Cdc25c在人肿瘤细胞低剂量辐射超敏感性发生机制中作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
【目的】研究Cdc25c在人肿瘤细胞低剂量辐射超敏感性发生机制中的作用。
     【方法】流式细胞术分选计数后,再用克隆形成分析法分析人结肠癌细胞HT29和人宫颈癌细胞Siha在不同剂量辐射后的细胞存活情况,应用诱导修复模型对细胞存活分数进行拟合,验证是否存在HRS/IRR现象;流式细胞术检测人结肠癌细胞HT29和人宫颈癌细胞Siha在不同照射剂量点和时间点下的细胞周期分布情况;免疫印迹法检测人结肠癌细胞HT29和人宫颈癌细胞Siha接受不同剂量照射后磷酸化Cdc25c表达情况。
     【结果】(1)人结肠癌HT29细胞存在HRS/IRR现象,人宫颈癌Siha细胞不存在HRS/IRR现象。(2)当辐射剂量<0.3 Gy时HT29细胞未发生G2/M期阻滞,Siha细胞出现了G2/M期的阻滞;当辐射剂量≥0.3 Gy时,两种细胞株均存在G2/M期的阻滞,且阻滞程度随照射剂量增加而增加。(3)在照射剂量<0.3 Gy时HT29细胞中磷酸化的Cdc25c不表达,而Siha细胞中可见磷酸化的Cdc25c表达;当照射剂量≥0.3 Gy时两种细胞株中均可见磷酸化的Cdc25c表达,表达活性与辐射剂量呈正相关。
     【结论】人肿瘤细胞HRS/IRR现象的发生与G2/M期阻滞有关,检查点效应因子Cdc25c在G2/M期阻滞和人肿瘤细胞HRS/IRR的发生中具有重要作用。
Objective To study the effect of cdc25c and cell cycle checkpoint on HRS/IRR and the possible mechanism of HRS/IRR in tumor cells.
     Methods Exponentially growing HT29 cells and Siha cells were irradiated with X-rays at different doses. Cell surviving fractions after irradiating with different radiation doses were measured by the clonogenic survival assay depend on (?)uorescence-activated cell sorter. Cell cycle distribution after irradiating was examined with flow cytometry. The level of Phospho-Cdc25c(216) in cells was detected by Western blot after irradiating.
     Result HRS/IRR was observed in HT29 cells after low dose irradiating and not observed in Siha cells. The cell cycle distribution of HT29 cells had no change at dose below 0.3Gy. When the radiation dose was beyond 0.3Gy, G2/M phase arrest was observed in HT29 cells. Nevertheless, G2/M phase arrest was observed in Siha cells despite of radiation dose. At the dose less than 0.3Gy, the expression of Phospho- Cdc25C(ser216) was not observed in HT29 cells, but observed in Siha cells. When the dose is greater than 0.3Gy, Phospho-Cdc25c (ser216) was observed both in HT29 cells and in Siha cells.
     Conclusions The activity of Cdc25c may play an important role in G2/M phase arrest and HRS/IRR.
引文
1. Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res, 1993;133:41-51.
    2. Short SC, Woodcock M, Marples B, et al. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol, 2003;79:99-105.
    3. Joiner MC, Marples B, Lambin P, et al. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys, 2001;49:379-389.
    4. Jessus C, Ozon R. Function and regulation of cdc25 protein phosphate through mitosis and meiosis. Prog Cell Cycle Res, 1995;1:215-228.
    5.陈俊妮,程晶,吴红革,等.细胞周期调控在HT29结肠癌细胞低剂量辐射超敏感性中作用的研究.中华放射肿瘤学杂志, 2009;18:204-205.
    6. Joiner MC, Johns H. Renal damage in the mouse: the response to very small doses per fraction, 1988;114:385-398.
    7. Skov KA. Radioresponsiveness at low doses: hyper-radiosensitivity and increased radioresistance in mammalian cells. Mutat Res, 1999;430:241-253.
    8. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis, 2002;23:687-696.
    9. Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis, 2006;21:3-9.
    10. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol, 2007;85:509-520.
    11. Mitchell J, Smith GC, Curtin NJ. Poly(ADP-Ribose) polymerase-1 and DNA- dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. Int J Radiat Oncol Biol Phys, 2009;75: 1520-1527.
    12. Lavin MF, Kozlov S. DNA damage-induced signalling in ataxia-telangiectasia and related syndromes. Radiother Oncol, 2007;83:231-237.
    13. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases.Genes Dev, 2001;15:2177-2196.
    14. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science, 1996; 274:1664-1672.
    15. Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 1991;51:6304-6311.
    16. Sinclair WK. Cyclic x-ray responses in mammalian cells in vitro. Radiat Res, 1968;33:620-643.
    17. Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol, 2002;22:1049-1059.
    18. Krempler A, Deckbar D, Jeggo PA, et al. An imperfect G2M checkpoint contributes to chromosome instability following irradiation of S and G2 phase cells. Cell Cycle, 2007;6:1682-1686.
    19. Fernet M, Mégnin-Chanet F, Hall J, et al. Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radio- sensitivity. DNA Repair (Amst), 2010;9:48-57.
    20. Krueger SA, Collis SJ, Joiner MC, et al. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser1981 activity. Int J Radiat Oncol Biol Phys, 2007;69:1262-1271.
    21. Marples B, Wouters BG, Joiner MC. An association between the radiation- induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism? Radiat Res, 2003;160:38-45.
    22.陶丹,程晶,伍钢,等.人肺腺癌A549细胞低剂量辐射超敏感性及其机制的研究.中华放射医学与防护杂志, 2009;29:147-151.
    23. Boutros R, Dozier C, Ducommun B. The when and wheres of CDC25 phosphatases. Curr Opin Cell Biol, 2006;18:185-191.
    24. Morgan DO. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol, 1997;13:261-291.
    25. Nilsson I, Hoffmann I. Cell cycle regulation by the Cdc25 phosphatase family. Prog Cell Cycle Res, 2000;4:107-114.
    26. Strausfeld U, LabbéJC, Fesquet D, et al. Dephosphorylation and activation of ap34cdc2/cyclin B complex in vitro by human CDC25 protein. Nature, 1991;351: 242-245.
    27. Gavet O, Pines J. Progressive activation of CyclinB1/Cdk1 coordinates entry to mitosis. Dev Cell, 2010;18:533-543.
    28. Chaturvedi P, Eng WK, Zhu Y, et al. Mammalian Chk2 is a downstream effector of the ATM-dependent DNA damage checkpoint pathway. Oncogene, 1999;18: 4047-4054.
    29. McGowan CH, Russell P. The DNA damage response: sensing and signaling. Curr Opin Cell Biol, 2004;16:629-633.
    30. Dalal SN, Schweitzer CM, Gan J, et al. Cytoplasmic localization of human cdc25C during interphase requires an intact 14-3-3 binding site. Mol Cell Biol, 1999;19:4465-4479.
    31. Morris MC, Heitz A, Mery J, et al. An essential phosphorylation-site domain of human cdc25C interacts with both 14-3-3 and cyclins. J Biol Chem, 2000;275: 28849-28857.
    32. Peng CY, Graves PR, Thoma RS, et al. Mitotic and G2 checkpoint control: regulation of 14-3-3 protein binding by phosphorylation of Cdc25C on serine-216. Science, 1997;277:1501-1505.
    1. Marples B, Joiner MC. The response of Chinese hamster V79 cells to low radiation doses: evidence of enhanced sensitivity of the whole cell population. Radiat Res, 1993;133:41-51.
    2. Short SC, Woodcock M, Marples B, et al. Effects of cell cycle phase on low-dose hyper-radiosensitivity. Int J Radiat Biol, 2003;79:99-105.
    3. Joiner MC, Marples B, Lambin P, et al. Low-dose hypersensitivity: current status and possible mechanisms. Int J Radiat Oncol Biol Phys, 2001;49:379-389.
    4. Marples B, Wouters BG, Joiner MC. An association between the radiation- induced arrest of G2-phase cells and low-dose hyper-radiosensitivity: a plausible underlying mechanism? Radiat Res, 2003;160:38-45.
    5. Elledge SJ. Cell cycle checkpoints: preventing an identity crisis. Science, 1996; 274:1664-1672.
    6. Kastan MB, Onyekwere O, Sidransky D, et al. Participation of p53 protein in the cellular response to DNA damage. Cancer Res, 1991;51:6304-6311.
    7. Sinclair WK. Cyclic x-ray responses in mammalian cells in vitro. Radiat Res, 1968;33:620-643.
    8. Xu B, Kim ST, Lim DS, et al. Two molecularly distinct G(2)/M checkpoints are induced by ionizing irradiation. Mol Cell Biol, 2002;22:1049-1059.
    9. Krempler A, Deckbar D, Jeggo PA, et al. An imperfect G2M checkpoint contributes to chromosome instability following irradiation of S and G2 phase cells. Cell Cycle, 2007;6:1682-1686.
    10. Fernet M, Mégnin-Chanet F, Hall J, et al. Control of the G2/M checkpoints after exposure to low doses of ionising radiation: implications for hyper-radio- sensitivity. DNA Repair (Amst), 2010;9:48-57.
    11. Krueger SA, Collis SJ, Joiner MC, et al. Transition in survival from low-dose hyper-radiosensitivity to increased radioresistance is independent of activation of ATM Ser1981 activity. Int J Radiat Oncol Biol Phys, 2007;69:1262-1271.
    12. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis,2002;23:687-696.
    13. Niida H, Nakanishi M. DNA damage checkpoints in mammals. Mutagenesis, 2006;21:3-9.
    14. Williams RS, Williams JS, Tainer JA. Mre11-Rad50-Nbs1 is a keystone complex connecting DNA repair machinery, double-strand break signaling, and the chromatin template. Biochem Cell Biol, 2007;85:509-520.
    15. Mitchell J, Smith GC, Curtin NJ. Poly(ADP-Ribose) polymerase-1 and DNA- dependent protein kinase have equivalent roles in double strand break repair following ionizing radiation. Int J Radiat Oncol Biol Phys, 2009;75: 1520-1527.
    16. Lavin MF, Kozlov S. DNA damage-induced signalling in ataxia-telangiectasia and related syndromes. Radiother Oncol, 2007;83:231-237.
    17. Fernandez-Capetillo O, Chen HT, Celeste A, et al. DNA damage-induced G2/M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol, 2002;4: 993-997.
    18. Painter RB, Young BR. Radiosensitivity in ataxia-telangiectasia: a new explanation. Proc Natl Acad Sci USA, 1980;77:7315-7317.
    19. Abraham RT. Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev, 2001;15:2177-2196.
    20. So S, Davis AJ, Chen DJ. Autophosphorylation at serine 1981 stabilizes ATM at DNA damage sites. J Cell Biol, 2009;187:977-990.
    21. Bakkenist CJ, Kastan MB. DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature, 2003;421:499-506.
    22.陶丹,程晶,伍钢,等.人肺腺癌A549细胞低剂量辐射超敏感性及其机制的研究.中华放射医学与防护杂志, 2009;29:147-151.
    23. Xue L, Yu D, Furusawa Y, et al. ATM-dependent hyper-radiosensitivity in mammalian cells irradiated by heavy ions. Int J Radiat Oncol Biol Phys, 2009;75: 235-243.
    24. Stewart GS, Wang B, Bignell CR, et al. MDC1 is a mediator of the mammalian DNA damage checkpoint. Nature, 2003;421:961-966.
    25. Stiff T, O'Driscoll M, Rief N, et al. ATM and DNA-PK function redundantly tophosphorylate H2AX after exposure to ionizing radiation. Cancer Res, 2004;64: 2390-2396.
    26. Taneja N, Davis M, Choy JS. Histone H2AX phosphorylation as a predictor of radiosensitivity and target for radiotherapy. J Biol Chem, 2004;279:2273-2280.
    27. Bassing CH, Chua KF, Sekiguchi J, et al. Increased ionizing radiation sensitivity and genomic instability in the absence of histone H2AX. Proc Natl Acad Sci USA, 2002;99:8173-8178.
    28. Simonsson M, Qvarnstr?m F, Nyman J, et al. Low-dose hypersensitiveγH2AX response and infrequent apoptosis in epidermis from radiotherapy patients. Radiother Oncol, 2008;88:388-397.
    29. Jazayeri A, Falck J, Lukas C, et al. ATM- and cell cycle-dependent regulation of ATR in response to DNA double-strand breaks. Nat Cell Biol, 2006;8:37-45.
    30. Van Gool L, Meyer R, Tobiasch E, et al. Overexpression of human poly (ADP- ribose) polymerase in transfected hamster cells leads to increased poly(ADP- ribosyl)ation and cellular sensitization to gamma irradiation. Eur J Biochem, 1997;244:15-20.
    31. Marples B, Joiner MC. The elimination of low-dose hypersensitivity in Chinese hamster V79-379A cells by pretreatment with X rays or hydrogen peroxide. Radiat Res, 1995;141:160-169.
    32. Chalmers A, Johnston P, Woodcock M, et al. PARP-1, PARP-2, and the cellular response to low doses of ionizing radiation. Int J Radiat Oncol Biol Phys, 2004;58: 410-419.
    33. Marples B, Cann NE, Mitchell CR, et al. Evidence for the involvement of DNA-dependent protein kinase in the phenomena of low dose hyper- radiosensitivity and increased radioresistance. Int J Radiat Biol, 2002;78:1139- 1147.
    34. Short SC, Bourne S, Martindale C, et al. DNA damage responses at low radiation doses. Radiat Res, 2005;164:292-302.
    35. Banáth JP, Macphail SH, Olive PL. Radiation sensitivity, H2AX phosphorylation, and kinetics of repair of DNA strand breaks in irradiated cervical cancer cell lines.Cancer Res, 2004;64:7144-7149.
    36. Jeggo PA. DNA breakage and repair. Adv Genet, 1998;38:185-218.
    37. Skov K, Marples B, Matthews JB, et al. A preliminary investigation into the extent of increased radioresistance or hyperradiosensitivity in cells of hamster cell lines known to be deficient in DNA repair. Radiation Research, 1994;138: S126-129.
    38. Vaganay-Juéry S, Muller C, Marangoni E, et al. Decreased DNA-PK activity in human cancer cells exhibiting hypersensitivity to low-dose irradiation. Br J Cancer, 2000;83:514-518.
    39. Zou W, Che J, Wang C, et al. DNA-PKcs silencing inhibit the DNA repair induced by low dose radiation on human breast epithelial cells. Sheng Wu Gong Cheng Xue Bao, 2009;25:727-732.
    40. Daido S, Yamamoto A, Fujiwara K, et al. Inhibition of the DNA-dependent protein kinase catalytic subunit radiosensitizes malignant glioma cells by inducing autophagy. Cancer Res, 2005;65:4368-4375.
    41. Enns L, Bogen KT, Wizniak J, et al. Low-dose radiation hypersensitivity is associated with p53-dependent apoptosis. Mol Cancer Res. 2004;2:557-566.
    42. Kuribayashi K, El-Deiry WS. Regulation of programmed cell death by the p53 pathway. Adv Exp Med Biol, 2008;615:201-221.
    43. Spring PM, Arnold SM, Shajahan S, et al. Low dose fractionated radiation potentiates the effects of taxotere in nude mice xenografts of squamous cell carcinoma of head and neck. Cell Cycle, 2004;3:479-485.
    44. Dai X, Tao D, Wu H, Cheng J. Low dose hyper-radiosensitivity in human lung cancer cell line A549 and its possible mechanisms. J Huazhong Univ Sci Technolog Med Sci, 2009;29:101-106.
    45. Turesson I, Nyman J, Qvarnstr?m F, et al. A low-dose hypersensitive keratinocyte loss in response to fractionated radiotherapy is associated with growth arrest and apoptosis. Radiother Oncol, 2010;94:90-101.
    46. Krueger SA, Joiner MC, Weinfeld M, et al. Role of apoptosis in low-dose hyper-radiosensitivity. Radiat Res, 2007;167:260-267.
    47. Thomas C, Charrier J, Massart C, et al. Low-dose hyper-radiosensitivity of progressive and regressive cells isolated from a rat colon tumour: impact of DNA repair. Int J Radiat Biol, 2008;84:533-548.
    48. Chen N, Karantza-Wadsworth V. Role and regulation of autophagy in cancer. Biochim Biophys Acta, 2009;1793:1516-1523.
    49. Kim KW, Moretti L, Mitchell LR, et al. Combined Bcl-2/mammalian target of rapamycin inhibition leads to enhanced radiosensitization via induction of apoptosis and autophagy in non-small cell lung tumor xenograft model. Clin Cancer Res, 2009;15:6096-6105.
    50. Gewirtz DA, Hilliker ML, Wilson EN. Promotion of autophagy as a mechanism for radiation sensitization of breast tumor cells. Radiother Oncol, 2009;92: 323-328.
    51. Yuk JM, Shin DM, Song KS. Bacillus calmette-guerin cell wall cytoskeleton enhances colon cancer radiosensitivity through autophagy. Autophagy, 2010;6: 46-60.
    52. Kanao T, Miyachi Y. Exposure to low-dose X-rays promotes peculiar autophagic cell death in Drosophila melanogaster, an effect that can be regulated by the inducible expression of Hml dsRNA. Mutat Res, 2006;595:60-68.
    53. Yao KC, Komata T, Kondo Y, et al. Molecular response of human glioblastoma multiforme cells to ionizing radiation: cell cycle arrest, modulation of the expression of cyclin-dependent kinase inhibitors, and autophagy. J Neurosurg, 2003;98:378-384.
    54. Turesson I, Joiner MC. Clinical evidence of hypersensitivity to low doses in radiotherapy. Radiother Oncol, 1996;40:1-3.
    55. Short SC, Kelly J, Mayes CR, et al. Low-dose hypersensitivity after fractionated low-dose irradiation in vitro. Int J Radiat Biol, 2001;77:655-664.
    56. HonoréHB, Bentzen SM. A modelling study of the potential influence of low dose hypersensitivity on radiation treatment planning. Radiother Oncol, 2006;79: 115-121.
    57. Turesson I, Bernefors R, Book M, et al. Normal tissue response to low doses ofradiotherapy assessed by molecular markers-a study of skin in patients treated for prostate cancer. Acta Oncol, 2001;40:941-951.
    58. Lin PS, Wu A. Not all 2 Gray radiation prescriptions are equivalent: Cytotoxic effect depends on delivery sequences of partial fractionated doses. Int J Radiat Oncol Biol Phys, 2005;63:536-544.
    59. Krause M, Prager J, Wohlfarth J, et al. Ultrafractionation does not improve the results of radiotherapy in radioresistant murine DDL1 lymphoma. Strahlenther Onkol, 2005;181:540-544.
    60. Krause M, Wohlfarth J, Georgi B, et al. Low-dose hyper-radiosensitivity of human glioblastoma cell lines in vitro does not translate into improved outcome of ultrafractionated radiotherapy in vivo. Int J Radiat Biol, 2005;81:751-758.
    61. Dey S, Spring PM, Arnold S, et al. Low-dose fractionated radiation potentiates the effects of Paclitaxel in wild-type and mutant p53 head and neck tumor cell lines. Clin Cancer Res, 2003;9:1557-1565.
    62. Regine WF, Hanna N, Garofalo MC, et al. Low-dose radiotherapy as a chemo- potentiator of gemcitabine in tumors of the pancreas or small bowel: a phase I study exploring a new treatment paradigm. Int J Radiat Oncol Biol Phys, 2007;68: 172-177.
    63. Valentini V, Massaccesi M, Balducci M, et al. Low-dose hyper-radiosensitivity: is there a place for future investigation in clinical settings. Int J Radiat Oncol Biol Phys, 2010;76:535-539.
    64. Powell SN, Bindra RS. Targeting the DNA damage response for cancer therapy. DNA Repair (Amst), 2009;8:1153-1165.
    65. Wang Y, Ji P, Liu J, et al. Centrosome-associated regulators of the G(2)/M check- point as targets for cancer therapy. Mol Cancer, 2009;8:8.
    66. Lavecchia A, Di Giovanni C, Novellino E. CDC25A and B dual-specificity phosphatase inhibitors: potential agents for cancer therapy. Curr Med Chem, 2009; 16:1831-1849.
    67. Merry C, Fu K, Wang J,et al. Targeting the checkpoint kinase Chk1 in cancer therapy. Cell Cycle, 2010;9:279-283.
    68. Ratnam K, Low JA. Current development of clinical inhibitors of poly(ADP- ribose) polymerase in oncology. Clin Cancer Res, 2007;13:1383-1388.
    69. Comen EA, Robson M. Inhibition of poly(ADP)-ribose polymerase as a therapeutic strategy for breast cancer. Oncology, 2010;24:55-62.
    70. Powell C, Mikropoulos C, Kaye SB. Pre-clinical and clinical evaluation of PARP inhibitors as tumour-specific radiosensitisers. Cancer Treat Rev, 2010 Apr 19.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700