流体粘度对大鼠脑微血管内皮细胞微区力学特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
失血性休克是临床常见的休克类型。液体复苏是治疗失血性休克的重要措施,旨在增加有效循环血量、改善微循环,减轻组织和器官的损伤。液体复苏所采用的血浆扩容剂不仅机械性的扩充血容量,而且影响血浆粘度和其他流变学特性,进一步影响组织的血供、氧供和微循环,关系到组织器官功能的恢复。传统的观点曾认为,血液粘度升高不利于血流灌注,所以应该选择低粘度的血浆扩容剂进行复苏。而上个世纪90年代开始逐渐形成的观点认为,在重度失血性休克或极度血液稀释等情况下,应该选用高粘度的血浆扩容剂,后者能够维持微血管血流,改善血流动力学指标,提高失血性休克的复苏效果。曾有研究者根据动物实验的结果推测,高粘度血浆扩容剂可能通过血浆粘度上升引起微血管壁剪应力升高,微血管内皮细胞舒张因子释放增加,改善了微循环的血流灌注。但动物整体水平研究限制了机制研究的深入,高粘度复苏的观点尚未得到普遍接受,重度失血性休克早期救治中适宜的血浆粘度范围仍存在争议。所以,流体粘度对微血管内皮细胞功能的影响及其机制有待深入探究。
     微血管内皮细胞处在复杂的力学环境中,承受多种力学刺激。细胞刚度、弹性和粘滞性等力学特性的变化既是力学刺激的结果,又是细胞功能维持的基础,对微循环血流灌注具有重要的意义。原子力显微镜(atomic force microscopy, AFM)能够在接近生理的条件下获得高分辨的三维形貌像,同时对细胞微区力学特性进行定量描述。本研究利用体外层流剪切体系和AFM微区力学特性的探测功能,目的在于深入探讨剪切速率恒定的情况下,不同流体粘度对微血管内皮细胞微区力学特性的影响,明确细胞骨架、NO和ET-1等在细胞力学特性变化中的可能作用。以期从生物力学角度揭示流体粘度对微血管内皮细胞的调控机制,为重度失血性休克早期紧急救治提供更加合理的理念,为血液和血浆代用品的研制提供必要的参考。
     不同流体粘度大鼠脑微血管内皮细胞剪切体系的建立探讨流动剪切环境下粘度对血管内皮细胞力学特性的影响,需要首先建立体外模拟血流对内皮细胞施加剪应力的研究体系。本研究依据流体剪应力场分布的要求,设计加工了平行板流动小室,在使用方便性和性能两方面达到了国外商品化同类产品的水平。以平行板流动小室为核心,建立了封闭、稳定及剪切速率可调的层流剪切体系。进行了大鼠脑微血管内皮细胞(rat cerebral microvessel endothelial cell,rCMECs)的原代培养,经内皮细胞的特征性鉴定,纯度能够满足进一步实验的需要,且经40 dyn/cm2剪应力作用2h不发生脱落。海藻酸钠溶液表现近似牛顿流体的特性。与右旋糖酐70相比,海藻酸钠在浓度和胶体渗透压很低的情况下能够产生很高的粘度,对rCMECs的生长没有明显影响,适合做“粘度调节剂”。所建立的不同流体粘度微血管内皮细胞剪切体系能够满足进一步研究的需要。
     AFM定量研究rCMECs微区力学特性的参数确定Force Volume(群体力谱)是AFM研究样品微区力学特性的常用工作模式,在针尖以接触模式扫描样品表面的同时采集每个象素点的力曲线。杨氏模量是目前定量描述细胞微区力学特性的常用参数,本研究确定了基于Hertz模型的、适宜本研究体系的rCMECs微区杨氏模量计算参数。另外,首次将基于力曲线的形变消耗功(Deformation Consumed Work)引入rCMECs微区力学特性的分析,其数值反映细胞形变与理想弹性体形变消耗功的差异,与细胞的粘弹性直接相关。与Hertz模型计算杨氏模量相比,形变消耗功适合于描述细胞非线性弹性形变,基本不受基底的影响,且数值不随压入深度变化而改变,作为新的定量参数,有可能成为Hertz模型计算杨氏模量的补充。血管内皮细胞的形变消耗功能够在一定程度上反映心脏做功在血管壁的能量消耗。
     流体粘度对rCMECs形态和微区力学特性的影响在剪切速率为800s-1,灌流液的粘度分别为0.93,2.08和4.76 mPa s(剪应力分别为7.4,16.6和38.1 dyn/cm2)作用2h后,rCMECs方向角分布的变化表明细胞有沿剪应力作用方向取向的趋势,高粘度灌流液作用引起一些细胞伸长变细。随流体粘度的升高,剪应力增大,细胞厚度降低、变平坦,rCMECs微区力学特性也发生明显变化。表现为刚度上升,形变消耗功和表面非特异性粘滞力降低。但力学特性的变化有一定限度,当流体粘度和剪应力上升到一定程度,力学特性不会再继续发生变化。rCMECs微区刚度上升是细胞骨架重组加剧的结果,形变消耗功和表面非特异粘滞力的降低,提示心脏做功消耗在血管内皮细胞上的能量以及白细胞与血管内皮细胞之间非特异性黏附的发生几率可能随血液粘度升高而降低。以上结果说明,适当增加血液粘度能够通过调节微血管内皮细胞的力学特性而降低血流在微循环的能量消耗,减少白细胞黏附,改善微循环血流灌注。但体内血液粘度过高不仅不能改善内皮细胞的力学特性,反而可能导致血流速度下降、剪应力降低,引起内皮细胞损伤。
     流体粘度对rCMECs细胞骨架肌动蛋白重组和舒缩因子生成的影响在剪切速率一定的情况下,随流体粘度增大、剪应力升高,rCMECs内细胞骨架F-actin分布发生变化,核区应力纤维束增加。β-actin mRNA水平急剧增加反映了rCMECs对不同强度剪应力的适应,表现了肌动蛋白更新、重组速率加快以及细胞向基底的黏附力增强。ET-1在mRNA水平的表达随剪应力强度的增大而升高,当达到一定的阈值后,会随剪应力的继续增大而降低。灌流液中NO的增加与F-actin的重新分布相伴。以上结果说明,细胞骨架肌动蛋白是流体粘度引起rCMECs力学特性变化的物质基础,NO的分泌与细胞骨架的重组密切相关。
     综上所述,本研究建立了体外不同流体粘度微血管内皮细胞的层流剪切体系,确定了基于AFM力曲线的、适用于rCMECs的微区力学特性计算参数。观察到在相同剪切速率下,在一定范围内,随流体粘度的增加,rCMECs的三维形态和微区力学特性发生了明显的变化。说明在重度失血性休克的早期救治中,一定程度上提高血液或血浆粘度能够通过提高剪应力调节微血管内皮细胞的力学特性,降低心脏做功的能量消耗,引起微血管扩张,改善微循环。
Hemorrhagic shock remains a major cause of death and disability in battlefield injuries, as well as in civilian trauma. Fluid resuscitation is an essential component of therapy for hemorrhagic shock. The aim of fluid resuscitation is to expend effective blood volume, increase perfusion in microcirculation, and to alleviate injuries in tissue and organ. Plasma expanders used in fluid resuscitation can not only expend the blood volume, but also influence plasma viscosity and other rheological behaviors, which are important determinants in tissue perfusion, oxygen supply, microcirculation and improvement in function of tissue and organs. It was generally perceived that lowered blood viscosity in hemodilution and hemorrhagic shock could improve the tissue perfusion due to reduced flow resistance. But the studies began in 90th in the last century showed that plasma expander with high viscosity, which could increase perfusion in microcirculation and improve hemodynamic parameters, is beneficial in extreme hemodilution and severe hemorrhagic shock. Plasma expander with high viscosity is known to elvate plasma viscosity and wall shear stress in microvascular, and to improve function of endothelial cell in microvascular. But because of the limitation in animal study, the effects of hydro- viscosity on microvessel endothelial cell and the mechanisms are still to be investigated.
     Microvessel endothelial cells locate in circumstances with complex mechanical forces. Changes in mechanical properties, such as stiffness, elasticity, and adherent property are outcomes of mechanical stimulation, as well as maintenance of cellular function. Mechanical properties of microvessel endothelial cells are important in perfusion of microcirculation. Atomic force microscopy (AFM) is a novel method for high-resolution three-dimensional topography in living cell, and can detect local mechanical properties of cells. The present study will use in vitro perfusing system of luminar flow and function of detecting local mechanical properties by AFM. The aim of the study is to observe the influence of hydro- viscosity on the mechanics of microvessel endothelial cell, and to investigate the roles of cytoskeleton, NO (nitric oxide) and ET-1 (Endothelin-1). The regulatory mechanisms of hydro-viscosity on the mechanics of microvessel endothelial cell will give more insight in the treatment of hemorrhagic shock and the research in blood and plasma substitutes.
     Establishment of system of rat cerebral microvessel endothelial cells perfused with medium of different hydro-viscosities. To investigate he influence of hydro- viscosity on the mechanics of microvessel endothelial cell, it is necessary to establish an in vitro system to simulate shear stress of blood flow. We developed a parallel plate flow chamber according to the fundamental of distribution of shear stress, which showed equally in ease of use and performance compared with overseas commercial chambers. Based on the parallel plate flow chamber, in vitro perfusing system of luminar flow was developed. Rat cerebral microvessel endothelial cells (rCMECs) were isolated and cultured in vitro. The purity of the cells meets the demand in further study and can keep stable in the shear stress. Sodium alginate solutions show Newton property. Compared with Dextran 70, sodium alginate of a comparatively low concentration can result in high viscosity with a low colloid oncotic pressure and a low concentration. Sodium alginate solutions do not influence the growth of rCMECs. Thus, sodium alginate can act as‘viscosity modifier’. The system of microvessel endothelial cells perfused with medium of different hydro-viscosities meet the demand in further study.
     Determination of parameters for local mechanical properties of rCMECs in quantitative analysis by AFM. Force volume is the commonly used working pattern for detection of local mechanical properties by AFM. The Force-Curve can be collected during the scanning of surface of the cells by contact mode. Young’s modular is the commonly used parameter in quantitative analysis of local mechanical properties. Method to evaluate Young’s modular suitable for rCMECs in the present was developed based on Hertz model. Meanwhile,‘Deformation Consumed Work’calculated based on the Force-Curve was advanced for the first time in this study for analyzing the local mechanical properties. Deformation Consumed Work, which shows viscoelasticity of cells, describes the differences in Consumed Work between deformation of the cell and elastic homogeneous body. Deformation Consumed Work is suitable in quantitative analysis of nonlinear deformation of cells. Furthermore, it can eliminate the influence of hard base and show no changes with different indetations. As a novel parameter in quantitative analysis of local mechanical properties, Deformation Consumed Work may be an alternative or compensatory of Young’s modular calculated by Hertz model. Deformation Consumed Work of endothelial cell can reflect the energy dissipation of blood flow in wall of vascular generated by heart.
     Effect of hydro-viscosity on morphology and local mechanical properties of rCMECs. Under the shear rate of 800s-1, hydro-viscosity of 0.93, 2.08 and 4.76 mPa s, shear stress of 7.4, 16.6 and 38.1 dyn/cm2 for 2h, the changes of distribution of angle of rCMECs reflect orientation caused by the shear stress. Higher viscosity causes some cells to become thinner and longer. As the hydro-viscosity and shear stress become higher, the height and the roughness of the cell decrease. Meanwhile, the stiffness elevates, but Deformation Consumed Work and non-specific adherent force decrease. The changes of local mechanical properties have threshold. When the hydro-viscosity reaches a certain level, local mechanical properties do not show more changes. The elevate stiffness is the result of reorganization of cytoskeleton. Decrease in Deformation Consumed Work reflects reduction in energy dissipation of blood flow in wall of vascular generated by heart. Decrease in non-specific adherent force reflects lower frequency of adhesion of white blood cell to endothelial cell. These results indicated that appropriately elevated hydro-viscosity can modify local mechanical properties of rCMECs, and can reduce energy dissipation in microcirculation, restrain the adhesion of white blood cell to endothelial cell. These mechanisms are beneficial in perfusion in microcirculation. But if the blood viscosity becomes too high in vivo, the local mechanical properties of endothelial cells cannot improve.
     Effect of hydro-viscosity on cytosleletal actin reorganization and production of NO and ET-1 in rCMECs. At a constant shear rate, higher viscosity causes changes in distribution of cytoskeleton F-actin, and stress fibers become dense in the central region of rCMECs. The dramatic increase ofβ-actin mRNA reflects response of rCMECs to shear stress, which includes a greater turnover of actin, and stronger adherent force to basement. ET-1 mRNA increases when hydro-viscosity and shear stress become higher. But if hydro-viscosity and shear stress reach a certain threshold, the ET-1 mRNA decreases. The increases of NO production show concomitance with the F-actin reorganization. These results indicated that cytosleletal actin is the base of changes in local mechanical properties, and NO production shows relationship with cytoskeletal reorganization.
     Taken together, system of microvessel endothelial cells perfused with medium of different hydro-viscosities was established. Parameters for local mechanical properties in quantitative analysis by AFM were determined. Three-dimensional topography and local mechanical properties of rCMECs changed significantly when hydro-viscosity became higher and the shear rate kept constant. The regulatory mechanisms of hydro-viscosity of certain degree on the mechanics of microvessel endothelial cell will be beneficial in the treatment of severe hemorrhagic shock and the viscosity of blood and plasma substitutes should be taken into consideration.
引文
[1] Nossaman, B. D., Gur, S.Kadowitz, P. J. Gene and stem cell therapy in the treatment of erectile dysfunction and pulmonary hypertension; potential treatments for the common problem of endothelial dysfunction. Curr Gene Ther 7(2), 131-153,(2007).
    [2] Pohlman, T. H.Harlan, J. M. Adaptive responses of the endothelium to stress. J Surg Res 89(1), 85-119,(2000).
    [3] Reneman, R. S., Arts, T.Hoeks, A. P. Wall shear stress--an important determinant of endothelial cell function and structure--in the arterial system in vivo. Discrepancies with theory. J Vasc Res 43(3), 251-269,(2006).
    [4] Chien, S. Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292(3), H1209-1224,(2007).
    [5]张焰,马虹,郑振声。血管内皮细胞的剪切应力信号转导机制与动脉粥样硬化。中国动脉粥样硬化杂志13 (4), 513-516,(2005).
    [6] Salazar-Vazquez, B. Y, Intaglietta M, Rodriguez-Moran, M.Guerrero-Romero, F. Blood pressure and hematocrit in diabetes and the role of endothelial responses in the variability of blood viscosity. Diabetes Care 29(7), 1523-1528,(2006).
    [7] Koppensteiner, R. Blood rheology in emergency medicine. Semin Thromb Hemost 22(1), 89-91,(1996).
    [8]秦任甲。血液流变学。人民卫生出版社, 29-31,(1999).
    [9]王鸿儒。血液流变学。北京医科大学中国协和医科大学联合出版社, 19-21,(1997).
    [10]叶平,解用虹,刘德文。血脂的基础与临床。人民教育出版社, 380-381,(2002).
    [11] Wettstein, R., Erni, D., Intaglietta, M.Tsai, A. G. Rapid restoration of microcirculatory blood flow with hyperviscous and hyperoncotic solutions lowers the transfusion trigger in resuscitation from hemorrhagic shock. Shock 25(6), 641-646,(2006).
    [12] Cabrales, P.Tsai, A. G. Plasma viscosity regulates systemic and microvascular perfusion during acute extreme anemic conditions. Am J Physiol Heart Circ Physiol 291(5), H2445-2452,(2006).
    [13]赵克森,金丽娟。休克的细胞和分子基础。科学出版社, 26-28,(2002).
    [14] Martini, J., Cabrales, P., Tsai, A. G.Intaglietta, M. Mechanotransduction and the homeostatic significance of maintaining blood viscosity in hypotension, hypertension and haemorrhage. J Intern Med 259(4), 364-372,(2006).
    [15] Awasthi, V. Pharmaceutical aspects of hemoglobin-based oxygen carriers. Curr Drug Deliv 2(2), 133-142,(2005).
    [16] Tsai, A. G., Cabrales, P.Intaglietta, M. Oxygen-carrying blood substitutes: a microvascular perspective. Expert Opin Biol Ther 4(7), 1147-1157,(2004).
    [17] Zhao L, Wang B, You G, Wang Z, Zhou H. Effects of different resuscitation fluids on the rheologic behavior of red blood cells, blood viscosity and plasma viscosity in experimental hemorrhagic shock. Resuscitation 80(2), 253-258,(2009).
    [18] Tok, D., Caliskan, M., Gullu, H., Erdogan, D., Demirtas, S.Muderrisoglu, H. The association between hematological parameters and coronary flow reserve and coronary haemorheology in healthy subjects. Clinical Hemorheology and Microcirculation 36(4), 345-352,(2007).
    [19] Cabrates, P., Intaglietta, M.Tsai, A. G. Transfusion restores blood viscosity and reinstates microvascular conditions from hemorrhagic shock independent of oxygen carrying capacity. Resuscitation 75(1), 124-134,(2007).
    [20] Cabrales, P., Tsai, A. G.Intaglietta, M. Is resuscitation from hemorrhagic shock limited by blood oxygen-carrying capacity or blood viscosity? Shock 27(4), 380-389,(2007).
    [21] Nerem, R. M. Shear force and its effect on cell structure and function. ASGSB Bull 4(2), 87-94,(1991).
    [22] Schwarzbauer, J. E. Cell migration: May the force be with you. Current Biology 7(5), R292-R294,(1997).
    [23] Stephanou, A.Tracqui, P. Cytomechanics of cell deformations and migration: from models to experiments. Comptes Rendus Biologies 325(4), 295-308,(2002).
    [24] Yang, S. Y.Saif, T. Reversible and repeatable linear local cell force response under large stretches. Experimental Cell Research 305(1), 42-50,(2005).
    [25] Liao, F. L., Li, M., Han, D., Cao, J.Chen, K. J. Biomechanopharmacology: a new borderline discipline. Trends in Pharmacological Sciences 27(6), 287-289,(2006).
    [26] Pesen, D.Hoh, J. H. Micromechanical architecture of the endothelial cell cortex. Biophysical Journal 88(1), 670-679,(2005).
    [27]黄云峰,叶笃筠,吴萍,吴泽志。青心酮对肺动脉内皮细胞及红细胞生物力学特性的影响。中草药33(7), 624-626,(2002).
    [28] Frangos, J. A., Eskin, S. G., McIntire, L. V.Ives, C. L. Flow effects on prostacyclin production by cultured human endothelial cells. Science 227(4693), 1477-1479,(1985).
    [29]刘肖珩,陈槐卿。Flow Chamber系统的优化设计及其用于血细胞和血管内皮细胞生物力学特性的研究。国外医学.生物医学工程分册21(4), 201-212,(1998).
    [30]李发琪,杨瑞芳,黄岂平,秦健,蔡绍皙,吴云鹏。大鼠肺微血管内皮细胞培养及粘弹性研究。生物医学工程学杂志19(1), 36-39,(2002).
    [31]白春礼,田方,罗克。扫描力显微术。科学出版社, 7-32,(2000).
    [32] MC., D., H., I. a.ZF., S. Atomic force microscopy in structure biology: from the subcellular to the submolecular. Journal of Electron Microscopy 49(3), 395-406,(2000).
    [33] Ohashi, T., Ishii, Y., Ishikawa, Y., Matsumoto, T.Sato, M. Experimental and numerical analyses of local mechanical properties measured by atomic force microscopy for sheared endothelial cells. Bio-Medical Materials and Engineering 12(3), 319-327,(2002).
    [34] Chen, Y., McCarron, R. M., Golech, S., Bembry, J., Ford, B., Lenz, F. A., Azzam, N.Spatz, M. ET-1- and NO-mediated signal transduction pathway in human brain capillary endothelial cells. American Journal of Physiology-Cell Physiology 284(2), C243-C249,(2003).
    [35] Chen, Y., McCarron, R. M., Azzam, N., Bembry, J., Reutzler, C., Lenz, F. A.Spatz, M. Endothelin-1 and nitric oxide affect human cerebromicrovascular endothelial responses and signal transduction. Acta Neurochir Suppl 76(131-135,(2000).
    [36] Chen, Y., McCarron, R. M., Bembry, J., Ruetzler, C., Azzam, N., Lenz, F. A.Spatz, M. Nitric oxide modulates endothelin 1-induced Ca2+ mobilization and cytoskeletal F-actin filaments in human cerebromicrovascular endothelial cells. J Cereb Blood Flow Metab 19(2), 133-138,(1999).
    [37] Tomoda, M.Inokuchi, K. Sodium alginate of lowered polymerization (alginon). A new plasma expander. J Int Coll Surg 32(621-635,(1959).
    [38]龚泰芳,方彩云,陈文,王平年。海藻酸盐的理化特性及其在组织工程研究和临床中的应用.中国组织工程研究与临床康复11(18), 3613-3616,(2007).
    [39] Slattery, M. J., Liang, S.Dong, C. Distinct role of hydrodynamic shear in leukocyte-facilitated tumor cell extravasation. Am J Physiol Cell Physiol 288(4), C831-839,(2005).
    [40]赵莲,尤国兴,许婧,周虹。不同粘度血浆扩容剂的制备及其在重度失血性休克中的应用.微循环学杂志18(2), 10-13,(2008).
    [41] Cabrales, P., Intaglietta, M.Tsai, A. G. Increase plasma viscosity sustains microcirculation after resuscitation from hemorrhagic shock and continuous bleeding. Shock 23(6), 549-555,(2005).
    [42] Cabrales, P., Tsai, A. G.Intaglietta, M. Hyperosmotic-hyperoncotic versus hyperosmotic-hyperviscous: small volume resuscitation in hemorrhagic shock. Shock 22(5), 431-437,(2004).
    [43] Anderson, E. J.Knothe Tate, M. L. Open access to novel dual flow chamber technology for in vitro cell mechanotransduction, toxicity and pharamacokinetic studies. Biomed Eng Online 6(46,(2007).
    [44] Zhang, Y.Neelamegham, S. An analysis tool to quantify the efficiency of cell tethering and firm-adhesion in the parallel-plate flow chamber. J Immunol Methods 278(1-2), 305-317,(2003).
    [45] Busscher, H. J.van der Mei, H. C. Microbial adhesion in flow displacement systems. Clin Microbiol Rev 19(1), 127-141,(2006).
    [46]成敏,陈槐卿,李毅,吴江。流体低剪切力上调内皮细胞IL-8基因表达的细胞内信号转导途径分析。医用生物力学22(1), 8-14,(2007).
    [47]胡金麟,宋欣,李向红。剪切力对脑微血管内皮细胞形态学的影响。中国生物医学工程学报19(3), 247-250,(2000).
    [48]刘肖珩,陈槐卿。流室系统的流体动力学模拟。生物医学工程学杂志16(4), 441-444,(1999).
    [49] Han D, Ma WY, Liao FL, Chen DY. Intracellular structural changes under the stress of applied force at a nanometer range investigated by atomic force microscopy. Nanotechnology 15(1), 120-126,(2004).
    [50] Ma WY, Sun YX, Han D, Chu WG, Lin DY, Chen DY. Cytoskeletal response of microvessel endothelial cells to an applied stress force at the submicrometer scale studied by atomic force microscopy. Microscopy Research and Technique 69(10), 784-793,(2006).
    [51]梁朝峰,郭英,石德金,王辉,胡黎平,李文胜,叶卓鹏,李燕。大鼠脑皮质微血管内皮细胞的分离和培养。中国病理生理杂志24(5), 1038-1040,(2008).
    [52]刘恺鸣,迟路湘,鲁向辉,何国祥。大鼠脑微血管内皮细胞的原代培养。第三军医大学学报29(10), 2011-2013,(2007).
    [53]许熊飞,李润平,李泉,刘文武,练庆林,刘昀,孙学军,蒋春雷。大鼠脑微血管内皮细胞的分离与原代培养。细胞生物学杂志27(84-88),(2005).
    [54] Barbee, K. A. Changes in surface topography in endothelial monolayers with time at confluence: Influence on subcellular shear stress distribution due to flow. Biochemistry and Cell Biology-Biochimie Et Biologie Cellulaire 73(7-8), 501-505,(1995).
    [55] Lauterbach, M., Horstick, G., Kempf, T., Weilemann, L. S., Munzel, T.Kempski, O. Anti-inflammatory treatment with standardized human serum protein solution reduces local and systemic inflammatory response after hemorrhagic shock. European Surgical Research 38(4), 399-406,(2006).
    [56] Horstick, G., Lauterbach, M., Kempf, T., Bhakdi, S., Heimann, A., Horstick, M., Meyer, J.Kempski, O. Early albumin infusion improves global and local hemodynamics and reduces inflammatory response in hemorrhagic shock. Critical Care Medicine 30(4), 851-855,(2002).
    [57] Horstick, G., Kempf, T., Lauterbach, M., Bhakdi, S., Kopacz, L., Heimann, A., Malzahn, M., Horstick, M., Meyer, J.Kempski, O. C1-esterase-inhibitor treatment at early reperfusion of hemorrhagic shock reduces mesentry leukocyte adhesion and rolling. Microcirculation 8(6), 427-433,(2001).
    [58] Siddharthan, V., Kim, Y. V., Liu, S.Kim, K. S. Human astrocytes/astrocyte-conditioned medium and shear stress enhance the barrier properties of human brain microvascular endothelial cells. Brain Res 1147(39-50,(2007).
    [59] Colgan, O. C., Ferguson, G., Collins, N. T., Murphy, R. P., Meade, G., Cahill, P. A.Cummins, P. M. Regulation of bovine brain microvascular endothelial tight junction assembly and barrier function by laminar shear stress. Am J Physiol Heart Circ Physiol292(6), H3190-3197,(2007).
    [60] Li, M., Zhao, M. Q., Kumar Durairajan, S. S., Xie, L. X., Zhang, H. X., Kum, W. F., Goto, S.Liao, F. L. Protective effect of tetramethylpyrazine and salvianolic acid B on apoptosis of rat cerebral microvascular endothelial cell under high shear stress. Clin Hemorheol Microcirc 38(3), 177-187,(2008).
    [61] Chang, E., O'Donnell, M. E.Barakat, A. I. Shear stress and 17beta-estradiol modulate cerebral microvascular endothelial Na-K-Cl cotransporter and Na/H exchanger protein levels. Am J Physiol Cell Physiol 294(1), C363-371,(2008).
    [62] Song, X., Zeng, Y., Yu, H., Hu, J.Hao, Y. The effect of fluid shear stress on ICAM-1 expression of rat brain microvascular endothelial cells. Technol Health Care 9(3), 287-293,(2001).
    [63] Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A.Zhdanov, R. I. Atomic force microscopy probing of cell elasticity. Micron 38(8), 824-833,(2007).
    [64] Roca-Cusachs, P., Alcaraz, J., Sunyer, R., Samitier, J., Farre, R.Navajas, D. Micropatterning of single endothelial cell shape reveals a tight coupling between nuclear volume in G1 and proliferation. Biophysical Journal 94(12), 4984-4995,(2008).
    [65] Laurent, V. M., Kasas, S., Yersin, A., Schaffer, T. E., Catsicas, S., Dietler, G., Verkhovsky, A. B.Meister, J. J. Gradient of rigidity in the lamellipodia of migrating cells revealed by atomic force microscopy. Biophysical Journal 89(1), 667-675,(2005).
    [66] Radmacher, M., Fritz, M., Kacher, C. M., Cleveland, J. P.Hansma, P. K. Measuring the viscoelastic properties of human platelets with the atomic force microscope. Biophys J 70(1), 556-567,(1996).
    [67] Dulinska, I., Targosz, M., Strojny, W., Lekka, M., Czuba, P., Balwierz, W.Szymonski, M. Stiffness of normal and pathological erythrocytes studied by means of atomic force microscopy. J Biochem Biophys Methods 66(1-3), 1-11,(2006).
    [68] Miyazaki, H.Hayashi, K. Atomic force microscopic measurement of the mechanical properties of intact endothelial cells in fresh arteries. Med Biol Eng Comput 37(4), 530-536,(1999).
    [69] Sato, M., Nagayama, K., Kataoka, N., Sasaki, M.Hane, K. Local mechanical properties measured by atomic force microscopy for cultured bovine endothelial cells exposed toshear stress. Journal of Biomechanics 33(1), 127-135,(2000).
    [70] Mathur, A. B., Truskey, G. A.Reichert, W. M. Atomic force and total internal reflection fluorescence microscopy for the study of force transmission in endothelial cells. Biophys J 78(4), 1725-1735,(2000).
    [71] A-Hassan, E., Heinz, W. F., Antonik, M. D., D'Costa, N. P., Nageswaran, S., Schoenenberger, C. A.Hoh, J. H. Relative microelastic mapping of living cells by atomic force microscopy. Biophysical Journal 74(3), 1564-1578,(1998).
    [72] Stolz, M., Raiteri, R., Daniels, A. U., VanLandingham, M. R., Baschong, W.Aebi, U. Dynamic elastic modulus of porcine articular cartilage determined at two different levels of tissue organization by indentation-type atomic force microscopy. Biophysical Journal 86(5), 3269-3283,(2004).
    [73] Heinz, W. F.Hoh, J. H. Spatially resolved force spectroscopy of biological surfaces using the atomic force microscope. Trends in Biotechnology 17(4), 143-150,(1999).
    [74] Radmacher, M., Cleveland, J. P., Fritz, M., Hansma, H. G.Hansma, P. K. Mapping interaction forces with the atomic force microscope. Biophys J 66(6), 2159-2165,(1994).
    [75] Chen, P., Chen, L., Han, D., Zhai, J., Zheng, Y.Jiang, L. Wetting behavior at micro-/nanoscales: direct imaging of a microscopic water/air/solid three-phase interface. Small 5(8), 908-912,(2009).
    [76] Domke, J.Radmacher, M. Measuring the elastic properties of thin polymer films with the atomic force microscope. Langmuir 14(12), 3320-3325,(1998).
    [77] Volle, C. B., Ferguson, M. A., Aidala, K. E., Spain, E. M.Nunez, M. E. Spring constants and adhesive properties of native bacterial biofilm cells measured by atomic force microscopy. Colloids and Surfaces B-Biointerfaces 67(1), 32-40,(2008).
    [78] Yu, J. P., Wang, Q., Shi, X. L., Ma, X. Y., Yang, H. Y., Chen, Y. G.Fang, X. H. Single-molecule force spectroscopy study of interaction between transforming growth factor beta 1 and its receptor in living cells. Journal of Physical Chemistry B 111(48), 13619-13625,(2007).
    [79] Abu-Lail, N. I.Camesano, T. A. Specific and nonspecific interaction forces between Escherichia coli and silicon nitride, determined by Poisson statistical analysis (vol 22, pg 7296, 2006). Langmuir 24(8), 4420-4420,(2008).
    [80] Volle, C. B., Ferguson, M. A., Aidala, K. E., Spain, E. M.Nunez, M. E. Quantitative changes in the elasticity and adhesive properties of Escherichia coli ZK1056 prey cells during predation by Bdellovibrio bacteriovorus 109J. Langmuir 24(15), 8102-8110,(2008).
    [81] Schrot, S., Weidenfeller, C., Schaffer, T. E., Robenek, H.Galla, H. J. Influence of hydrocortisone on the mechanical properties of the cerebral endothelium in vitro. Biophysical Journal 89(6), 3904-3910,(2005).
    [82] Sato, M., Suzuki, K., Ueki, Y.Ohashi, T. Microelastic mapping of living endothelial cells exposed to shear stress in relation to three-dimensional distribution of actin filaments. Acta Biomaterialia 3(3), 311-319,(2007).
    [83] Cappella B, B. P., Frediani C, Miccoli P, Ascoli C. Force-distance curves by AFM:A powerful technique for studying surface interactions. IEEE Eng. Med. Biol 16(58-65,(1997).
    [84] Alessandrini A, F. P. AFM: a versatile tool in biophysics. Meas Sci Technol. 16(65-92,(2005).
    [85] Mahaffy, R. E., Shih, C. K., MacKintosh, F. C.Kas, J. Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells. Physical Review Letters 85(4), 880-883,(2000).
    [86] E, A. H., Heinz, W. F., Antonik, M. D., D'Costa, N. P., Nageswaran, S., Schoenenberger, C. A.Hoh, J. H. Relative microelastic mapping of living cells by atomic force microscopy. Biophys J 74(3), 1564-1578,(1998).
    [87] Hillebrand, U., Hausberg, M., Lang, D., Stock, C., Riethmuller, C., Callies, C.Bussmaker, E. How steroid hormones act on the endothelium - insights by atomic force microscopy. Pflugers Archiv-European Journal of Physiology 456(1), 51-60,(2008).
    [88] Kasas, S., Wang, X., Hirling, H., Marsault, R., Huni, B., Yersin, A., Regazzi, R., Grenningloh, G., Riederer, B., Forro, L., Dietler, G.Catsicas, S. Superficial and deep changes of cellular mechanical properties following cytoskeleton disassembly. Cell Motility and the Cytoskeleton 62(2), 124-132,(2005).
    [89] Balint, Z., Krizbai, I. A., Wilhelm, I., Farkas, A. E., Parducz, A., Szegletes, Z.Varo, G. Changes induced by hyperosmotic mannitol in cerebral endothelial cells: an atomic force microscopic study. European Biophysics Journal with Biophysics Letters 36(2),113-120,(2007).
    [90] Oberleithner, H., Riethmuller, C., Schillers, H., MacGregor, G. A., de Wardener, H. E.Hausberg, M. Plasma sodium stiffens vascular endothelium and reduces nitric oxide release. Proceedings of the National Academy of Sciences of the United States of America 104(41), 16281-16286,(2007).
    [91] Hillebrand, U., Schillers, H., Riethmuller, C., Stock, C., Wilhelmi, M., Oberleithner, H.Hausberg, M. Dose-dependent endothelial cell growth and stiffening by aldosterone: endothelial protection by eplerenone. Journal of Hypertension 25(3), 639-647,(2007).
    [92] Oberleithner, H., Callies, C., Kusche-Vihrog, K., Schillers, H., Shahin, V., Riethmuller, C., MacGregor, G. A.de Wardener, H. E. Potassium softens vascular endothelium and increases nitric oxide release. Proceedings of the National Academy of Sciences of the United States of America 106(8), 2829-2834,(2009).
    [93] Chouinard, J. A., Grenier, G., Khalil, A.Vermette, P. Oxidized-LDL induce morphological changes and increase stiffness of endothelial cells. Experimental Cell Research 314(16), 3007-3016,(2008).
    [94] Hillebrand, U., Lang, D., Telgmann, R. G., Hagedorn, C., Reuter, S., Kliche, K., Stock, C. M., Oberleithner, H., Pavenstadt, H., Bussemaker, E.Hausberg, M. Nebivolol decreases endothelial cell stiffness via the estrogen receptor beta: a nano-imaging study. Journal of Hypertension 27(3), 517-526,(2009).
    [95] Oberleithner, H., Riethmuller, C., Ludwig, T., Hausberg, M.Schillers, H. Aldosterone remodels human endothelium. Acta Physiologica 187(1-2), 305-312,(2006).
    [96] Hillebrand, U., Hausberg, M., Stock, C., Shahin, V., Nikova, D., Riethmuller, C., Kliche, K., Ludwig, T., Schillers, H., Schneider, S. W.Oberleithner, H. 17 beta-estradiol increases volume, apical surface and elasticity of human endothelium mediated by Na+/H+ exchange. Cardiovascular Research 69(4), 916-924,(2006).
    [97] Oberleithner, H. Aldosterone makes human endothelium stiff and vulnerable. Kidney International 67(5), 1680-1682,(2005).
    [98] Zieman, S. J., Melenovsky, V.Kass, D. A. Mechanisms, pathophysiology, and therapy of arterial stiffness. Arteriosclerosis Thrombosis and Vascular Biology 25(5), 932-943,(2005).
    [99] Wallberg-Jonsson, S., Caidahl, K., Klintland, N., Nyberg, G.Rantapaa-Dahlqvist, S. Increased arterial stiffness and indication of endothelial dysfunction in long-standing rheumatoid arthritis. Scandinavian Journal of Rheumatology 37(1), 1-5,(2008).
    [100] Arce, F. T., Whitlock, J. L., Birukova, A. A., Birukov, K. G., Arnsdorf, M. F., Lal, R., Garcia, J. G. N.Dudek, S. M. Regulation of the micromechanical properties of pulmonary endothelium by S1P and thrombin: Role of cortactin. Biophysical Journal 95(2), 886-894,(2008).
    [101] Birukova, A. A., Arce, F. T., Moldobaeva, N., Dudek, S. M., Garcia, J. G., Lal, R.Birukov, K. G. Endothelial permeability is controlled by spatially defined cytoskeletal mechanics: atomic force microscopy force mapping of pulmonary endothelial monolayer. Nanomedicine 5(1), 30-41,(2009).
    [102] Zeng, D., Juzkiw, T., Read, A. T., Chan, D. W., Glucksberg, M. R., Ethier, C. R.Johnson, M. Young's modulus of elasticity of Schlemm's canal endothelial cells. Biomech Model Mechanobiol,(2009).
    [103] Kang, I., Panneerselvam, D., Panoskaltsis, V. P., Eppell, S. J., Marchant, R. E.Doerschuk, C. M. Changes in the hyperelastic properties of endothelial cells induced by tumor necrosis factor-alpha. Biophys J 94(8), 3273-3285,(2008).
    [104] Vinckier, A.Semenza, G. Measuring elasticity of biological materials by atomic force microscopy. FEBS Lett 430(1-2), 12-16,(1998).
    [105] Mathur, A. B., Collinsworth, A. M., Reichert, W. M., Kraus, W. E.Truskey, G. A. Endothelial, cardiac muscle and skeletal muscle exhibit different viscous and elastic properties as determined by atomic force microscopy. Journal of Biomechanics 34(12), 1545-1553,(2001).
    [106] Costa, K. D., Sim, A. J.Yin, F. C. P. Non-Hertzian approach to analyzing mechanical properties of endothelial cells probed by atomic force microscopy. Journal of Biomechanical Engineering-Transactions of the Asme 128(2), 176-184,(2006).
    [107] Sato, M., Levesque, M. J.Nerem, R. M. An application of the micropipette technique to the measurement of the mechanical properties of cultured bovine aortic endothelial cells. J Biomech Eng 109(1), 27-34,(1987).
    [108] Sato, M., Ohshima, N.Nerem, R. M. Viscoelastic properties of cultured porcine aortic endothelial cells exposed to shear stress. J Biomech 29(4), 461-467,(1996).
    [109] Sato, M.Ohashi, T. Biorheological views of endothelial cell responses to mechanical stimuli. Biorheology 42(6), 421-441,(2005).
    [110] Davies, P. F., Mundel, T.Barbee, K. A. A mechanism for heterogeneous endothelial responses to flow in vivo and in vitro. J Biomech 28(12), 1553-1560,(1995).
    [111]李晓宁,樊瑜波。剪切力环境下内皮细胞力学研究的形态学指标。生物医学工程学杂志20(3), 555-558,(2003).
    [112] Folkman, J.Moscona, A. Role of cell shape in growth control. Nature 273(5661), 345-349,(1978).
    [113] Malek, A. M.Izumo, S. Mechanism of endothelial cell shape change and cytoskeletal remodeling in response to fluid shear stress. Journal of Cell Science 109(713-726,(1996).
    [114] Malek AM, J. R., Rosenberg RD, Izumo S. Endothelial expression of thrombomodulin is reversibly regulated by fluid shear stress. Circ Res 74(5), 852-860,(1994).
    [115] Birukov, K. G., Birukova, A. A., Dudek, S. M., Verin, A. D., Crow, M. T., Zhan, X., DePaola, N.Garcia, J. G. N. Shear stress-mediated cytoskeletal remodeling and cortactin translocation in pulmonary endothelial cells. American Journal of Respiratory Cell and Molecular Biology 26(4), 453-464,(2002).
    [116] Ookawa, K., Sato, M.Ohshima, N. Changes in the microstructure of cultured porcine aortic endothelial cells in the early stage after applying a fluid-imposed shear stress. J Biomech 25(11), 1321-1328,(1992).
    [117]饶芳,苏海。机械力学对血管内皮细胞的影响。国外医学·心血管疾病分册28(4), 198-200,(2001).
    [118] Barbee, K. A., Mundel, T., Lal, R.Davies, P. F. Subcellular-Distribution of Shear-Stress at the Surface of Flow-Aligned and Nonaligned Endothelial Monolayers. American Journal of Physiology-Heart and Circulatory Physiology 37(4), H1765-H1772,(1995).
    [119] Barbee, K. A., Davies, P. F.Lal, R. Shear stress-induced reorganization of the surface topography of living endothelial cells imaged by atomic force microscopy. Circ Res 74(1), 163-171,(1994).
    [120] Oberleithner, H. Is the vascular endothelium under the control of aldosterone? Facts and hypothesis. Pflugers Archiv-European Journal of Physiology 454(2), 187-193,(2007).
    [121] Sato, M., Levesque, M. J.Nerem, R. M. Micropipette aspiration of cultured bovine aorticendothelial cells exposed to shear stress. Arteriosclerosis 7(3), 276-286,(1987).
    [122] Cockcroft, J. R. Exploring vascular benefits of endothelium-derived nitric oxide. American Journal of Hypertension 18(12), 177s-183s,(2005).
    [123] Wilkinson, I. B.McEniery, C. M. Arterial stiffness, endothelial function and novel pharmacological approaches. Clinical and Experimental Pharmacology and Physiology 31(11), 795-799,(2004).
    [124] Wang, Y. X.Fitch, R. M. Vascular stiffness: measurements, mechanisms and implications. Curr Vasc Pharmacol 2(4), 379-384,(2004).
    [125]陈灏珠,李宗明.内科学.人民卫生出版社, 206-215,(1989).
    [126] Pesen, D.Hoh, J. H. Modes of remodeling in the cortical cytoskeleton of vascular endothelial cells. FEBS Lett 579(2), 473-476,(2005).
    [127] Kohno, K., Hamanaka, R., Abe, T., Nomura, Y., Morimoto, A., Izumi, H., Shimizu, K., Ono, M.Kuwano, M. Morphological change and destabilization of beta-actin mRNA by tumor necrosis factor in human microvascular endothelial cells. Exp Cell Res 208(2), 498-503,(1993).
    [128] Karakozova, M., Kozak, M., Wong, C. C., Bailey, A. O., Yates, J. R., 3rd, Mogilner, A., Zebroski, H.Kashina, A. Arginylation of beta-actin regulates actin cytoskeleton and cell motility. Science 313(5784), 192-196,(2006).
    [129] Popow, A., Nowak, D.Malicka-Blaszkiewicz, M. Actin cytoskeleton and beta-actin expression in correlation with higher invasiveness of selected hepatoma Morris 5123 cells. J Physiol Pharmacol 57 Suppl 7(111-123,(2006).
    [130] Kidoaki, S.Matsuda, T. Shape-engineered vascular endothelial cells: nitric oxide production, cell elasticity, and actin cytoskeletal features. J Biomed Mater Res A 81(3), 728-735,(2007).
    [131] Li YS, H. J., Chien S. Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech. 38(10), 1949-1971,(2005).
    [132] Searles CD, I. L., Davis ME, Cai H, Weber M. Actin cytoskeleton organization and posttranscriptional regulation of endothelial nitric oxide synthase during cell growth. Circ Res. 95(5), 488-495,(2004).
    [133] Su Y, E.-B. S., Bubb MR, Block ER. Regulation of endothelial nitric oxide synthase bythe actin cytoskeleton. Am J Physiol Cell Physiol. 284(6), 1542-1549,(2003).
    [134] Hutcheson, I. R.Griffith, T. M. Mechanotransduction through the endothelial cytoskeleton: Mediation of flow- but not agonist-induced EDRF release. British Journal of Pharmacology 118(3), 720-726,(1996).
    [135] Ladage, D., Brixius, K., Hoyer, H., Steingen, C., Wesseling, A., Malan, D., Bloch, W.Schwinger, R. H. G. Mechanisms underlying nebivolol-induced endothelial nitric oxide synthase activation in human umbilical vein endothelial cells. Clinical and Experimental Pharmacology and Physiology 33(8), 720-724,(2006).
    [136] Peng, X., Haldar, S., Deshpande, S., Irani, K.Kass, D. A. Wall stiffness suppresses Akt/eNOS and cytoprotection in pulse-perfused endothelium. Hypertension 41(2), 378-381,(2003).
    [137] Banan, A., Zhang, L. J., Farhadi, A., Fields, J. Z., Shaikh, M.Keshavarzian, A. PKC-beta 1 isoform activation is required for EGF-induced NF-kappa B inactivation and I kappa B alpha stabilization and protection of F-actin assembly and barrier function in enterocyte monolayers. American Journal of Physiology-Cell Physiology 286(3), C723-C738,(2004).
    [138] Posern, G., Sotiropoulos, A.Treisman, R. Mutant actins demonstrate a role for unpolymerized actin in control of transcription by serum response factor. Molecular Biology of the Cell 13(12), 4167-4178,(2002).
    [139] Bleul, C. C., Fuhlbrigge, R. C., Casasnovas, J. M., Aiuti, A.Springer, T. A. A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor 1 (SDF-1). Journal of Experimental Medicine 184(3), 1101-1109,(1996).
    [140]郑惠珍,赵克森,黄巧冰。Rho激酶在烧伤大鼠血清诱导的血管内皮细胞骨架变化中的作用。中华烧伤杂志21(3), 181-184,(2005).
    [141] Livak, K. J.Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25(4), 402-408,(2001).
    [142] Nehls, V.Drenckhahn, D. Demonstration of actin filament stress fibers in microvascular endothelial cells in situ. Microvasc Res 42(1), 103-112,(1991).
    [143] Girard, P. R.Nerem, R. M. Endothelial cell signaling and cytoskeletal changes in response to shear stress. Front Med Biol Eng 5(1), 31-36,(1993).
    [144] McCue, S., Noria, S.Langille, B. L. Shear-induced reorganization of endothelial cellcytoskeleton and adhesion complexes. Trends Cardiovasc Med 14(4), 143-151,(2004).
    [145] Ookawa, K., Sato, M.Ohshima, N. Time course changes in cytoskeletal structures of cultured endothelial cells exposed to shear stress. Front Med Biol Eng 5(2), 121-125,(1993).
    [146] Galbraith, C. G., Skalak, R.Chien, S. Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskeleton 40(4), 317-330,(1998).
    [147] Su, Y., Kondrikov, D.Block, E. R. Beta-actin: a regulator of NOS-3. Sci STKE 2007(404), pe52,(2007).
    [148] Sharpless, K., Biegel, D., Yang, T.Pachter, J. S. Beta-actin mRNA-binding proteins associated with the cytoskeletal framework. Eur J Biochem 212(1), 217-225,(1993).
    [149] Girard PR, N. R. Shear stress modulates endothelial cell morphology and F-actin reorganization through the regulation of focal adhesion-associated proteins. J Cell Physiol 163(1), 179-193,(1995).
    [150] McCarron, R. M., Chen, Y., Tomori, T., Strasser, A., Mechoulam, R., Shohami, E.Spatz, M. Endothelial-mediated regulation of cerebral microcirculation. J Physiol Pharmacol 57 Suppl 11(133-144,(2006).
    [151] Morita, T., Kurihara, H., Maemura, K., Yoshizumi, M.Yazaki, Y. Disruption of cytoskeletal structures mediates shear stress-induced endothelin-1 gene expression in cultured porcine aortic endothelial cells. J Clin Invest 92(4), 1706-1712,(1993).
    [152] Malek, A. M., Zhang, J., Jiang, J., Alper, S. L.Izumo, S. Endothelin-1 gene suppression by shear stress: pharmacological evaluation of the role of tyrosine kinase, intracellular calcium, cytoskeleton, and mechanosensitive channels. J Mol Cell Cardiol 31(2), 387-399,(1999).
    [153] Yoshizumi, M., Kurihara, H., Sugiyama, T., Takaku, F., Yanagisawa, M., Masaki, T.Yazaki, Y. Hemodynamic shear stress stimulates endothelin production by cultured endothelial cells. Biochem Biophys Res Commun 161(2), 859-864,(1989).
    [154] Morawietz, H., Talanow, R., Szibor, M., Rueckschloss, U., Schubert, A., Bartling, B., Darmer, D.Holtz, J. Regulation of the endothelin system by shear stress in human endothelial cells. J Physiol 525 Pt 3(761-770,(2000).
    [155] Malek, A.Izumo, S. Physiological fluid shear stress causes downregulation ofendothelin-1 mRNA in bovine aortic endothelium. Am J Physiol 263(2 Pt 1), C389-396,(1992).
    [156] Masatsugu, K., Itoh, H., Chun, T. H., Saito, T., Yamashita, J., Doi, K., Inoue, M., Sawada, N., Fukunaga, Y., Sakaguchi, S., Sone, M., Yamahara, K., Yurugi, T.Nakao, K. Shear stress attenuates endothelin and endothelin-converting enzyme expression through oxidative stress. Regulatory Peptides 111(1-3), 13-19,(2003).
    [157] Harrison, D. G., Widder, J., Grumbach, I., Chen, W., Weber, M.Searles, C. Endothelial mechanotransduction, nitric oxide and vascular inflammation. Journal of Internal Medicine 259(4), 351-363,(2006).
    [158] Corson, M. A., James, N. L., Latta, S. E., Nerem, R. M., Berk, B. C.Harrison, D. G. Phosphorylation of endothelial nitric oxide synthase in response to fluid shear stress. Circulation Research 79(5), 984-991,(1996).
    [159] Boo, Y. C.Jo, H. Flow-dependent regulation of endothelial nitric oxide synthase: role of protein kinases. American Journal of Physiology-Cell Physiology 285(3), C499-C508,(2003).
    [160] Nishida, K., Harrison, D. G., Navas, J. P., Fisher, A. A., Dockery, S. P., Uematsu, M., Nerem, R. M., Alexander, R. W.Murphy, T. J. Molecular cloning and characterization of the constitutive bovine aortic endothelial cell nitric oxide synthase. J Clin Invest 90(5), 2092-2096,(1992).
    [161] Uematsu, M., Ohara, Y., Navas, J. P., Nishida, K., Murphy, T. J., Alexander, R. W., Nerem, R. M.Harrison, D. G. Regulation of endothelial cell nitric oxide synthase mRNA expression by shear stress. Am J Physiol 269(6 Pt 1), C1371-1378,(1995).
    [162] Kadi, A., de Isla, N., Lacolley, P., Stoltz, J. F.Menu, P. Potential relation between cytoskeleton reorganization and e-NOS activity in sheared endothelial cells (Effect of rate and time of exposure). Clinical Hemorheology and Microcirculation 37(1-2), 131-140,(2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700