纳米TiO_2改性纤维素绝缘纸的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超特高压输电技术的发展对输变电设备的绝缘性能提出了更高的要求,特别是直流换流变压器,在交流、直流、脉动、直流极性反转等复杂运行条件下,要求其油纸绝缘不但具有高的交流耐受能力,在直流尤其是极性反转情况下的绝缘能力仍然很强,研究高性能的换流变油纸绝缘材料成为行业发展之必需。同时,从材料本质性能提高来改善油纸绝缘能力也面临着电气与材料领域交叉的理论和制备等难题。因此,论文选择研究纳米改性纤维素绝缘纸来提高油纸绝缘的性能,具有重要理论和实际价值。
     本论文的主要目的是制备出一种在交直流电场下均具有较高绝缘性能的新型绝缘纸。首先研究纳米TiO2改性绝缘纸的制备工艺,然后对新的改性绝缘纸的抗张强度、介电性能、工频下的击穿性能进行测试,得到最佳的配比。再对具有最优配比的新型绝缘纸交直流下的各种击穿性能、直流条件下空间电荷的积聚与消散特性进行研究,最后分析纳米TiO2影响纤维素绝缘纸绝缘性能的机理,本文的主要研究成果有:
     ①研究得到了利用纳米TiO2改性绝缘纸的制备工艺和配比,在制备出纳米TiO2改性绝缘纸后,对纳米TiO2改性绝缘纸和未改性绝缘纸的抗张强度、介电性能、以及其在工频下的击穿特性进行对比分析,得到纳米TiO2的最佳添加量为3%,含3%纳米TiO2改性绝缘纸与未改性绝缘纸相比,抗张强度没有降低,工频下击穿场强、局部放电起始放电电压,直流下的击穿电压、局部放电起始放电电压都有大幅度提高;
     ②含3%纳米TiO2改性绝缘纸与未改性绝缘纸相比,正极性直流下的击穿电压显著提高,预加正负极性电压后的正极性直流击穿电压均显著提高,能够在发生极性反转时保持更高的击穿电压,有利于降低击穿事故的发生。
     ③首次研究成功了具有抑制空间电荷向绝缘纸中注入,降低绝缘纸内部电场畸变和加快空间电荷消散作用的纳米TiO2改性绝缘纸。PEA空间电荷测试表明不论较低、较高场强作用下,含3%纳米TiO2改性绝缘纸均具有抑制空间电荷向绝缘纸内部注入、降低内部场强畸变的作用。在去掉外加场强后,含3%纳米TiO2改性绝缘纸内部空间电荷消散速率大大提高。
     ④首次分析得到了纳米TiO2提高纳米TiO2改性绝缘纸击穿性能和改善空间电荷积聚、消散性能的机理。纳米TiO2与纤维素间的强相互作用改变了纤维素与纳米TiO2接触面的结构,形成了类似多核模型的界面结构,有利于形成更多的陷阱;进一步通过TSC测试表明,纳米TiO2与纤维素的接触界面大大增加了绝缘纸中浅陷阱的数量,减少了深陷阱的数量。陷阱数量和能级的变化改变了绝缘纸的击穿性能和空间电荷性能。
Because of the development of ultra-UHV power transmission insulation level ofpower transmission equipment is asked to rise. Especially for HVDC convertertransformers,oil-paper insulation not only has a high AC breakdown strength, but alsostrong DC breakdown strength when the voltage polarity is reversed in AC, DC, pulseand DC reverse polarity complex operating conditions. That converter transformeroil-paper insulation material is studied becomes necessary for the development of theindustry. Meanwhile, oil-paper insulation capability is improved from materialproperties of nature, difficult problem of electrical and field theory and the preparationof the material cross that is faced. Thus, nanoparticles are used to modified theperformance of oil-paper insulation has important theoretical and practical value.
     The main purpose of this paper is to prepare a new type of insulation paper whichhas high insulation propertiesin the AC and DC fields. First the preparation of insulationpapermodified by nano-TiO2is studied. Then the best match is given by studying thetensile strength, dielectric properties and power frequency breakdown strength. Then thevariety of ACbreakdown strength, DC breakdown strength are studied, the accumulationand dissipation characteristics of space charge under DC field strength are studied.Mechanism thatthe insulation properties of cellulose insulation paper are affected bynano-TiO2is analyzed at last. This paper achieves following results:
     ①The preparation process and ratio of nano-TiO2were obtained. After theinsulation paper modified by nano-TiO2was prepared.Tensile strength, dielectricproperties, as well as breakdown strength of insulation paper modified by nano-TiO2were analyzed. The best ratio of nano-TiO2in insulation paper was3%, tensile strengthof insulation paper modified by nano-TiO2did not decrease, the breakdown fieldstrength of power frequency, the partial discharge inception voltage, the breakdownvoltage, the partial discharge inception discharge voltage underDC of insulation papermodified by nano-TiO2have increased significantlycompared with the unmodifiedinsulation paper;
     ②Insulation paper modified by3%nano-TiO2compared to the unmodifiedinsulation paper, Dc breakdown voltage of positive polarity is significantly improvedafter Pre-pressurized positive and negative polarity voltage, high breakdown voltage ismaintained when the voltage polarity is reversed, that helps to reduce the occurrence accidents of breakdown.
     ③For the first time the insulation paper that can suppress the space chargeinjected to insulation paper, reduce electric field distortion, accelerates the dissipation ofspace charge is prepared with nano-TiO2. PEA space charge tests show that insulationpaper modified by3%nano-TiO2can suppress the space charge injected to insulationpaper, reduce electric field distortion, accelerates the dissipation of space charge underlow and high field strength. Space charge dissipation rate of insulation paper modifiedby3%nano-TiO2is greatly improved.
     ④For the first time mechanism that insulation paper breakdown performance andspace charge accumulation, dissipation performance are improved is studied. Thecontact surface structure between cellulose and nano-TiO2is changed because of thestrong interaction between the nano-TiO2nanoparticles and cellulose. Multi-core modelsimilar interface structure is formed, more traps are formed. TSC tests show that thenumber of shallow traps is greatly increased because of the nano-TiO2contact interfacewith cellulose, the number of deep traps is reduced. Breakdown strength performanceand space charge performance are improved because of changes in the number and levelof the trap.
引文
[1]李伟.不同热老化时间下两种油浸绝缘纸的直流电场空间电荷特性[D].重庆大学,2011.
    [2]孙才新.输变电设备状态在线监测与诊断技术现状和前景[J].中国电力,2005,38(2):1-7.
    [3]王梦云.2004年度110kV及以上变压器事故统计分析[J].电力设备.2005,6(011):31-37.
    [4]张锋.油纸绝缘电热老化过程中的局部放电统计参数及聚类算法研究[D].重庆大学,2008.
    [5]唐超.油纸绝缘介质的直流空间电荷特性研究[D].重庆:重庆大学,2010.
    [6] M. Ali, C. Eley, A. Emsley, R. Heywood, X. Xaio. Measuring and understanding the ageing ofkraft insulating paper in power transformers [J]. Electrical Insulation Magazine, IEEE.1996,12(3):28-34.
    [7] R. Gilbert, J. Jalbert, S. Duchesne, P. Tetreault, B. Morin, Y. Denos. Kinetics of the productionof chain-end groups and methanol from the depolymerization of cellulose during the ageingof paper/oil systems. Part2: Thermally-upgraded insulating papers [J]. Cellulose.2010,17(2):253-269.
    [8] B. Pahlavanpour, R. Linaker, E. Povazan. Extension of life span of power transformer byon-site improvement of insulating oils [J]. IET.1992,16(8):260-263.
    [9] M. Wang, A. Vandermaar, K. Srivastava. Review of condition assessment of powertransformers in service [J]. Electrical Insulation Magazine, IEEE.2002,18(6):12-25.
    [10] N. Yamagata, K. Miyagi, E. Oe. Diagnosis of thermal degradation for thermally upgradedpaper in mineral oil [J].Proceedings of2008International Conference on ConditionMonitoring and Diagnosis.2007:1000-1004
    [11]周远翔,王云杉,田冀焕,沙彦超,姜鑫鑫,高胜友.纳米改性变压器油的破坏特性[J].高电压技术.2010,(5):1155-1159.
    [12] Prevost T A, Oommen T V.Cellulose insulation in oill-filled power transformers, Part I:history and development [J].IEEE Electrical Insulation Magazine,2006,22(1):28-35.
    [13]张福州,廖瑞金,杨丽君等.油纸绝缘热老化过程中热稳定剂对油的影响[J].高电压技术,2011,37(10):2437-2442.
    [14]林正平.低介电常数新型绝缘纸板及其在变压器绝缘上的应用[J].变压器.1992,29(4):20-22.
    [15]刘仁庆.纤维素化学基础[M].科学出版社.1985.
    [16] A. De Pablo, B. Pahlavanpour. Furanic compounds analysis: a tool for predictive maintenanceof oil-filled electrical equipment [J]. Electra.1997,175(7):9-31.
    [17] A. Emsley, X. Xiao, R. Heywood, M. Ali.Degradation of cellulosic insulation in powertransformers. Part3: Effects of oxygen and water on ageing in oil. IET.2000.115-119.
    [18]秦特夫,阎昊鹏.木材表面非极性化原理的研究: Ⅲ.各化学组分在乙酰化过程中酯化能力的差异[J].木材工业.2000,14(4):13-15.
    [19]王树森.变压器绝缘材料[J].变压器.2002,39(12):31-34.
    [20]梁帅伟.抗老化变压器油及其对绝缘纸热老化影响的研究[D].重庆:重庆大学,2009.
    [21] T. Saha, M. Darveniza, Z. Yao, D. Hill, G. Yeung. Investigating the effects of oxidation andthermal degradation on electrical and chemical properties of power transformers insulation [J].Power Delivery, IEEE Transactions on.1999,14(4):1359-1367.
    [22] M. H. G. Ese, K. B. Liland, L. E. Lundgaard. Oxidation of Paper Insulation in Transformers[J].IEEE Transactions on Dielectrics and Electrical Insulation.2010,17(3):939-946.
    [23] M. Mirzaie, A. Gholami, H. R. Tayebi. Insulation Condition Assessment of PowerTransformers Using Accelerated Ageing Tests [J]. Turkish Journal of Electrical Engineeringand Computer Sciences.2009,17(1):39-54.
    [24] R. J. Liao, C. Tang, L. J. Yang, Y. Feng, C. X. Sun. Influence of the copper ion on aging rateof oil-paper insulation in a power transformer[J]. IET Electric Power Applications.2009,3(5):407-412.
    [25] R. Gilbert, J. Jalbert, P. Tetreault, B. Morin, Y. Denos. Kinetics of the production ofchain-end groups and methanol from the depolymerization of cellulose during the ageing ofpaper/oil systems. Part1: Standard wood kraft insulation [J].Cellulose.2009,16(2):327-338.
    [26] H. Z. Ding. Degradation Phenomenology and Life Modelling of Paper–a Review [J].Advances in Pulp and Paper Research, Oxford2009, Vols1-3.2009:947-952.
    [27] I. Fofana, H. Borsi, E. Gockenbach, M. Farzaneh. Aging of transformer insulating materialsunder selective conditions [J]. European Transactions on Electrical Power.2007,17(5):450-470.
    [28] L. E. Lundgaard, W. Hansen, D. Linhjell, T. J. Painter. Aging of oil-impregnated paper inpower transformers [J]. IEEE Transactions on Power Delivery.2004,19(1):230-239.
    [29] S. I. Ganicheva, E. S. Bystrova, E. M. Lotsmanova. Influence of thermal aging characteristicsof cellulose conditions on the molecular and mechanical properties of paper thereof [J].Russian Journal of Applied Chemistry.2004,77(7):1172-1177.
    [30] S. Soares, N. M. P. S. Ricardo, F. Heatley, E. Rodrigues. Low temperature thermaldegradation of cellulosic insulating paper in air and transformer oil [J]. Polymer International.2001,50(3):303-308.
    [31] I. Fofana, H. Borsi, E. Gockenbach. Results on aging of cellulose paper under selectiveconditions [J].2001Annual Report Conference on Electrical Insulation and DielectricPhenomena.2001:205-208.
    [32] J. Scheirs, G. Camino, W. Tumiatti, M. Avidano. Study of the mechanism of thermaldegradation of cellulosic paper insulation in electrical transformer oil [J]. AngewandteMakromolekulare Chemie.1998,259:19-24.
    [33] J. Scheirs, C. Camino, M. Avidano, W. Tumiatti. Origin of furanic compounds in thermaldegradation of cellulosic insulating paper [J]. Journal of Applied Polymer Science.1998,69(13):2541-2547.
    [34] S. Levchik, J. Scheirs, G. Camino, W. Tumiatti, M. Avidano. Depolymerization processes inthe thermal degradation of cellulosic paper insulation in electrical transformers [J]. PolymerDegradation and Stability.1998,61(3):507-511.
    [35] A. M. Emsley, G. C. Stevens. Review of Chemical Indicators of Degradation of CellulosicElectrical Paper Insulation in Oil-Filled Transformers [J].Iee Proceedings-ScienceMeasurement and Technology.1994,141(5):324-334.
    [36] K. I. Ivanov, E. S. Panfilova, T. N. Kulikovskaya, V. P. Zhakhovskaya, V. K. Savinova, M. G.Semenova. Influence of Products of Oxidation of Mineral-Oils on Aging of Paper Insulationin Transformers [J]. Journal of Applied Chemistry of the Ussr.1974,47(12):2797-2801.
    [37] A. Emsley, G. Stevens. Kinetics and mechanisms of the low-temperature degradation ofcellulose [J]. Cellulose.1994,1(1):26-56.
    [38]杨淑蕙.植物纤维化学[M].中国轻工业出版社.2001.
    [39] T.V.Oommen, T.A.Prevost. Cellulose Insulation in Oil-Filled Power Transformers: Part II–Maintaining Insulation Integrity and Life [J]. IEEE Electrical Insulation Magazine.2006,22(2):5-14.
    [40] A. Emsley, G. Stevens. Review of chemical indicators of degradation of cellulosic electricalpaper insulation in oil-filled transformers [J]. IET.1994.324-334.
    [41] E. Kojima, Y. Miao, S. Yoshizaki. Pyrolysis of cellulose particles in a fluidized bed [J].Journal of chemical engineering of Japan.1991,24(1):8-14.
    [42] J. L. Banyasz, S. Li, J. L. Lyons-Hart, K. H. Shafer. Cellulose pyrolysis: the kinetics ofhydroxyacetaldehyde evolution [J]. J Anal Appl Pyrol.2001,57(2):223-248.
    [43] W. Lampe, E. Spicar. The Oxygen-free Transformer: Reduced ageing by continuousdegassing [J]. Cigre paper.1976:12-05.
    [44] Y. C. Lin, J. Cho, G. A. Tompsett, P. R. Westmoreland, G. W. Huber. Kinetics andMechanism of Cellulose Pyrolysis [J]. J Phys Chem C.2009,113(46):20097-20107.
    [45] M. J. Antal, G. Varhegyi, E. Jakab. Cellulose pyrolysis kinetics: Revisited [J]. Ind Eng ChemRes.1998,37(4):1267-1275.
    [46] M. J. Antal, W. S. L. Mok. The Pathways and Kinetics of Cellulose Pyrolysis Revisited [J].Abstr Pap Am Chem S.1984,188(8):39-46.
    [47] V. Montsinger. Loading transformers by temperature [J]. American Institute of ElectricalEngineers, Transactions of the.1930,49(2):776-790.
    [48] T. W. Dakin. Electrical insulation deterioration treated as a chemical rate phenomenon[J].American Institute of Electrical Engineers, Transactions of the.1948,67(1):113-122.
    [49]尚勇,钱政,杨敏中,严璋.高电压设备绝缘老化及状态维修的实现[J].高电压技术.1999,25(3):40-42.
    [50] M. Lessard, L. Van Nifterik, M. Masse, J. Penneau, R. Grob. Thermal aging study ofinsulating papers used in power transformers [J]. IEEE.1996,852:854-859.
    [51] A. Martelli, U. Montanari. An efficient unification algorithm [J]. ACM Transactions onProgramming Languages and Systems (TOPLAS).1982,4(2):258-282.
    [52] L. Simoni, G. Mazzanti, G. Montanari, L. Lefebre. A general multi-stress life model forinsulating materials with or without evidence for thresholds [J]. Electrical Insulation, IEEETransactions on.1993,28(3):349-364.
    [53] P. Cygan, J. Laghari. Models for insulation aging under electrical and thermal multistress [J].Electrical Insulation, IEEE Transactions on.1990,25(5):923-934.
    [54] T.A.Prevost, T.V.Oommen. Cellulose Insulation in Oil-Filled Power Transformers: PartI—History and Development [J]. IEEE Electrical Insulation Magazine.2006,22(1):28-35.
    [55] A. M. Emsley, X. Xiao, R. J. Heywood, M. Ali. Degradation of cellulosic insulation in powertransformers. Part2: Formation of furan products in insulating oil [J]. IeeProceedings-Science Measurement and Technology.2000,147(3):110-114.
    [56] M. H.GlommEse, K. B. Liland, L. E. Lundgaard. Oxidation of paper insulation intransformers [J]. Dielectrics and Electrical Insulation, IEEE Transactions on.2010,17(3):939-946.
    [57] I. Fofana, V. Wasserberg, H. Borsi, E. Gockenbach. Challenge of mixed insulating liquidsfor use in high-voltage transformers. II. Investigations of mixed liquid impregnated paperinsulation [J]. Electrical Insulation Magazine, IEEE.2002,18(4):5-16.
    [58] D. Shroff, A. Stannett. A review of paper aging in power transformers [J]. Generation,Transmission and Distribution [see also IEE Proceedings-Generation, Transmission andDistribution], IEE Proceedings.1985,132(6):312-319.
    [59] B. García, J. C. Burgos, A. M. Alonso, J. Sanz. A moisture-in-oil model for powertransformer monitoring-Part I: theoretical foundation [J]. Power Delivery, IEEE Transactionson.2005,20(2):1417-1422.
    [60] R. J. Liao, M. Z. Zhu, L. J. Yang, X. Zhou, C. Y. Gong. Molecular dynamics study of watermolecule diffusion in oil-paper insulation materials [J]. Physica B-Condensed Matter.2011,406(5):1162-1168.
    [61] Y. Du, M. Zahn, B. C. Lesieutre, A. V. Mamishev, S. R. Lindgren. Moisture equilibrium intransformer paper-oil systems [J]. IEEE Electrical Insulation Magazine.1999,15(1):11-20.
    [62] M. Beavers, E. Raab, L. Raab, J. Leslie. Permalex, a new insulation system [J]. PowerApparatus and Systems, Part III Transactions of the American Institute of ElectricalEngineers.1960,79(3):64-70.
    [63] T. Nishino, I. Matsuda, K. Hirao. All-cellulose composite [J]. Macromolecules.2004,37(20):7683-7687.
    [64] T. A. Prevost. Thermally upgraded insulation in transformers [J]. Proceedings: ElectricalInsulation Conference and Electrical Manufacturing Conference.2005:120-125.
    [65] B. Brummet, F. Sadler. A New Transformer Insulation [J]. Power Apparatus and Systems,Part III Transactions of the American Institute of Electrical Engineers.1962,81(3):754-759.
    [66] T. A. Prevost, H. Nordman, T. Oommen. Transformer Insulation Upgrading and LoadingGuide Equations [J]. Panel Session IEEE Trans former Committee Insulation LifeSubcommittee.2005.
    [67] Y. Kamata, E. Ohe, K. Endoh, S. Furukawa, H. Tsukioka, M. Maejima, et al. Development ofLow-Permittivity Pressboard and Its Evaluation for Insulation of Oil-Immersed Ehv PowerTransformers[J].Ieee T Electr Insul.1991,26(4):819-825.
    [68] S. J. Ferrito, R. L. Stegehuis. High temperature reinforced cellulose insulation for use inelectrical applications [J].2001IEEE/Pes Transmission and Distribution Conference andExposition, Vols1and2.2001:684-687.
    [69]戚敏. Nomex纤维及其在个人防护领域的应用[J].中国个体防护装备.2006,(003):16-20.
    [70]田建忠,胡金生. NOMEX纸及其应用[J].绝缘材料通讯.1995,(003):37-39.
    [71] R. Bongicivanni, D. Mazza, S. Ronchetti, E. A. Turcato. The influence of water on theintercalation of epoxy monomers in Na-montmorillonite [J]. J Colloid Interf Sci.2006,296(2):515-519.
    [72] J. M. Hutchinson, S. Montserrat, F. Roman, P. Cortes, L. Campos. Intercalation of epoxyresin in organically modified montmorillonite [J]. J Appl Polym Sci.2006,102(4):3751-3763.
    [73] W. B. Xu, S. P. Bao, P. S. He. Intercalation and exfoliation behavior of epoxy resin/curingagent/montmorillonite nanocomposite [J]. J Appl Polym Sci.2002,84(4):842-849.
    [74] V. A. Alvarez, J. A. Tarapow, C. R. Bernal. Mechanical Properties of Polypropylene/ClayNanocomposites: Effect of Clay Content, Polymer/Clay Compatibility, and ProcessingConditions [J]. J Appl Polym Sci.2009,111(2):768-778.
    [75] Y. Dong, D. Bhattacharyya. Dual role of maleated polypropylene in processing and materialcharacterisation of polypropylene/clay nanocomposites [J]. Mat Sci Eng a-Struct.2010,527(6):1617-1622.
    [76] M. Nour, A. Eid, K. El-Nagare, F. A. Aziz. Preparation and Characterisation ofPolyethylene/Clay Nanocomposites as a Flame Retardant Materials Using UltrasonicTechnique [J]. Polym Polym Compos.2010,18(3):159-166.
    [77] J. P. Oberhauser, M. A. Treece. Processing of polypropylene-clay nanocomposites:Single-screw extrusion with in-line supercritical carbon dioxide feed versus twin-screwextrusion [J]. J Appl Polym Sci.2007,103(2):884-892.
    [78] Y. Wang, F. B. Chen, Y. C. Li, K. C. Wu. Melt processing of polypropylene/claynanocomposites modified with maleated polypropylene compatibilizers [J]. Compos PartB-Eng.2004,35(2):111-124.
    [79] D. F. Wu, C. X. Zhou, M. Zhang. Effect of clay on immiscible morphology of poly(butyleneterephthalate)/polyethylene blend nanocomposites[J]. J Appl Polym Sci.2006,102(4):3628-3633.
    [80] C. G. Zhao, M. Feng, F. L. Gong, H. L. Qin, M. S. Yang. Preparation and characterization ofpolyethylene-clay nanocomposites by using chlorosilane-modified clay [J]. J Appl Polym Sci.2004,93(2):676-680.
    [81] Q. Zhang, K. Wang, Y. Men, Q. Fu. Dispersion and tensile behavior ofpolypropylene/montmorillonite nanocomposites produced via melt intercalation [J]. Chinese JPolym Sci.2003,21(3):359-367.
    [82] Y. Hu, Y. Tang, S. F. Wang, Z. Gui, Z. Y. Chen, W. C. Fan. Preparation ofpoly(propylene)/clay layered nanocomposites by melt intercalation from pristinemontmorillonite (MMT)[J]. Polym Advan Technol.2003,14(10):733-737.
    [83] S. F. Wang, Y. Hu, Y. Tang, Z. Z. Wang, Z. Y. Chen, W. C. Fan. Preparation ofpolyethylene-clay nanocomposites directly from Na+montmorillonite by a melt intercalationmethod [J]. J Appl Polym Sci.2003,89(9):2583-2585.
    [84] Y. Yuan, B. P. Lin, Y. Sun. Novel low‐dielectric‐constant copolyimide thin filmscomposed with SiO2hollow spheres [J]. Journal of Applied Polymer Science.2011,120(2):1133-1137.
    [85] Y. Yuan, Y. Wang, B. Xie. Preparation and properties of polyimide/SiO(2) hollow spherescomposite films with good dielectric property and amazing XRD spectra [J]. Mater Sci Forum.2010,663-665:584-587.
    [86]张福州,廖瑞金,袁媛.低介电常数绝缘纸的制备及其击穿性能[J].高电压技术,2012,38(003):691-696.
    [87] Liao R, Zhang F, Yang L. Electrical and thermal properties of kraft paper reinforced withmontmorillonite [J]. Journal of Applied Polymer Science,2012,126(S1): E291-E296.
    [88]唐超,廖瑞金,黄飞龙,杨丽君,朱孟兆.电力变压器绝缘纸热老化的击穿电压特性[J].电工技术学报.2010,(011):1-8.
    [89]黄飞龙,廖瑞金,唐超,巩晶,袁泉,尹建国.电力变压器绝缘纸加速热老化击穿电压及介电常数特性研究[J].中国电机工程学会高电压专业委员会2009年学术年会论文集.
    [90]唐超,廖瑞金,杨丽君,朱孟兆,胡舰,黄飞龙.变压器绝缘纸热老化过程中的击穿电压特性分析[J].中国电机工程学会高电压专业委员会2009年学术年会论文集.
    [91]吕健,詹怀宇,晋华春.电力变压器绝缘纸的性能及其绝缘老化[J].中国造纸.2008,27(5):54-58.
    [92]廖瑞金,张爽,杨丽君,刘斌,郝建.天然酯-纸绝缘与矿物油-纸绝缘的热老化及工频击穿特性对比[J].高电压技术,2012,04:769-775.
    [93]廖瑞金,袁泉,唐超,杨丽君,郝建,周天春.不同老化因素对油纸绝缘介质频域谱特性的影响[J].高电压技术,2010,07:1612-1618.
    [94]肖冬萍,田强.电介质的极化机制与介电常量的分析[J].大学物理,2001,09:44-46+49.
    [95]廖瑞金,汪可,周天春,杨丽君,肖中男.采用局部放电因子向量评估油纸绝缘热老化状态的一种方法[J].电工技术学报,2010,09:28-34.
    [96]王敬修.大学物理基础[M].化学工业出版社.2009.
    [97]高田达雄.电声脉冲法测量空间电荷的原理与方法[M]西安:西安交通大学,1995.
    [98] Morshuis P, Jeroense M. Space charge measurements on impregnated paper: a review of thePEA method and a discussion of results [J]. Electrical Insulation Magazine, IEEE,1997,13(3):26-35.
    [99] Li Y, Kawai J, Ebinuma Y, et al. Space charge behavior under ac voltage in water-treed PEobserved by the PEA method [J]. Dielectrics and Electrical Insulation, IEEE Transactions on,1997,4(1):52-57.
    [100]高宇,杜伯学.伽玛线辐射对环氧树脂表面电荷消散特性的影响[J].高电压技术,2012,38(004):824-830.
    [101]王铀,沈静姝.制备聚合物纳米复合材料展望[J].化工新型材料,1998,26(1):8-12.
    [102]李泉,曾广赋.纳米粒子[J].化学通报,1995(6):29-34.
    [103] Martin C R. Nanomaterials--a membrane-based synthetic approach [R]. COLORADOSTATE UNIV FORT COLLINS DEPT OF CHEMISTRY,1994.
    [104] Chen J, Yin Y, Li Z, et al. Electrical Prestressing of High-Electric-Field Conduction inComposite of Low-Density Polyethylene/Nano-SiOx [J]. Japanese journal of applied physics,2005,44(2R):940
    [105] Zheng X, Wu D, Meng Q, et al. Mechanical properties of low-densitypolyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretchingmethod [J]. Journal of Polymer Research,2008,15(1):59-65.
    [106] Lee C H, Jung P G, Lee S M, et al. Replication of polyethylene nano-micro hierarchicalstructures using ultrasonic forming [J]. Journal of Micromechanics and Microengineering,2010,20(3):035018.
    [107] Yin Y, Dong X, Li X. The effect of electrically prestressing on DC breakdown strength in thenanocomposite of low-density polyethylene/nano-SiOx[C]//Solid Dielectrics,2007. ICSD'07.IEEE International Conference on. IEEE,2007:372-376.
    [108] Dong X, Wang L, Wang W, et al. Preparation of nano-polyethylene fibers and floccules usingMCM-41-supported metallocene catalytic system under atmospheric pressure [J]. Europeanpolymer journal,2005,41(4):797-803.
    [109] Chang T M S, Powanda D, Yu W P. Analysis of polyethylene-glycol-polylactidenano-dimension artificial red blood cells in maintaining systemic hemoglobin levels andprevention of methemoglobin formation [J]. Artificial Cells, Blood Substitutes andBiotechnology,2003,31(3):231-247.
    [110] Yaping Z, Aibo Z, Qinghua C, et al. Functionalized effect on carbon nanotube/epoxynano-composites [J]. Materials Science and Engineering: A,2006,435:145-149.
    [111] Lachman N, Daniel Wagner H. Correlation between interfacial molecular structure andmechanics in CNT/epoxy nano-composites [J]. Composites Part A: Applied Science andManufacturing,2010,41(9):1093-1098.
    [112] Martone A, Formicola C, Giordano M, et al. Reinforcement efficiency of multi-walled carbonnanotube/epoxy nano composites [J]. Composites science and technology,2010,70(7):1154-1160.
    [113] Zou C, Fothergill J C, Rowe S W. A" water shell" model for the dielectric properties ofhydrated silica-filled epoxy nano-composites [C]//Solid Dielectrics,2007. ICSD'07. IEEEInternational Conference on. IEEE,2007:389-392.
    [114] Peihong Z, Weiguo Z, Yan L, et al. Study on corona-resistance of polyimide-nano inorganiccomposites [C]//Properties and Applications of Dielectric Materials,2003. Proceedings of the7th International Conference on. IEEE,2003,3:1138-1141.
    [115] Li H, Liu G, Liu B, et al. Dielectric properties of polyimide/Al2 O3 hybrids synthesized by in-situ polymerization [J]. Materials Letters,2007,61(7):1507-1511.
    [116] Li H, Guo L, Liu B, et al. The dielectic properties of polyimide/nano-Al (2) O (3) compositesfilms [C]//Zhongguo Dianji Gongcheng Xuebao (Proceedings of the Chinese Society ofElectrical Engineering).2006,26(20):166-170.
    [117] Yoshida M, Lal M, Kumar N D, et al. TiO2nano-particle-dispersed polyimide compositeoptical waveguide materials through reverse micelles [J]. Journal of materials science,1997,32(15):4047-4051.
    [118] Sitti M, Fearing R S. Synthetic gecko foot-hair micro/nano-structures as dry adhesives [J].Journal of Adhesion Science and Technology,2003,17(8):1055-1073.
    [119] Li L, Qinghua L, Jie Y, et al. Photosensitive polyimide (PSPI) materials containing inorganicnano particles (I) PSPI/TiO2 hybrid materials by sol–gel process [J]. Materialschemistry and physics,2002,74(2):210-213.
    [120] Smith R C, Liang C, Landry M, et al. The mechanisms leading to the useful electricalproperties of polymer nanodielectrics [J]. Dielectrics and Electrical Insulation, IEEETransactions on,2008,15(1):187-196.
    [121] Toshikatsu Tanaka, Masahiro Kozako. Proposal of a Multi-core Model for PolymerNanocomposite Dielectrics [J].IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(4):669-679.
    [122] Roy M, Nelson J K, MacCrone R K, et al. Candidate mechanisms controlling the electricalcharacteristics of silica/XLPE nanodielectrics [J]. Journal of materials science,2007,42(11):3789-3799.
    [123] Roy M, Nelson J K, MacCrone R K, et al. Polymer nanocomposite dielectrics-the role of theinterface [J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2005,12(4):629-643.
    [124] Du Y, Lv Y, Li C, et al. Effect of semiconductive nanoparticles on insulating performances oftransformer oil [J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2012,19(3):770-776.
    [125] Du Y, Lu Y, Li C, et al. Insulating property and mechanism of semiconducting nanoparticlesmodified transformer oils [C]//Zhongguo Dianji Gongcheng Xuebao(Proceedings of theChinese Society of Electrical Engineering). Chinese Society for Electrical Engineering,2012,32(10):177-182.
    [126] Du Y, Lv Y, Wang F, et al. Effect of TiO2nanoparticles on the breakdown strength oftransformer oil [C]//Electrical Insulation (ISEI), Conference Record of the2010IEEEInternational Symposium on. IEEE,2010:1-3.
    [127]李成榕,丁立健,吕金壮,等.氧化铝陶瓷绝缘子真空沿面闪络过程中的陷阱机制[J].中国电机工程学报,2007,27(9):1-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700