,46(1):14-22
    [199] Bourlinos A.B., Georgakilas V., Zboril R., et al. Liquid-Phase Exfoliation of GraphiteTowards Solubilized Graphenes[J]. Small,2009,5(16):1841-1845
    [200] Kovtyukhova N.I., Ollivier P.J., Martin B.R., et al. Layer-by-layer assembly of ultrathincomposite films from micron-sized graphite oxide sheets and polycations[J]. Chemistry ofMaterials,1999,11(3):771-778
    [201] Zhang X, Feng Y, Huang D, et al. Investigation of optical modulated conductance effectsbased on a graphene oxide–azobenzene hybrid[J]. Carbon,2010,48(11):3236-3241
    [202] Gupta V., Nakajima T., Ohzawa Y., et al. Raman scattering study of graphite fluorides[J].Molecular Crystals and Liquid Crystals,2002,386(1):25-31.
    [203] Dubois M., Giraudet J., Guerin K., et al. EPR and solid-state NMR studies of poly (dicarbonmonofluoride)(C2F) n[J]. The Journal of Physical Chemistry B,2006,110(24):11800-11808.
    [204] Kosynkin D.V., Higginbotham A.L., Sinitskii A., et al. Longitudinal unzipping of carbonnanotubes to form graphene nanoribbons[J]. Nature,2009,458(7240):872-876
    [205] Higginbotham A.L., Kosynkin D.V., Sinitskii A., et al. Lower-defect graphene oxidenanoribbons from multiwalled carbon nanotubes[J]. ACS nano,2010,4(4):2059-2069
    [206] Bruna M., Massessi B., Cassiago C., et al. Synthesis and properties of monolayer grapheneoxyfluoride[J]. Journal of Materials Chemistry,2011,21(46):18730-18737
    [207] Sui Z., Zhang X., Lei Y., et al. Easy and green synthesis of reduced graphite oxide-basedhydrogels[J]. Carbon,2011,49(13):4314-4321.
    [208] Wang L., Liao R., Tang Z., et al. Sodium deoxycholate functionalized graphene and itscomposites with polyvinyl alcohol[J]. Journal of Physics D: Applied Physics,2011,44(44):445302
    [209] Stankovich S., Dikin D.A., Piner R.D., et al. Synthesis of graphene-based nanosheets viachemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45(7):1558-1565
    [210] Shen J., Hu Y., Shi M., et al. Fast and facile preparation of graphene oxide and reducedgraphene oxide nanoplatelets[J]. Chemistry of Materials,2009,21(15):3514-3520
    [211] Gupta V., Nakajima T., Ze mva B.. Raman scattering study of highly fluorinated graphite[J].Journal of Fluorine Chemistry,2001,110(2):145-151
    [212] Lee D.W., Seo J.W.. sp2/sp3carbon ratio in graphite oxide with different preparation times[J].The Journal of Physical Chemistry C,2011,115(6):2705-2708
    [213]王灿.碳纳米管和石墨烯的合成及其氮掺杂[D].华东理工大学,2011
    [214] Zhou Y., Bao Q., Tang L.A., et al. Hydrothermal dehydration for the “green” reduction ofexfoliated graphene oxide to graphene and demonstration of tunable optical limiting properties [J].Chemistry of Materials,2009,21(13):2950-2956.
    [215] Matsuo Y., Iwasa K., Sugie Y., et al. Effect of the perfluoroalkyl groups on the preparationof carbon-based transparent and conductive thin films from silylated graphite oxides[J]. Journal ofFluorine Chemistry,2011,132(10):669-672
    [216] Subrahmanyam K.S., Kumar P., Nag A., et al. Blue light emitting graphene-based materialsand their use in generating white light[J]. Solid State Communications,2010,150(37):1774-1777
    [217]Kosynkin D.V., Higginbotham A.L., Sinitskii A., et al. Longitudinal unzipping of carbonnanotubes to form graphene nanoribbons[J]. Nature,2009,458(7240):872-876
    [218] Levchenko L.M., Mitkin V.N., Galizky A.A., et al. Synthesis and physical–chemicalproperties of hydrolyzed nanosized mesoporous fluorocarbon materials and carbon–fluorocarboncomposites[J]. Journal of Fluorine Chemistry,2011,132(12):1134-1145.
    [219]Bourlinos A.B., Georgakilas V., Zboril R., et al. Reaction of graphite fluoride withNaOH–KOH eutectic[J]. Journal of Fluorine Chemistry,2008,129(8):720-724
    [220] Zheng Q.B., Shi L.F., Ma P.C., et al. Structure control of ultra-large graphene oxide sheetsby Langmuir-Blodgett method[J]. RSC. Adv.,2013,3:4680-4691
    [221] Fan X., Peng W., Li Y., et al. Deoxygenation of exfoliated graphite oxide under alkalineconditions: a green route to graphene preparation[J], Advanced Materials,2008,20(23):4490-4493
    [222]黄桥,孙红娟,杨勇辉.氧化石墨的谱学表征及分析[J].无机化报,2011,27(9):1721-1726
    [223] Kneipp K., Kneipp H., Itzkan I., et al. Ultrasensitive chemical analysis by Ramanspectroscopy[J]. Chemical reviews,1999,99(10):2957-2976
    [224] Sato Y., Hagiwara R., Ito Y.. Thermal decomposition of1st stage fluorine–graphiteintercalation compounds[J]. Journal of Fluorine Chemistry,2001,110(1):31-36
    [225] Kamarchik P., Margrave J.L.. A study of thermal decomposition of the solid-layeredfluorocarbon, poly (carbon monofluoride)[J]. Journal of Thermal Analysis and Calorimetry,1977,11(2):259-270
    [226] Yang D., Velamakanni A., Bozoklu G., et al. Chemical analysis of graphene oxide films afterheat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy[J]. Carbon,2009,47(1):145-152.
    [227] Jerlov N.G., Kullenberg B.. The Tyndall effect of uniform minerogenic suspensions[J].Tellus,1953,5(3):306-307
    [228]Wang X., Bai H., Shi G.. Size fractionation of graphene oxide sheets by pH-assisted selectivesedimentation[J]. Journal of theAmerican Chemical Society,2011,133(16):6338-6342.
    [229] Pan S., Aksay I A.. Factors controlling the size of graphene oxide sheets produced via thegraphite oxide route[J]. ACS nano,2011,5(5):4073-4083
    [230] Zhao J., Pei S., Ren W, et al. Efficient preparation of large-area graphene oxide sheets fortransparent conductive films[J]. ACS nano,2010,4(9):5245-5252
    [231] Chang H., Wang G., Yang A., et al. A Transparent, Flexible, Low-Temperature, andSolution-Processible Graphene Composite Electrode[J]. Advanced functional materials,2010,20(17):2893-2902
    [232] Chitara B., Panchakarla L.S., Krupanidhi S.B., et al. Infrared photodetectors based onreduced graphene oxide and graphene nanoribbons[J], Advanced Materials,2011,23(45):5419-5424
    [233]Kelly, A., Tyson, W.R.. Tensile Properties of Fibre-Reinforced Metals Copper/Tungsten andCopper/Molybdenum[J]. J. Mech. Phys. Solids1965,13:329–350
    [234] Agarwal S., Zhou X., Ye F., et al. Interfacing live cells with nanocarbon substrates[J].Langmuir,2010,26(4):2244-2247
    [235] Nika D.L., Ghosh S., Pokatilov E.P., et al. Lattice thermal conductivity of graphene flakes:Comparison with bulk graphite[J].Applied Physics Letters,2009,94(20):203103
    [236] Ghosh S., Bao W., Nika D. L., et al. Dimensional crossover of thermal transport in few-layergraphene[J]. Nature Materials,2010,9(7):555-558.
    [237] Nika D.L., Askerov A.S., Balandin AA. Anomalous size dependence of the thermalconductivity of graphene ribbons[J]. Nano letters,2012,12(6):3238-3244
    [238] Balandin A.A.. Thermal properties of graphene and nanostructured carbon materials[J].Nature materials,2011,10(8):569-581.
    [239] Wang H., Hu Y.H.. Effect of oxygen content on structures of graphite oxides[J]. Industrial&Engineering Chemistry Research,2011,50(10):6132-6137
    [240] Khan U., O’Neill A., Porwal H., et al. Size selection of dispersed, exfoliated graphene flakesby controlled centrifugation[J]. Carbon,2012,50(2):470-475
    [241]Qi G.Q., Cao J., Bao R.Y., et al. Tuning the structure of graphene oxide and the properties ofpoly (vinyl alcohol)/graphene oxide nanocomposites by ultrasonication[J]. Journal of MaterialsChemistryA,2013,1(9):3163-3170
    [242] Botas C., Pérez-Mas A.M., álvarez P., et al. Optimization of the size and yield of grapheneoxide sheets in the exfoliation step[J]. Carbon,2013,63:576-578
    [243]Lee D.W., De Los Santos V.L., Seo J.W., et al. The structure of graphite oxide: Investigationof its surface chemical groups[J]. The Journal of Physical Chemistry B,2010,114(17):5723-5728
    [244]Botas C., álvarez P., Blanco C., et al. The effect of the parent graphite on the structure ofgraphene oxide[J]. Carbon,2012,50(1):275-282
    [245] Su Q., Pang S., Alijani V., et al. Composites of graphene with large aromatic molecules[J].Advanced Materials,2009,21(31):3191-3195
    [246]李荣强.[2+2]光反应在合成四星烷中的应用研究[D].北京:北京工业大学,2005
    [247]丁丽琴.含戊二烯酮结构的光敏聚酰亚胺的合成与表征[D].武汉:中南民族大学,2007
    [248] Xu C., Wu X., Zhu J.. Synthesis of amphiphilic graphite oxide Carbon[J].2007,46:386–389
    [249] GüNE F, Han GH, Shin HJ, et al. UV-Light-Assisted Oxidative sp3Hybridization ofGraphene[J]. Nano,2011,6(05):409-418.
    [250] Kumar S.V., Huang N.M., Lim H.N., et al. Preparation of highly water dispersible functionalgraphene/silver nanocomposite for the detection of melamine[J]. Sensors and Actuators B:Chemical,2013,181:885-893
    [251] Xue Y., Liu Y., Lu F., et al. Functionalization of graphene oxide with polyhedral oligomericsilsesquioxane (POSS) for multifunctional applications[J]. The Journal of Physical ChemistryLetters,2012,3(12):1607-1612
    [252]聂天琛,李锦春,杨绪杰,等.葵二酸对纳米ZnO的有机表面修饰研究[J].无机化学学报,2007,23(11):1954-1958
    [253]Choi E.K., Jeon I.Y., Bae S.Y., et al. High-yield exfoliation of three-dimensional graphiteinto two-dimensional graphene-like sheets[J]. Chemical Communications,2010,46(34):6320-6322
    [254]杨秋转.石墨烯的功能化及其复合材料的制备[D].广州:华南理工大学,2012
    [255]Wang Y., Shi Z.X., Yin J.. Kevlar oligomer functionalized graphene for polymercomposites[J]. Polymer,2011,52(16):3661-3670
    [256] Arun A., Reddy B.S.R.. Photocrosslinkable polymers based on4-[5-(4-hydroxyphenyl)-3-oxopenta-1,4-dienyl] phenyl-2-methacrylate: photocrosslinking studiesand reactivity ratios with vinylcyclohexane[J]. European polymer journal,2004,40(3):589-597
    [257]Murugavel S.C., Kaliyappan T., Swaminathan C. S., et al. Synthesis and spectral, thermal,and photocrosslinking studies of poly (benzylidene phosphoramide ester) s[J]. Journal of appliedpolymer science,1997,65(11):2151-2157
    [258]Wen P., Wang L., Zhang A., et al. Synthesis and properties of novel photosensitive poly(arylene ether sulfone) containing chalcone moiety in the main chain[J]. Materials Chemistry andPhysics,2011,126(3):832-835
    [259]黄臻洵.低介电常数聚酰亚胺/纯硅沸石杂化膜的制备[D].广州:华南理工大学,2013.
    [260]Wei L., Hu N., Zhang Y.. Synthesis of polymer—Mesoporous silica nanocomposites[J].Materials,2010,3(7):4066-4079
    [261] Leu C.M., Chang Y.T., Wei K.H., Polyimide-side-chain tethered polyhedral oligomericsilsesquioxane nanocomposites for low-dielectric film applications[J]. Chemistry of materials,2003,15(19):3721-3727
    [262]贺国文.聚酰亚胺基介电复合材料的制备及其性能研究[D].长沙:中南大学,2012
    [263]包晨露.石墨烯及其典型聚合物纳米复合材料的制备方法_结构与机理研究[D].合肥:中国科学技术大学,2012
    [264]Cho D., Lee S., Yang G., et al. Dynamic Mechanical and Thermal Properties ofPhenylethynyl‐Terminated Polyimide Composites Reinforced With Expanded GraphiteNanoplatelets[J]. Macromolecular Materials and Engineering,2005,290(3):179-187
    [265]Longun J., Iroh J.O., Nano-graphene/polyimide composites with extremely high rubberyplateau modulus[J]. Carbon,2012,50(5):1823-1832
    [266] Pramoda K.P., Mya K.Y., Lin T.T., et al. Investigation of thermomechanical properties andmatrix-filler interaction on polyimide/graphene oxide composites[J]. Polymer Engineering&Science,2012,52(12):2530-2536
    [267]朱梦冰,吕亮,蒋远媛,等.聚酰亚胺薄膜热形变研究[J].绝缘材料,2007,40(6):53-56
    [268] Araki Y.. Thermal expansion coefficient of polytetrafluoroethylene in the vicinity of its glasstransition at about400K[J]. Journal ofApplied Polymer Science,1965,9(2):421-427
    [269] Auman B.C., Myers T.L., Higley D.P.. Synthesis and characterization of polyimides basedon new fluorinated3,3’-diaminobiphenyls[J]. Journal of polymer science part a: polymerchemistry,1997,35(12):2441-2451
    [270]Salavagione H.J., Martínez G., Ellis G.. Recent advances in the covalent modification ofgraphene with polymers[J]. Macromolecular rapid communications,2011,32(22):1771-1789
    [271]Tsai M.H., Tseng I., Liao Y.F., et al. Transparent polyimide nanocomposites with improvedmoisture barrier using graphene[J]. Polymer International,2013,62(9):1302-1309
    [272]杨彪.聚合物纳米复合材料[M].机械工业出版社,2009
    [273]何曼君,陈维孝,董西狭.高分子物理[M].上海:复旦大学出版社,2000
    [274]姚胜红.碳纳米管/聚偏氟乙烯高介电纳米复合材料的显微结构控制与介电性能的关联[D].北京:北京化工大学,2009
    [275]谢曙辉.聚酰亚胺基高介电常数复合材料的设计、制备与性能研究[D].杭州:浙江大学,2005

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700