珠江三角洲大气挥发性羰基化合物的时空分布特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
羰基化合物是大气环境和室内空气中常见的挥发性有机污染物,主要包括醛类和酮类化合物。羰基化合物既是大气光化学反应的产物,又能通过光化学反应生成羧酸、羟基自由基、臭氧和过氧乙酰硝酸酯。由于其在大气光化学反应过程中的重要作用及对人体健康的影响而受到越来越多地关注。
     本文采用自制的2,4-二硝基苯肼(DNPH)涂布的硅胶吸附管,吸附空气中的羰基化合物,建立了17种醛酮化合物的的DNPH柱前衍生—高效液相色谱分析方法。然后采取区域观测和加强观测的方法,较为系统地研究了珠江三角洲区域大气挥发性羰基化合物的含量水平及时空分布规律。
     研究表明:
     1.自行研制采样管可以有效地采集空气中的17种醛酮类化合物,其回收率在97.35%以上,达到商品管同等效果,大大降低了实验成本。
     2.珠三角区域大气中甲醛和乙醛两种醛类化合物浓度相对较高,分别是7.75μg/m~3和8.18μg/m~3,酮类化合物中丙酮较高,浓度为12.06μg/m~3,其他羰基化合物含量较低。与世界上许多城市相比,珠三角大气环境中羰基化合物污染处于中等偏上水平。
     3.羰基化合物白天平均浓度高于夜晚,12:00~16:00其总浓度达到最高,凌晨4:00达到最低。地面采样点的羰基化合物浓度高于7楼和15楼的采样点,而7楼和15楼的采样点羰基化合物的浓度差别不大。
     4.珠三角区域大气中甲醛/乙醛为0.97,得出羰基化合物来源主要是人为污染,而乙醛/丙醛为8.51,说明植物也能释放出大量的羰基化合物。甲醛、乙醛和丙醛与其他羰基化合物的之间具有较好的相关性,表明这些化合物有共同的来源,但是丁烯醛与其他羰基化合物的相关性比较差。
     5.广州市区交通干道旁空气中乙醛浓度高于甲醛,比值达1.73,原因是使用乙醇和甲基叔丁基醚(MTBE)的汽油导致大量的乙醛的生成。甲醛/乙醛和乙醛/丙醛值都很低,反映出广州市区机动车尾气排放中醛酮类化合物的污染特征。
Carbonyls are some kinds of volatile organic pollutants and include aldehydes and ketonescompounds, can be easily measured both in indoor and outdoor air. They are formed byatmospheric photochemistry reaction, and could product OH radical, alkyl radical, ozone,carboxylic acid peroxyacetyl nitrates by atmospheric photochemistry reaction. Carbonyls havereceived more and more attention due to their adverse health effects and their important role inthe atmospheric chemistry.
     A method of measuring the volatile carbonyls in atmosphere by high performance liquidchromatography was established in this study. Firstly, a self-made packed absorbent column wasinvented to sample the volatile carbonyls, with the saturated solution of2,4-dinitrophenylhydrazine(DNPH) in silica gel column, which could react quickly withcarbonyls to generate DNPH derivatives. Then these derivatives were determined by HPLC.Then, the method was used for sampling and analyzing carbonyls in the atmosphere of PearlRiver Delta. Their concentrations and spatial-temporal distribution were studied in full-scale.
     In these studies, main conclusions were gained as following:
     1. Self-made cartridge successfully, collected carbonyls in the air, the average recovery ratios wereover 97.35%. The Self-made cartridge could acquire comparably effect as commercial cartridge, and belower sample cost consumedly.
     2. The concentration of formaldehyde and acetaldehyde were 7.75μg/m~3 and 8.18μg/m~3, whichwere respectively higher than other aldehydes compounds in the atmosphere of Pearl River Delta,and acetone was 12.06μg/m~3 higher in ketones compotmds. The concentrations of otherscarbonyls were very low. Compared with the data from other studies on urban areas worldwide,the carbonyls in the atmosphere of PRD were over middle level.
     3. The even concentration of carbonyls in daytime was higher than what at night, it reachedtiptop during from middy to 4 p.m and reach undermost at 4 a.m. The concentration of carbonylsat ground site was higher than 7th and 15th floor site, but the concentration at 7th sites was asmuch as 15th floor.
     4. From the ratio of formaldehyde/acetaldehyde which was 0.97, we concluded that anthropogenicemissions was the major source in the atmosphere of the Pearl River Delta, and the plant alsocould release lots of carbonyls from the ratio of acetaldehyde/propanal which was 8.51. Good correlations was found between formaldehyde, acetaldehyde, propanal and other carbonyls compounds,that concluded these compounds had common sources, but the correlations betweencrotonaldehyde and others was bad.
     5. The concentration of acetaldehyde was higher than formaldehyde at roadside air in Guangzhou,because the usage of the gasoline that mixed with ether and MTBE caused a great deal ofacetaldehyde. Both formaldehyde/acetaldehyde and acetaldehyde/propanal were low, whichexpressed that the main source of carbonyls at roadside air of Guangzhou was the motorvehicular.
引文
[1] 中国环境保护法规汇编.工业企业设计卫生标准(TJ36-79).北京:中国环境科学出版社,1986,328~332.
    [2] 大气固定源的采样和分析编委会.大气固定源的采样和分析.北京:中国环境科学出版社,1993,502~508.
    [3] 袁履冰.有机化学.高等教育出版社,1999:266~275.
    [4] Carlier P, Hannachi H. and Mouvier G. The chemistry of carbonyl compounds in the atmosphere-a review. Atmosphereic Evironment, 1986, Vol. 20(11): 2079~2099.
    [5] Fruekilde, P., Hjorth, J., N.R, Kotzias, D., Larsen, B. Ozonolysis at vegetation surfaces: a source of acetone, 4-oxopentanal, 6-methyl-5-hepten-2-one, and geranyl acetone in the troposphere. Atmos. Environ. 1998, 32: 1983~1902.
    [6] Martin, P.,, neavner, D.L., Nelson, P.R.,Maiolo,K.C.,Risner, C.H.,Simmons,P.S., Morgan, W.T. and Ogden,M.W. Enviromental Tobacco Somke(ETS): A, Market Cigarette Study. Environmental International. 1997, 23: 75~90.
    [7] Hellen,H., Hakola, H., Reissell,A., Ruuskanen, T.M..carbonyl compounds in boreal coniferous air in Hyytiala, Southern Finland. Atmos. Chem. Phys. 2004, 4: 1771~1780.
    [8] Guenther, A., Hewitt, C.N., Erickson, D., Fall, R., Geron, C. A global model of natural volatile organic compound emissions. Journal of Geophsical Research. 1995, 100: 8873~8892.
    [9] Atkinson, R., Arey, J.. Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a review. Atmos. Environ. 2003, 37: S197~S219.
    [10] Friedrich, R. and Obermeier, A. Anthropogenic emissions of volatile organic compounds, in: Reactive Hydraocarbons in the Atmosphere, edited by Hewitt,C.N.,academic Press, London, 1~39, 1999.
    [11] USEPA. Motor vehicle-related air toxics study. April 1993.
    [12] National Research Council,Board Toxicology and Environmental Health Hazards. Formaldehyde and other aldehydes. Washi ngton: National Academy Press. 1981.
    [13] Grosjean D, Grosjean E and Gertler A W. On-road emission of carbonyls from light-duty and heavy-duty vehicles. Environ. Sci. Technol. 2001, 35: 45~53.
    [14] Grosjean D, Grosjean E and Moreira L F R. Speciated ambient carbonyls in Rio de Janeiro, Brazil. Environ. Sci, Technol. 2002, 36: 1389~1395.
    [15] Lee Y N, Zhou X, Hallock K. Atmosphereric carbonyls compounds at a rural southeastern United States sites. J. Geophys. Res. 1995, 100(D12): 25933~25944.
    [16] Altshuller, A. P. Production of aldehydes as primary emissions and from secondary atomospheric reactions of alkenes and alkanes during the night and early moming hours. Atmos. Environ. 1993, 27A: 21~32.
    [17] Possanzini, M., Di Palo,V., Petricca, R., Fratarcangeli, R., Brocco, D. Measurements of lower carbonyls in Rome ambient air. Atmos. Environ. 1996, 30: 3757~3764.
    [18] Grosjean, D. Formaldehyde and other carbonyls in Los Angeles ambient air. Environment Science & Technology. 1982, 16: 254~262.
    [19] Vairavamurthy, A., Robert, J. M., Newman, L. Methods for determinations of low molecular weight carbonyl compounds in the atmosphere: a review. Atmos. Environ. 1992, 26A: 1965~1993.
    [20] Lary D J and Shallcross D E. Central of carbonyl compounds in atmosphereic chemistry. J Geophys. Res. 2000, 105(D15): 19771~19778.
    [21] Carter, W. P. L., Winer, A. m., Pitts,J.N., Jr. Effect of peroxyacetyl nitrate on the initiation of photochemical complex and a petroleum refinery. The Science of the Total Environment. 2003, 321: 103~112.
    [22] Amdur, M. O. Air Pollutants. In Toxicology: the basic science of poisions, 4th ed.; Amdur, M. O., Doull, J., Klaassen, C. D., Eds.; Pergamoon Press: New York, 1991.
    [23] Altshuller, A. P. Assessment of the contributions of chemical species to the eye irritation potential of photochemical smog[J]. J. Atmos. Chem. 1978, 28: 594~598.
    [24] 刘军卓,高星.居住环境和公共场所有毒因素及其防治.北京,化学工业出版社,2000:37~86.
    [25] Cardenas L.M., Brassington D.J., Allan B.J., Coe H., Alicke B., Platt U., Wilson K.M., Plane J. M. C. and Penkett S. A. Intercomparison of formaldehyde measurements in clean and polluted atmospheres. J. Atmos. Chem. 2000, 37: 53~58.
    [26] Khare P, Satsangi GS, Kumar N, Kumari K M and Srivastava S S. Surface measurements of formaldehyde and formic and acetic acids at a subtropical semiarid site in India.J. Geophys. Res. 1997, 102(D5): 18997~19005.
    [27] Baez AP, Padilla H, Gervantes J, Pereyra D, Torres MC, Garcia G and Belmont R. Preliminary study of the determination of ambient carbonyls in Xalapa city, Veracruz, Mexico. Atmos. Environ. 2001, 35: 1813~1819.
    [28] US Environment Protection Agency(US EPA), 1999. Compendiurn Method To-11A, Determination of formaldehyde in ambient air using adsorbent cartridge followed by high performance liquid chromatography(HPLC), [Active Sampling Methodology] [S].
    [29] Califormia Air Resources Board (CARB). Determination of aldehydes and ketones compounds in automotive sources samples by high performance liquid chromatography. 1999.
    [30] 任清、郭友嘉.气相色谱法快速测定空气中低分子量醛.色谱.1997,15(4):356~357.
    [31] 戴天有、魏复盛、谭培功和刘靖.空气和废气中醛酮污染物的气相色谱测定.环境化学.1998,17(3):293~297.
    [32] 祝惠英、郭素荣和石磊.毛细管气相色谱法测定空气中低分子醛酮化合物.青岛大学学报,2002,17(1):90~92.
    [33] 谭培功、于彦彬、蒋海威、刘赞.青岛市大气中醛酮类化合物的分析及研究变化.中国坏境科学,2002,22(5):451~455.
    [34] 唐建辉、王新明、冯艳丽、盛国英、傅家谟.大气中C_1-C_(10)羰基化合物的分析测定.分析化学.2003,31(12):1468~1472.
    [35] 邹世春、曹志祥、张展霞、何建辉、李顺诚.广州路边空气中羰基污染物浓度及其变化.中山大学学报(自然科学版).2003,42(增刊2):171~175.
    [36] 陆豪、朱利中.列车车厢内醛酮化合物的污染状况.环境科学.2005,26(2):74~77.
    [37] Vogel M, Buildt A and Karst U. Hudrazine reagents as derivatizing agents in environmental analysis—a critical review. Fresenius J. Anal. Chem. 2000, 366: 781~791.
    [38] 唐建辉、王新明、盛国英、傅家谟.大气中甲醛和羰基化合物分析研究进展.分析化学,2005,33(1):134~140.
    [39] Grosjean D. Chemical ionization mass spectra of 2,4-dinitrophenylhydrazone of carbonyl and hydroxycarbonyl atmosphereic pollutants. Anal. Chem. 1983, 55: 2439~2463..
    [40] Skauragawa A, Yoneno T, Inoue K and Okutani T. Trace analysis of carbonyl compounds by liquid chromatography-mass spectrometry after collection an 2, 4-dinitrophenylhydrazone derivatives. J. Cheromat. A. 1999, 844: 403~408
    [41] Ewa Dabek-Zlotorzynska and Edward P C Lai. Separation of carbonyl 2,4-dinitrophenylhydrazone by capillary electrochromatography with diode array detection. J. Chromat. A. 1999, 853: 487~496.
    [42] Build A and Karst U. 1-Methyl-1-(2,4-dinitrophenyl)hydrazine as a new reagent for the HPLC determination of aldehyde. Anal. Chem. 1997, 69: 3617~3622.
    [43] Build A and Karst U. N-methyl-4-hydrazino-7-nitrobenzofuran as a new reagent for air monitoring of aldehyde and ketones. Anal. Chem. 1999, 71: 1893~1898.
    [44] Helmig D and Greenberg J P. Automated in situ gas chromatographic-mass spectrometric analysis of ppt level volatile organic trace gasses using multistage solid-adsorbent trapping. J. Chromat. A. 1994, 667: 123~132.
    [45] Possanzini M, Palo V D, Brancaleoni E, Frattoni M and Ciccioli P. A train of carbon and DNPH-coated cartridges for the determination of carbonyls from C1 to C12 in air and emission samples. Atmos. Environ. 2000, 34: 5311~5318.
    [46] Batterman S A, Zhang G Z and Baumann M. Analysis and stability of aldehydes and terpense in electropolished canisters. Atmos. Environ. 2000,34:5311-5318.
    [47] Grojean, E., Grsjean, D., Fraser, M. P., Cass, G. R. Air Quality Model Evaluation Data for Organics. 2. C1-C14 Carbonyls in Los Angeles Air. Environmental Science & Technology. 1996,30:2687~2703.
    [48] Zhang, J., He, Q., Lioy Paul, J. Characteristics of aldehydes: Concentrations, sources, and exposures for indoor and outdoor residential microenvironments. Environmental Science & Technology. 1994, 28: 146~152.
    [49] Ho, K, E, Lee, S. C., Louie, P. K. K., Zou, S. C. S. Seasonal variation of carbonyl compound concentrations in urban area of Hong Kong.. Atmospheric Environment. 2002, 36: 1259~1265.
    [50] Feng, Y L., Wen, S., Wang, X., Sheng, G., He, Q., Tang, J., Fu, J. Indoor and outdoor carbonyl compounds in the hotel ballrooms in Guangzhou, China. Atmos. Environ. 2004, 38: 103~112.
    [51] 冯艳丽、陈颖军、文晟、盛国英、傅家谟.广州大气中羰基化合物特征.环境科学与技术.2007,30(2):51~54.
    [52] Shepson, P. B., Hastie, D. R. Atmospheric concentrations and temporal variations of C1-C3 carbonyl compounds at two rural sites in central on tario. Atmospheric Environment. 1991. 25A: 2001~2005.
    [53] Grosjean E, Williams Ⅱ E L and Grosjean D. Ambient levels of formaldehyde and acetaldehyde in Atlanta, Georgia. J. Air Waste Manage. Assoc. 1993, 43: 469~474.
    [54] 唐建辉.广州市大气环境中醛类等挥发性有机污染物的初步研究.中科院研究生院硕士学位论文.2002:47~49.
    [55] Ferrari C P. Aromatic hydrocarbons and aldehydes in the atmosphere of Genoble. Chemosphere. 1998, 37: 1587~1601.
    [56] Anderson L G. Sources and sinks of formaldehyde and acetaldehyde: an analysis of Denver's ambient concentration data[j]. Atmospheric Environment, 1996, 30: 2113~2123.
    [57] Ciccioli, P., Brancaleoni, E., Frattoni, M., Cecinato, A., Brachetti, A. Ubiquitous occurrence of semi-volatile carbonyls compounds in tropospheric samples and their possible source. Atmos. Environ. 1993,24A, 1891~1901.
    [58] Schauer, J. J., Kleeman, M. J., Cass, G. R., Simoneit, B.R.T. Measurement of emissions from air pollution source.4.C1-C27 Organic Compounds from Cooking with Seed Oils. Environ. Sci. Technol. 2002,36:567~575.
    [59] Shimoda, M., Nakada, N., Nakashima, M., Osajima, Y. Quantitative comparison of volatilef lavor compounds in deep-Roasted and light-Roasted sesame Seed Oil. J. Agric. Food Chem. 1997,45:3193-3196.
    
    [60] Miguel, A.H., De aquino neto, f.r., Cardoso, J.N. Characterization of indoor air quality in the cities of Sao Paulo and Rio de Janeiro, Brazil. Environmental Science & Technology. 1995,29:338-345.
    
    [61] Ferrari, C.P. Aromatic hydrocarbons and aldehydes in the atmosphere of Genoble[J]. Chemosphere. 1998,37:1587-1601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700