卷烟主流烟气中部分成分在滤嘴中的截留效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卷烟主流烟气成分非常复杂,含有多种有害物质,由于卷烟滤嘴能选择性地截留某些有害成分,因此研究卷烟滤嘴的截留效率是卷烟减害降焦的一个重要方面。本论文分析了卷烟滤嘴对低分子醛酮化合物、多环芳烃中的苯并[a]芘及氰化氢的截留效率、针对不同材料滤嘴、不同抽吸方式对烟气中的这些成分的截留效率影响进行了研究,以此为滤嘴选材、成型改性和降焦减害等提供科学的理论依据和数据支撑。具体研究内容如下:
     (1)利用高效液相色谱检测法研究了滤嘴对卷烟主流烟气中低分子醛酮化合物的截留效率。主流烟气用加有2,4-二硝基苯肼(DNPH)的剑桥滤片捕集,采用2%(V/V)吡啶-乙腈作为萃取剂,振荡后上样。滤嘴用DNPH-甲醇溶液作萃取剂,振荡后取萃取液经滤膜过滤,用高效液相色谱分析。结果表明:甲醛、乙醛、丙酮、丙烯醛、丙醛、巴豆醛、2-丁酮及丁醛检出限为0.06~0.15μg/cig,定量限为0.20-0.51μg/cig;回收率为85.7%~92.4%,相对标准偏差为1.79%~5.74%。滤嘴截留低分子醛酮化合物的效率在1.2%~27.4%之间。该方法定量准确可靠,重现性好,可行性高。
     (2)用GC/MS分析了滤嘴截留卷烟主流烟气中苯并[a]芘的效率。滤嘴和滤片处理方法一致:用加有内标的环己烷作为萃取液,超声萃取后过固相萃取柱,经洗脱、纯化和收集后旋转蒸发,浓缩至约0.5mL,转移至色谱瓶中,待GC/MS分析。苯并[a]芘的线性方程为:y=1.197e+003x-7.340e+003,相关系数为0.9999,检出限和定量限分别为0.9ng/mL、3.0ng/mL。结果显示,滤嘴截留苯并[a]芘的效率为18.3%~45.8%。
     (3)采用超高效液相色谱(UPLC)的方法分析滤嘴对主流烟气中苯并[a]芘的截留效率。滤嘴和滤片采用同样方法同时处理:用环己烷作为萃取液,超声萃取,萃取液旋转蒸发至干,残渣用乙腈溶解后上样。抽吸不同的滤嘴的卷烟及在不同的抽吸方式下得出滤嘴截留效率的范围。苯并[a]芘线性方程为:y=1.9479x+39800,相关系数为0.9999。苯并[a]芘的最低检测限为0.10ng/g,定量限为0.36ng/g。用UPLC方法所得的截留效率比GC/MS分析法测定的数据稍低。
     (4)研究了滤嘴截留卷烟主流烟气中氰化氢的效率。主流烟气粒相组分中的氰化氢捕集在滤片中,气相部分为氢氧化钠-乙二胺水溶液吸收。合并粒相萃取液和气相吸收液后经IC色谱分析。滤嘴也用氢氧化钠-乙二胺作为萃取液,振荡后上离子色谱分析。氰化氢线性方程为:y=8.7433x+1.4891,相关系数为0.9992,其检测限为0.05μg/mL,定量限为0.17μg/mL。滤嘴截留氰化氢的效率为9.0%~20.3%。该方法具有分析速度快、定量准确可靠,重现性好的优点。
The mainstream cigarette smoke is very complex; including many harmful components. Due to the selectively filter some harmful components in the mainstream cigarette smoke by the cigarette filter, the research on the filtration efficiencies of cigarette filters is a important aspect of the less harmful and lower tar cigarette. This paper mainly studies the filtration efficiencies of cigarette filters for low molecular aldehydes and ketones, Benzo (a) Pyrene of Polycyclic Aromatic Hydrocarbons and hydrogen cyanide. Filtration effieiencies of these components in cigarette filters by different filters and smoking style are studied.to giving a scientific basis and technological support of the selection of filter. The study results as follow:
     (1)The filtration efficiencies of cigarette filters for low molecular aldehydes and ketones was detected by high performance liquid chromatography. The cigarette smoke was collected using a Cambridge pad and treated with acidic solution of2,4-dinitrophenylhydrazine. The eight low molecular aldehydes and ketones were extracted from the Cambridge filter with2%pyridine acetonitrile solution, the samples were analysed by high performance liquid chromatography and after shaked. The cigarette filtes were extracted by DNPH-method. The result shows that:The recovery tapped in different filters ranged from85.7%to92.4%with relative standard deviations (RSD) of less than5.74%and the detection limits range from0.06μg/cig to0.15μg/cig while the Limit of quantification of eight compounds range from0.20μg/cig to0.51μg/cig. This method is accurate, stable and with good reproducibility, high feasibility.
     (2)The efficiencies of the Benzo (a) Pyrene of mainstream cigarette trapped in cigarette filters were analyzed by gas chromatography/mass spectrometry (GC/MS). The Pretreatment method of the filters was the same as the Cambridge pad. All samples were extracted ultrasonically with internal-standard added cyclohexane, purified by solid-phase extract culoum and condensed to0.5mL, transfered to bottle then analyzing by GC/MS. The Linear Equation of Benzo (a) Pyrene is:y=1.197e+003x-7.340e+003and correlation coefficient is0.9999, the limit of detection and the limit of quantification is0.9ng/mL,3.0ng/mL respectively. The results showed that:The filtration efficiencies of cigarette filters ranged from18.3%to45.8%.
     (3)The filtration efficiencies of cigarette filters for the Benzo (a) Pyrene in mainstream cigarette smoke were analyzed by ultra-high performance liquid chromatography. The Cambridge pad and the filter's treatment were the same at the same time:extracted ultrasonically by cyclohexane, the extraction was dry up and resolved by acetonitrile then analyzed by ultra-high performance liquid chromatography instrument, the interception efficiency of filters for different filters and smoking regime whose influencing factors were studied. The linear equation of Benzo (a) Pyrene is:y=1.9479x+39800and correlation coefficient is0.9999, the limit of detection and the limit of quantification is0.10ng/g,0.36ng/mL respectively. The results determinded by UPLC were lower than by GC-MS.
     (4)The efficiencies of the hydrogen cyanide of mainstream cigarette trapped in ciga rette filters were studied. The hydrogen cyanide in particle part was trapped in Cambrid-ge pad and the gas part was absorbed by Ethylenediamine-Oxyhydrogen sodium solu-tion. quantitative transferred5mL extraction and absorb liquid from particle part and gas part respectively to mix then analyzed by Ion chromatography instrument.The filters were also extracted by Ethylenediamine-Oxyhydrogen sodium solution, then analyzed by Ion chromatography instrument after shaked. The linear equation of hydrogen cyanide is:y=8.7433x+1.4891and correlation coefficient is0.9992, the limit of detection and the limit of quantification is0.05ng/mL and0.17ng/mL respectively.This method has the advantages including rapid analysis, high accuracy, good reproductivity.
引文
[1]张家伟.话说烟草[M].上海:上海书店出版社,2001.
    [2]谢剑平.卷烟危害性评价原理与方法[M].北京:化学工业出版社,2009:1.
    [3]吴银菊.卷烟及卷烟滤嘴中几类有害化合物分析技术的研究和应用[D].湘潭:湘潭大学,2008.
    [4]李晓,姚二民,王震,等.辛夷滤嘴降低卷烟烟气中的有害成分研究[J].中国农学通报2010,26(4):57-60.
    [5]闫克玉.烟草化学[M].郑州:郑州大学出版社,2002:23-274.
    [6]王瑞新.烟草化学[M].北京:中国农业出版社,2003:207-236.
    [7]闫克玉,王建民,姚二民,等.卷烟烟气气相中的有害物质及其减少措施[J].郑州轻工业学院学报(自然科学版),2005,20(4):15-18.
    [8]韩敏.卷烟滤嘴对卷烟主流烟气有害成分截留效率影响[D].长沙:中南大学,2010.
    [9]彭慧敏.离子色谱法在卷烟主流烟气有害成分分析中的应用[D].长沙:中南大学,2007.
    [10]俞听,刘建福,刘德华.卷烟滤嘴过滤效率研究概述[J].烟草科技,2003,1:9-14.
    [11]郑路,郑新章,邱纪青,等.近年国外烟草制品设计及研发若干进展[J].烟草科技,2012,(1): 15-18,51.
    [12]JOACHIM WILLNER. Design of ultra low tar cigarette and modeling of CO delivery[C].现代卷烟配方技术国际研讨会,2004.
    [13]JAPAN TOBACCO INC. Slow-burn-extension cigarette wrapping paper:EP2177663 [P]. 2010-04-21.
    [14]BROWN, WILLIAMSON HOLDINGS. Modified reconstituted tobacco sheet:EP,1781124 [P].2007-05-09.
    [15]REYNOLDS TOBACCO CO. Tobacco-containing smoking article:EP,2083643[P]. 2009-08-05.
    [16]刘立全,李维娜,王月侠,等.特殊滤嘴研究进展[J].烟草科技,2004,(3):17-24.
    [17]于涛,张杰,曹建华,等.活性炭纤维在卷烟滤嘴方面的应用研究进展[J].中国烟草学报,2009,15(4):82-86.
    [18]汪长国,戴亚,杨文敏,等.卟啉对卷烟烟气中3,4-苯并[a]芘的截留作用分析[J].环境与健康杂志,2010,27(12):1093-1094.
    [19]徐建荣,李桂珍,龚安达,等.铁观音茶梗颗粒在卷烟滤嘴中的应用初探[J].应用化工, 2011,40(7):1232-1234,1253.
    [20]李晓,刘凤珠,张峻松,等.不同种类茶叶减轻吸烟危害的研究[J].茶叶学,2010,30(3):213-217.
    [21]黄天辉,黄泰松,邹克兴,等.茉莉花茶提取物降低卷烟气中有害成分的研究[J].安徽农业科学,2011,39(23):14367-14368.
    [22]任军林,李小斌,杜红梅,等.壳聚糖在卷烟滤嘴中的应用[J].烟草科技,2005,(5):32-33.
    [23]王宏伟,方鼎,徐志强,等.壳聚糖-亚铁离子络合物在卷烟滤嘴中的应用[J].安徽农业科学,2009,37(10):4371-4372.
    [24]高鑫,高鑫,孙庆杰,等.中草药在香烟滤嘴中的应用[J].科技信息,2010,(35):920-921.
    [25]王纯凤,高卫东,王鸿博.卷烟滤嘴用醋酸纤维的过滤机制与过滤性能的提高[J].人造纤维,2003,33(4):23-25.
    [26]刘熙,夏国聪.卷烟滤嘴技术的应用研究进展[J].科技信息,2011,(13):448,473
    [27]Xiao X Z. Tobacco chemistry[M]. China Agricultural Technology Press,1997:242-251.
    [28]World Heatlh Organization. Environmental Health Criteria 89. Geneva:World Health Organization,1989:255.
    [29]邱湘龙.酚试剂-分光光度法检测PVP K30和PVP VA64中的醛[J].中国药业,2010,19:26-27.
    [30]张文德,王绍杰.食品包装材料与容器涂料中甲醛的示波极谱测定方法的研究[J].分析科学学报,2000,16:149-152.
    [31]王丽苹,任凤莲,吴名剑,等.固相萃取毛细管气相色谱法测定卷烟滤嘴中7种挥发性羰基化合物[J].分析实验室,2009,28:116-119.
    [32]朱立军,戴亚.液相色谱法分析卷烟主流烟气中的挥发醛[J].烟草科技,2003,(10):22-25.
    [33]刘春波,陆舍铭,招云芳,等.卷烟主流烟气中挥发性醛酮和苯的P&T-GC分析[J].化学研究与应用,2009,21(7):1046-1049.
    [34]徐海涛,吕健,闫向阳,等.色谱法分析卷烟烟气中羰基化合物[J].中国烟草学报,2009,15(6):1-10.
    [35]谢复炜,吴鸣,王异,等.卷烟主流烟气中羰基化合物的改进分析方法[J].中国烟草学报,2006,12(56):15-24.
    [36]蒋腊梅,练文柳,丁时超,等.卷烟侧流烟气中有害醛酮类化合物的分析[J].烟草科技,2012,(1):47-51.
    [37]姚伟,冯学伟,王邵雷,等.卷烟烟气中挥发性羰基化合物的检测方法[J].华东理工大学学报:自然科学版,2005,31(1):110-114.
    [38]严莉红,易小丽,周骏,等.采用LC/MS/MS测定侧流卷烟烟气中挥发性羰基化合物的方法研究[J].中国烟草学报,2008,14(5):7-14,26.
    [39]Perez O, Sergio J. A New Method for the Determination of Carbonyl Compounds in Wines by Headspace Solid-Phase Microextraction Coupled to Gas Chromatography-Ion Trap Mass Spectrometry[J]. J. Agri. Food chem,2010,58:12976-12985.
    [40]Iglesias. J, Gallardo J M, Medina I. Determination of carbonyl compounds in fish species samples with solid-phase microextraction with on fibre derivatization[J]. Food Chem,2010, 123:771-778.
    [41]Miller J H IV, Gardner, WP, Gonzalez R R. UPLC Separation with MS Analysis for Eight Carbonyl Compounds in Mainstream Tobacco Smoke[J]. J. Chrom. Sci,2010,48:12-17.
    [42]Chi Y G, Feng Y L, Wen S, et al. Determination of carbonyl compounds in the atmosphere by DNPH derivatization and LC-ESI-MS/MS detection[J]. Talanta,2007,72:539-545.
    [43]Ciganek M, Neca J, Adamec V, et al. A combined chemical and bioassay analysis of traffic-emitted polycyclic aromatic hydrocarbons[J]. Sci.Total Environ,2004,141-148.
    [44]M astral A M, Callen M S. A review on polycyclic aromatic hydrocarbon (PAH) emission from energy generation[J]. Environ. Sci.Techno 1.,2000,34(15):3051-3057.
    [45]郑天凌,骆苑蓉.高分子量多环芳烃-苯并[a]芘的生物降解研究进展[J].应用与环境生物学报,2006,12(6):884-890.
    [46]冉飞亚.环境中苯并[a]芘的研究进展[J].上海环境科学,2010,29(2):82-84,92.
    [47]Tuan V D. Nanosensing at the single cell leve 1 [J]. Spectrochimica Acta Part B,2008,63: 95-103.
    [48]郑森林,宋玉芳.苯并[a]芘对赤子爱胜蚓线粒体编码基因表达影响研究[J].环境科学,2008,29(2):193-793.
    [49]Baskunov V B, Subach F V, et al. Effects of benzo[a]pyrene-deoxyguanosine lesions on DNA methylation catalyzed by Eco RII DNA methyltransferase and on DNA cleavag effected by EcoRII restrictionend-nuclease[J]. Biochemistry,2005,44:1054-1066.
    [50]Schmid E R, Bachlechner G, Varmuza K, et al.. Determination of polycyclic aromatic hydrocarbons, polycyclic aromatic sulfur and oxygen heterocycles in cigarette smoke condensate[J]. Fresenius J Anal Chem,1985,322:213-219.
    [51]Hoffman D, Wynder E L. On the isolation and identification of polycyclic aromatic hydrocarbons[J]. Cancer,1960,13:1062-1073.
    [52]Spotswood TM. The chromatography of polycyclic aromatic hydrocarbons on acetylated paper[J]. J Chromatogr,1959,2:90-94.
    [53]Moore G E, Thomas R S, Monkman J L. The routine determination of polycyclic hydrocarbons in airborne pollutants[J]. J Chromatog,1967,26:456-464.
    [54]Oakley E T, Johnson L E, Stahr H M. A rapid method for the determination of benzo(a) pyrene in cigarette smoke [J]. Tob Sci.,1973,16:19-21.
    [55]杨立峰,吴俊森,许文.浊点萃取-同步荧光法测定水中苯并[a]芘[J].山东建筑大学学报,2011,26(2):115-118,161.
    [56]Dumont J, Larocque-Lazure F, Iorio C. An alternative isolation procedure for the Subse-quent determination of benzo(a)pyrene in total particulate matter of cigarette smoke[J]. J Chromatogr Sci.,1993,31:371-374.
    [57]Culea M, Cozar O, Culea E. PAHs in Cigarette Smoke by Gas Chromatography-Mass Spectrometry[J]. Indoor and Built Environment,2005,14(3-4):283-292.
    [58]Gmeiner G, Stehlik G, Tausch H. Determination of seventeen polycyclic aromatic hydrocarbons in tobacco smoke condensate[J]. J chromatogr A,1997,767:163-169.
    [59]Tomkins B A, Jenkins R A, Gries W H, et al.. Liquid Chromatographic Determination of Benzo(a)pyrene in the Total Particulate Matter of Cigarette Smoke[J]. J Assoc Off Anal. Chem,1985,68:935-941.
    [60]Kayali M N, RubioBarroso S. Determination of Benzo(a)pyrene in Total Particulate Matter of Virginia and Black Tobacco Smoke by HPLC with Fluorimetric Detection [J]. JLiq Chrom-atogr & Rel Tech,1995,18:1617-1632.
    [61]周仕禄,肖协忠,许锴霖,等.卷烟主流烟气中苯并[a]芘分离纯化方法的研究[J].中国烟草学报,2006,12(3):53-54.
    [62]何智慧,练文柳,蒋腊梅,等.GPC-气相色谱质谱法测定卷烟主流烟气中的苯并[a]芘[J].湖南文理学院学报:自然科学版,2009,21(1):42-46.
    [63]何智慧,罗嘉,蒋腊梅,等.气相色谱-质谱法检测卷烟烟气中的苯并[a]芘[J].湖南文理学院学报(自然科学版):2007,19(2):42-46.
    [64]赵乐,郭吉兆,张天栋,等.气质联用法测定卷烟侧流烟气中苯并[a]芘[J].中国烟草学报,2011,17(4):12-15.
    [65]尹洁,张晓兵,杨洋,等.卷烟烟气焦油释放量与B(a)P含量的相关性分析[J].安徽农学通报,2010,16(21):30-31,57.
    [66]朱晓雨.动物源食品中苯并芘残留量检测方法[EB/01]. www.39kf.com/my/tag_-32104a 24182a-32017/,2012-4-15.
    [67]杨敏娜,王来梁,高孝.液液萃取-高效液相色谱法测定水中苯并[a]芘[J].地质学刊,2010,34(4):412-414.
    [68]徐荣,张德明,徐林.城市污泥中苯并[a]芘的超声提取、净化和检测[J].中国给水排水,2006,22(2):82-84.
    [69]周克英.高效液相色谱荧光检测法测定大气中苯并[a]芘[J].内蒙古环境科学,2009(2):96-97.
    [70]高庚申,谢蔚嵩,彭晓渝,等.高效液相色谱法测定饮用水中苯并[a]芘[J].环境研究与监测,2009,22(4):53-55.
    [71]周小波.高效液相色谱法测定烤香鸭肉串中的苯并[a]芘[J].科技创新导报,2010(1):21-21.
    [72]杨晓燕,刘玉莲,张伟,等.高效液相色谱法检测植物油中苯并[a]芘的含量[J].山东化工,2011,40(5):42-44.
    [73]黎成勇,李克,刘建福,等.Al2O3和TiO2吸附氢氰酸研究[J].烟草科技,2005,(12):24-26.
    [74]Ballantyne B. Clinical and experimental toxicology of cyanides. Wright, Bristol, IOP Publi-shing,41-126.
    [75]Fiksel J, Cooper C, Eschenroeder A., et. Al.. Exposure and risk assessment for cyanide. Washington, DC, US Environmental Protection Agency, EPA/440/4-85/008,1981.
    [76]Korte F, Coulston F. Some considerations on the impact on ecological chemical principles in practice with emphasis on gold mining and cyanide[J]. Ecotoxicology and Environmantal Safety,1998,41:119-129.
    [77]Gross DW, Treatment technologies ofr hazardous wastes. Part IV. A review of alternative treatment processes for metal-bearing hazardous waste streams[J]. Journal of the Air Pollution Control Association,1986,36:603-614.
    [78]Ermans A M, et al.. Possible role of cyanide and thiocyanate in the etiology of endemic Cretinism[J]. Advances in Experimental Medicine and Biology,1972,30:455-486.
    [79]Frakes RA, et al.. Comparative metabolism of linamarin and amygdalin in hamsters[J]. Food and Chemical Toxicology,1986,24:417-420.
    [80]Johnson W R, Kang J C. Mechanism of Hydrogen Cyanide Formation from the Pyrolysis of Amino Acids and Related Compounds[J]. Journal of Organic Chemistry,1971,36:189-192.
    [81]Y.X.Jiang, N. Lu, F. Yu, et al.. Fresenius J. Anal. Chem.,1999, (364):786.
    [82]Mattina C F, et. Al.. Report of the task force on the gas phase of the cigarette smoke, Montr-eux, CORESTA Conference,1974.
    [83]Brunnemann KD, Yu L, Hoffmann D. Chemical Studies on tobacco smoke. XIIX. Gas chromotographic determination of hydrogen cyanide and cynogen in tobacco smoke[J]. J.Anal.Toxicol.,1977,1:38-42.
    [84]Koller K et aL. Puff-by-puff determination of gas phase acetaldehyde, HCN, NO, and CO using FTIR spectrometry, CORESTA Smoke Study Group, in Kallithea, Greece,1990.
    [85]Johnson W R, et al.. The distribution of products between mainstream and sidestream smoke[J]. Tobacco Science,1973, XVII:141-144.
    [86]Dong J.Z., Glass J. N., Moldoveanu S.C.. Simple GC-MS technique for the analysis of Vapor phase mainstream cigarette smoke[J]. Journal of Microcolumn Separation,2000,12(3):142-152.
    [87]国家环境保护局科技标准司.水环境分析方法标准工作手册(上册)[M].中国环境科学出版社,2000.
    [88]许永,张霞,刘巍,等.抽吸方式对卷烟主流烟气中氢氰酸释放量的影响[J].中国烟草学报,2011,17(6):4-7.
    [89]黎成勇,刘建福,尹笃林,等.卷烟烟气中氢氰酸分析方法概述[J].中国烟草科学2005,(1):41-42.
    [90]谢志海.原子吸收法在有机分析中的应用(VI)卷烟中氢氰酸的分析[J].化学研究与应用,1995,(2):219-221.
    [91]荣星.气相色谱法检测无极阴离子CN-[J].丹东纺专学报,2002,(2):13-14.
    [92]J. Xu, H.W. Tong, X.Y.Yan, et al. Chromatographia,2006, (64):609.
    [93]N. Mottier, F. Jeanneret, M. Rotach. J.AOAC Int.2010,93(3):1032.
    [94]陈开波,孙俊举,葛少林.离子色谱法测定卷烟主流烟气中氢氰酸[J].中国烟草学报,2007,13(5):23-26.
    [95]Zi-Wei Zhang, Ying-Bo Xu, Cheng-Hui Wang, et al. Direct determination of hydrogen cyanide in cigarette mainstream smoke by ion chromatography with pulsed amperometric detection[J]. Journal of Chromatography A,2011, (1218):1016-1019.
    [96]王丽苹,任凤莲,吴名剑,等.不同材料滤嘴对卷烟主流烟气中挥发性羰基化合物截滤性能的研究[J].化学研究与应用,2008,20(6):796-798.
    [97]Rawbone R G. Switching to low tar cigarettes[J]. Thorax,1984, (39):657-662.
    [98]Baker R R, M Dixon, C Hill. The incidence and consequences of filter vent blocking amongst British smokers[J]. Beitr Tabakfor Int,1998, (18):71-83.
    [99]Watson C, Craw J Mc, Polzin J G, et al. Development of a method to assess cigarette smoke intake[J]. Environ SciTechnol,2004, (38):248-253.
    [100]胡念念,庹苏行,戴云辉.卷烟滤嘴对卷烟主流烟气中氨截留的研究[C].第13届离子色谱学术报告会论文集.2010:1-4.
    [101]庹苏行,胡念念,戴云辉LC-MS/MS法检测卷烟烟气滤嘴截留的TSNAs[J]烟草科技,2008(12):2-46.
    [102]韶济民,刘惠民,夏巧玲,等.卷烟烟气中烟草特有亚硝胺的滤嘴截留效率测定[J].烟草科技,2010(7):34-38.
    [103]吴银菊,吴名剑,蒋腊梅,等.固相萃取-气相色谱/质谱同时测定卷烟滤嘴中的四种芳香胺[J].分析科学学报,2008,24(5):557-560.
    [104]张丽丽,杨俊,苏庆德,等.硅胶表面修饰添加剂选择性降低卷烟烟气中的苯酚[J].光谱实验室,2011,28(3):1396-1399.
    [105]Johnson W R and Kang J C. Mechanism of Hydrogen Cyanide Formation from the Pyrolysis of Amino Acids and Related Compounds[J]. Journal of Organic Chemistry,1971, (36): 189-192.
    [106]Agrawal V, et al.. Extraction spectrophtometric method for the determination of hydrogen cyanide in environmental samples using 40 aminosalicylic acid[J]. International Journal of Environmental Analytical Chemistry,1991, (45):235-244.
    [107]Collins P F, et al.. A trapping system for the combined determination of total HCN and total gas phase aldehydes in cigarette smoke[J]. Beitrage zur Tabakforschung,1973,7(2):73-78.
    [108]Rickert W S, Stockwell P. B.. Automated determination of hydrogen cyanide, acrolein and total aldehydes in the gas phase of tobacco smoke[J]. J. Autom. Chem.,1979,1:152-154.
    [109]Przybylowicz E P, Rogers LB. Colormetric titrations with mercury (Ⅰ and Ⅱ)-determination ofcyanide[J]. Anal. Chem.,1958, (30):65-69.
    [110]Maseda C, et al.. Improved gas chromatography with electron-capture detection using a reaction pre-column from the determination of blood cyanide:a higher content in the left ventricle of fire victims[J]. Journal of Chromatography,1989, (490):319-327.
    [111]Seto Y, et al.. Determination of blood cyanide by headspace gas chromatography with nitrogen phosphorus detection and using a megabore capillary column[J]. Analytica Chimica Acta,1993, (276).-247-259.
    [112]Chinaka S, et al.. Simultaneous determination of cyanide and thiocyanate in blood by ion chromatography with fluorescence and ultraviolet detection[J]. Journal of Chromatography B,1998, (713):353-359.
    [113]Dolzine TW, et al.. Determination of hydrogen cyanide in air by ion chromatography[J]. Analytical Chemistry,1982, (54):470-47

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700