基因枪法将HMW-GS(5+10)基因转入小麦的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验采用基因枪方法,以带有小麦高分子量麦谷蛋白5亚基和10亚基基因的高效表达载体转化小麦受体品种豫麦18号、豫麦21号、豫麦49号和豫农9901,以期得到高效表达高分子量麦谷蛋白5亚基和10亚基的小麦新种质。为了减少转基因沉默、提高外源基因表达量,在目的基因的两侧构建了核基质结合序列MAR,并在基因末端加上了内质网滞留信号(KDEL)编码序列以期提高目的基因表达水平。
    对基因枪轰击小麦幼胚愈伤组织过程中几个重要参数的研究结果表明,在同等条件下250 μg 枪-1的金粉用量优于500 μg 枪-1,颗粒直径1.0 μm的金粉转化效果好于直径1.6 μm金粉,单枪与双枪差别不大,可裂膜片压力为1300 psi时,轰击后愈伤组织的再生绿点率明显高于可裂膜片为1100 psi时的绿点率,9 cm靶距的处理效果较好。
    试验中4个基因型共得到146株再生植株,对5亚基基因进行的PCR鉴定表明在所有146株植株中,出现预期大小DNA片段的植株有141株,有5株未扩增出预期片段,平均PCR阳性率达到96.57%。其中豫麦18号117株中有114株PCR检测为阳性,阳性率达到97.44%,豫麦21号3株为阳性,豫麦49号24株中22株检测结果为阳性,阳性率为91.67%,豫农9901仅有1株,PCR检测结果为阳性。对10亚基基因进行的PCR鉴定表明出现预期大小DNA片段的植株有138株,有8株未扩增出预期片段,平均PCR阳性率达到94.52%。其中豫麦18号117株中有112株PCR检测为阳性,阳性率达到95.72%,豫麦21号4株均为阳性,豫麦49号24株中21株检测结果为阳性,阳性率为87.5%,豫农9901 1株,PCR检测结果为阳性。
    对转基因植株T0代的种籽所做SDS-PAGE的电泳结果表明,豫麦21号、豫麦49号、豫农9901的种籽高分子量麦谷蛋白亚基SDS-PAGE带型均未发生变化,豫麦18号117株中,有7株的种籽蛋白带型发生了变化,与未转基因的对照相比,这7株的高分子量麦谷蛋白带型均出现比对照的带型多出2条比较明显的带。但是,这2条带的位置与预期的5亚基与10亚基在SDS-PAGE上的位置并不一致。7株带型有变化的再生植株全部为不带KDEL编码序列质粒的转化植株,这一现象有待进一步研究。
To get high molecular weight glutenin subunit 5 and subunit 10 overexpressed wheat lines, wheat cultivar, Yumai 18, Yumai 21, Yumai 49 and Yunong 9901,were transformed with wheat high molecular weight glutenin subunit 5 and subunit 10 genes high-efficient expression vector by means of biolistic bombardment. In order to reduce transgene silencing and enhance expression of foreign gene, the two target genes were flanked with nuclear matrix attachment region, the MAR sequence. And coding sequence of KDEL, ER retention signal, was added to the end of the target genes to enhance the expression of target genes.
    To improve transformation of wheat immature embryo calli, the influence of several key parameters in microprojectile bombardment were studied. The results showed that under identical conditions, transformation ratio of Au dosage of 250 μg per shot was higher than that of 500 μg per shot and Au particle of 1. 0 μm in diameter was better than that of 1. 6 μm. And there was no significant difference between single shot and double shots. When the rupture pressure was 1300 psi, percentage of regenerated green spots after bombardment was much higher than that of 1100 psi. In target distance (6, 9 and 12 cm) experiment, effect of 9 cm was the best.
    146 regenerated plantlings were gotten from the 4 genotypes. Among the 146 plantlings, PCR identification of subunit 5 gene indicated that 141 plantlings showed expected DNA band, but 5 plantlings didn’t. The average PCR positive ratio was 96. 57%. Among 117 plantlings of Yumai 18, 114 plantlings were PCR positive, and the positive ratio was 97. 44%. 3 plantlings of Yumai 21 was positive, and 22 plantlings of 24 Yumai 49 plantlings were positive, the positive ratio was 91. 67%. There was only 1 plantling of Yunong 9901, and the PCR detection result was positive. PCR identification of subunit 10 gene indicated that 138 plantlings showed expected DNA band, and 8 plantlings didn’t. The average PCR positive ratio was 94. 52%. Among 117 plantlings of Yumai 18, 112 plantlings were PCR positive, and the positive ratio was 95. 72%. All the 3 plantlings of Yumai 21 were positive, and 21 plantlings of 24 Yumai 49 plantlings were positive, the positive ratio was 87. 5%. The only plantling of Yunong 9901 was positive.
    
    In SDS-PAGE experiment of the seeds, the HMW subunit SDS-PAGE band patterns of Yumai 21, Yumai 49 and Yunong 9901 didn’t show any apparent change. Among the 117 regenerated plants of Yumai 18, 7 plantlings showed seed HMW-glutenin SDS-PAGE band pattern change. Compared to wild type, there were 2 extra HMW-glutenin bands. But the position of the 2 bands was not consistent with the expected position of subunit 5 and subunit 10. And moreover, the 7 regenerated plants with changed band pattern were all in the transformants of plasmid without KDEL coding sequence. This interesting result needs to be researched further.
引文
Nieto-Taladriz M T, Rodriguez-Quijano M, Carrillo J M. Biochemical and genetic characterisation of a D glutenin subunit encoded at the Glu-B3 locus. Genome, 1998, 41 (2): 215-221.
    Nakamura H, Fujimaki H. Specific Glu-D1f allele frequency of Japanese common wheat compared with distribution of Glu-1 alleles in Chinese wheat, Cereal Chemistry, 2002, 79(4): 486-491.
    He Zhonghu, Pena R I & Rajaram S. High molecular weight glutenin subunit composition of Chinese bread wheat. Euphytica, 1992, 64:11~20.
    Payne P I, Holt L M, Thompson R D, et al. 1983. The high-molecular-weight subunits of glutenin: classical genetics and the relationship to bread-making quality. In: Pro 6th Inter Wheat Genet Symp, Kyoto (Japan), 827~834.
    刘广田,许明辉等. 普通小麦胚乳谷蛋白亚基的遗传研究:I高分子量谷蛋白亚基变异的多样性及其在F1的遗传行为. 中国农业科学,1998,21(1):56~60.
    Wim S Veraverbeke, Jan A Delcour.Wheat protein composition and properties of wheat glutenin in relation to breadmaking functionality, Critical Reviews in Food Science and Nutrition, 2002, 42(3): 179-209.
    J Zhu, K Khan. Quantitative variation of HMW glutenin subunits from hard red spring wheats grown in different environments, Cereal Chemistry, 2002, 79(6): 783-787.
    Payne P I, Holt L M, Worlan A J, et al. Structural and genetical studies on the high-molecular-weight
    
    
    subunits of glutenin: Ⅲ Telocentric mapping of subunit genes on the long arm of thr homologous group 1 chromosomes. TAG, 1982, 63:129~138.
    Lukaszewski A J, Brzezinski W. Registration of two germplasms of rye with introgressions of the Glu-D1 locus from chromosome 1D of bread wheat, Crop Science, 2003, 43(6): 2315.
     李保云. 小麦高分子量谷蛋白亚基的遗传规律及其与小麦品质性状关系的研究,1997, 中国农业大学硕士学位论文.
     刘广田. 小麦籽粒蛋白质、赖氨酸含量和SDS沉淀值在杂种一代的遗传表现. 北京农业大学学报,1986, 12(3):243~249.
     Radovanovic N, Cloutier S, Brown D, et al. Genetic variance for gluten strength contributed by high molecular weight glutenin proteins, Cereal Chemistry, 2002, 79(6): 843-850.
     孙辉. 小麦谷蛋白亚基与烘烤品质的关系及Glu-D1位点基因多态性分析,1998,中国农业大学博士学位论文.
     Pogna N E, Melini F, Peruffo A D B. Glutenin subunits of Italian common wheat of good bread-making quality and comparative effects of high molecular weight glutenin 2 and 5, 10 and 12 on flour quality. In: B. Borghi(ed), Hard wheat: agronomic, technological, biochemical and genetic aspects, 1987, 53~59.
     Allaby R G, Banerjee M, Brown T A, Evolution of the high molecular weight glutenin loci in the A, B, D, and G genomu of wheat, Genome, 1999, 42(2): 296-308.
     Rogers W J, Payne P I, et al. Effect on bread-making quality of x-type and y-type high molecular weight subunits of glutenin. J. Crereal Sci, 1991,14: 209~221.
     朱金宝. 普通小麦品质性状遗传、环境互作及其与高、低分子量谷蛋白亚基(HMW-GS,LMW-GS)的关系,1994,中国农业大学博士学位论文.
     Dong H, Cox T S, Sears R G, et al. High molecular-weight genes effects on quality in wheat. Crop Sci, 1991, 31:974~979.
     Lukow O M. The HMW glutenin subunit composition of Canadian wheat cultivars and their association with bread-making quality. J. Sci. Food Agric, 1989, 46(4): 451~460.
     赵和,卢少源,李宗智,等. 小麦高分子量麦谷蛋白亚基遗传变异及其与品质和农艺性状关系的研究. 中国农业科学,1996,29(1):34~39.
     程子刚,程强,敖光明,等. 小麦基因组文库的构建及高分子量(HMW)谷蛋白亚基基因的筛选. 北京农业大学学报,1992,18(2):117~121.
     Janakiraman V, Steinau M, McCoy S B, et al. Recent advances in wheat transformation, In Vitro Cellular & Developmental Biology, 2002, 38(5): 404-415.
     Pellegrineschi A, Noguera L M, Skovmand B, et al. Identification of highly transformable wheat genotypes for mass production of fertile transgenic plants, Genome, 2002, 45(2): 421-431.
     Smith N, Kilpatrick J B, Whitelam G C. Superfluous transgene integration in plants, Critical
    
    
    Reviews in Plant Sciences, 2001, 20(3): 215-250.
     张晓东,李冬梅,徐文英,等. 利用基因枪将HMW谷蛋白亚基基因与除草剂Basta抗性基因导入小麦不同外植体获得转基因植株. 遗传(增刊),1998:3~8.
    Jauhar P P, Chibbar R N. Chromosome-mediated and direct gene transfers in wheat, Genome, 1999, 42(4): 570-584.
     Barro F, Rooke L, Bekes F, Gras P, et al. Transformation of wheat with high molecular weight subunit genes results in improved function properties. Nat Biotechnol 1997 Nov, 15(12): 1295~1299.
     陈梁鸿,王新望,张晓东,等. 小麦编码高分子量谷蛋白亚基基因的转化. 作物学报,1999,25(4):437~440.
     于晓红,朱祯,徐鸿林,等. 基因枪法转化小麦及转基因植株的获得. 高技术通讯, 2000: 13~17.
     徐琼芳,李连城,陈孝,等. 基因枪法获得GNA转基因小麦植株的研究. 中国农业科学,2001,34(1):58.
     夏光敏,陈惠民,郭光沁,等. 微弹射击将大麦黄矮病毒外壳蛋白基因转入小麦获可育植株. 山东大学学报(自然科学版),1996,31(1):94~101.
     梁辉,郑近,段霞瑜,等. 用基因枪法获得抗白粉病转芪合酶基因小麦. 科学通报(简报),1999,44(24):2644~2648.
     徐琼芳, 李连城,马有志,等. 用天花粉蛋白基因转化小麦获得转基因植株. 遗传 HEREDITAS(Beijing),2001,23(2):135~137.
     成卓敏,吴茂森,夏光敏,等. 应用基因枪法获得抗大麦黄矮病毒转基因小麦. 植物病理学报,2000,30(2):116~121.
     李德森,渠荣达,等. 基因枪法获得可育抗除草剂转基因小麦. 南开大学学报(自然科学),1997,30(3):69~75.
     陈梁鸿,王新望,等. 抗除草剂草甘膦EPSPs基因在小麦中的转化. 遗传学报,1999,26(3):239~243.
     赵虹,李名扬,裴炎,等. 用基因枪法将抗除草剂基因导入小麦栽培品种的研究. 植物学通报,2002,19(4):457~461.
     郭北海,张艳敏,李洪杰,等. 甜菜碱醛脱氢酶(BADH)基因转化小麦及其表达. 植物学报,2000 , 42(3):279~283.
     李艳红,肖兴国,赵广荣,等. 将新的人工雄性不育基因导入小麦栽培品种的研究初报. 农业生物技术学报,1999, 7(3):255~258.
     傅荣昭,曹光诚,马江生,等. 用基因枪法将人工雄性不育基因导入小麦的研究初报. 遗传学报,1997, 24(4):358~361.
    
     章冰,卫志明. 植物遗传转化中存在的问题及对策,植物生理学通讯,2000,36(3):245~251.
     梁辉,唐顺学,张弛,等. 提高小麦基因枪法转化频率的研究[J],遗传学报,1999,26(6):643~648.
     朱祯. 走向21 世纪的植物分子生物学. 北京: 科学出版社, 2000 , 121.
     Steinebrunner I, Wu J, Sun Y, et al. Disruption of apyrases inhibits pollen germination in Arabidopsis, Plant Physiology, 2003, 131(4): 1638-1647.
     Melt V L, Lochhead L P, Reynolds P H S. Copper controlable gene expression system for whole plants. Proc Natl Acad Sci, 1993, 90 (4): 4567~4571.
     Gatz C, Frohberg C. Wendenburg R. Stringent repression and homogeneous derepression by tetracycline of a modified CaMV 35S promoter in insect transgenic tobacco plants. Plant J, 1992, 2: 397~404.
     Baurain D, Dinant M, Coosemans N, et al. Regulation of the alternative oxidase Aox1 gene in Chlamydomonas reinhardtii. Role of the nitrogen source on the expression of a reporter gene under the control of the Aox1 promoter, Plant Physiology, 2003, 131(3): 1418-1430.
     Perlak F J, Fuchs R L, Dean D A, et al. Modification of the coding sequence enhances plant expressing of insect control sequence enhances plant expressing of insect control protein genes. Proc Natl Acad Sci USA, 1991, 88: 3324~3328.
     Sharma H C, Sharma K K, Crouch J H. Genetic Transformation of Crops for Insect Resistance: Potential and Limitations, Critical Reviews in Plant Sciences, 2004, 23(1): 47-52.
     Zhu Y, Nam J, Humara J M, et al. Identification of Arabidopsis rat mutants, Plant Physiology, 2003, 132(2): 494-505.
     Goossens A, Dillen W, Clercq J D, et al. The arcelin-5 gene of Phaseolus vulgaris directs high seed-specific expression in transgenic Phaseolus acutifolius and Arabidopsis plants, Plant Physiology, 1999, 120(4): 1095-1103.
    Koprek T, Rangle S, McElroy D, et al. Transposon-mediated single-copy gene delivery leads to increased transgene expression stability in barley, Plant Physiology, 2001, 125(3): 1354-1362.
     苏金, J . targolli , 吴乃虎. 在转基因植物中实现外源基因最佳表达的途径. 生物工程进展, 1999 , 19(4) :3~6.
     Brouwer C, Bruce W, Maddock S, et al. Suppression of transgene silencing by matrix attachment regions in maize: A dual role for the maize 5' ADH1 matric attachment region, Plant Cell, 2002, 14(9): 2251-2264.
     Chua Y L, Watson L A, Gray J C. The transcriptional enhancer of the pea plastocyanin gene associates with the nuclear matrix and regulates gene expression through histone acetylation, Plant Cell, 2003, 15(6): 1468-1479.
     Pagny S, Lerouge P, Faye L, et al. Signals and mechanisms for protein retention in the endoplasmic reticulum, Journal of Experimental Botany, 1999, 50(331):157-164.
    
     朱祯, 植物细胞内靶向蛋白的定位, 植物生理学通讯,1995,31(1):65~73.
     Okamoto T, Shimada T, Hara-Nishimura I, et al. C-terminal KDEL sequence of a KDEL-tailed cysteine proteinase (sulfhydryl-endopeptidase) is involved in formation of KDEL vesicle and in efficient vacuolar transport of sulfhydryl-endopeptidase, Plant Physiology, 2003, 132(4): 1892-1900.
     Matsushima R, Hayashi Y, Yamada K, et al. The ER body, a novel endoplasmic reticulum derived structure in Arabidopsis, plant cell physiol, 2003, 44(7): 661~666.
     Torres E, Vaquero C, Nicholson L, et al. Rice cell culture as an alternative production system for functionaldiagnostic and therapeutic antibodies, Transgenic Research, 1999, 8: 441~449.
     Bellucci M, Alpini A, Arcioni S, Expression of maize β-zein and γ-zein genes in transgenic Nicotiana tabacum and Lotus corniculatus, Plant Cell, Tissue and Organ Culture, 2000, 62: 141~151.
     Schouten A, Roosien J, Van Engelen F A, et al. The C terminal KDEL sequence increase the expression level of a single chain antibody designed to be targeted to both the cytosol and the secretory pathway in transgenic tobacco. Plant Mol Bio, 1996, 30: 781~793.
     Boynton J E, Gillham N W, Harris E H, et al. Chloroplast transformation in chlamydomonas with high velocity microprojectiles. Science, 1988, 240: 1534~1538.
     赵艳. 植物转化中的安全标记基因,生物化学与生物物理进展,2002,29(3):352~354.
     陈颖,姜鸿,王兴智. 无选择标记基因植物转化系统研究进展,2001,21(3):4~7.
     李祥, 易自力, 蔡能, 等. 转基因作物的安全性及其对策,生命科学研究,2002,6(4):8~11.
     Payne P I. Genetics of wheat storage proteins and the eftect of allelic variation on bread-making qualiy.Ann. Rev. Plant Physiol., 1987, 38:141~153.
     Shewry P R, Halford N G, Tathamas, High molecular weight subunits of wheat glutenin, Journal of Cereal Science 1992, 15:105~120.
    Francisco B, leonie R, Frank B, et al. Transformation of wheat with high molecular weight subunit genes results in improved functional properties, 1997, Nature Biotechnology 15(12): 1295~1299.
     Blechl A E, Anderson O D. Expression of a novel high-molecular-weight glutenin subunit gene in transgenic wheat. Nature Biotechnology, 1996 14(7): 875~879.
     梁荣奇,张义荣,尤明山,等. 利用高分子量谷蛋白亚基的特异PCR标记辅助选育优质面包小麦,农业生物技术学报,2001,9(4):322~325.
     Folling L, Olesen A. Transformation of wheat (Triticum aestivum L.) microspore-derived callus and microspores by particle bombardment,Plant Cell Rep [J], 2001, 20: 629~636.
     Nehlin L, Moller C, Bergman P, et al. Transient β-gus and gfp gene expression and viability analysis of microprojectile bombarded microspores of Brassica napus L [J], Journal of Plant Physiology, 2000, 156: 175~183.
     Rasco-Gaunt S,Riley A,Barcelo P,et al. Analysis of particle bombardment parameters to optimize
    
    
    DNA delivery into wheat tissues [J], Plant Cell Reports, 1999, 19: 118~127.
     董云洲,贾士荣. 基因枪转化小麦悬浮细胞参数的优化[J],中国农业科学,1998,31(6):1~5.
    [76] 刘伟华,李文雄,等. 小麦组织培养和基因枪轰击影响因素探讨,西北植物学报[J],2002,22(3):602~610.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700