腔内修复术治疗主动脉疾患预后影响因素及主动脉支架血流动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
前言
     主动脉瘤、夹层动脉瘤是介入治疗工作中比较常见的严重大血管疾病。传统的外科手术损伤大,病人往往不能耐受,而腔内修复术避免了传统外科手术所造成的巨大创伤,减少了心、肺等器官的严重并发症,住院周期也明显缩短,为许多患者提供了治疗机会。尽管主动脉腔内修复术治疗胸腹主动脉疾患在我国已经开展近十年的时间,但国内针对主动脉疾患腔内修复术预后的影响因素分析却未见报道。
     虽然近年来腔内修复术在国内外众多的介入工作者共同努力下日臻完善,但仍有许多问题亟待解决。特别是对于累及左锁骨下动脉的主动脉瘤/夹层动脉瘤中左侧锁骨下动脉的处理仍存在许多争议。针对此问题,传统的方法为行介入治疗前行左锁骨下动脉动脉bypass术,此法可能发生多种致命性并发症,腔内修复术中单纯封闭左侧锁骨下动脉目前被广泛的应用于临床,但此法并不适用于全部的患者。因为部分患者的左锁骨下动脉对于脑循环有重要的意义,故近期的文献均主张尽可能的应用腔内技术保留左侧锁骨下动脉;应用主动脉侧孔支架和分支支架是目前应用较多的两种能够保留左侧锁骨下动脉的腔内技术,均有小规模的临床报道,本研究旨在应用计算流体力学软件分析分支型主动脉支架和侧孔支架置入后血管内血流动力学的变化,并就两种支架对血流动力学的影响进行比较。
     本研究通过对腔内修复术后患者进行随访,分析术后瘤体变化规律,并建立CoX生存分析模型,分析患者高血压等级、是否合并肾功能不全等因素与腔内修复术预后的相关性,筛选出影响腔内修复术疗效的有关因素。应用计算流体力学软件分析支架构型特点对血流动力学的影响,并分析比较分支型主动脉支架和侧孔支架置入后血管内血流动力学的变化,以期对支架的设计和选择有所帮助。
     材料和方法
     2000年11月至2007年10月在中国医科大学附属第一医院行腹主动脉瘤腔内修复术的87例患者,经影像学证实为腹主动脉瘤的患者46例、主动脉夹层患者41例。所有患者术前均行CT血管造影和计算机三维重建。术中共应用3种覆膜血管支架,包括Talent主动脉支架(Medtronic公司)、Zenith主动脉支架(Cook公司)、国产微创主动脉支架(北京裕恒佳公司)。所有患者均在导管室内进行腔内修复术。采用临床资料回顾性分析的方法,经过查阅病历,根据事先拟订好的调查表逐项填写。调查内容主要包括发病年龄、性别、瘤体大小、动脉瘤颈部位、生存时间、是否合并高血压、冠心病、肾功能不全等临床、影像学指标。应用统计学软件SPSS13.0进行多因素回归分析,筛选出与腔内修复术预后有关的影响因素,建立COX生存分析模型。其中27例影像学资料连续完整的病例,对于术前、术后6个月、12个月的瘤体直径进行方差分析,观察腔内修复术后瘤体变化的规律。
     应用Pro/engineer wildfire3.0依据正常人体主动脉弓及其分支平均管径建立模型,其中主动脉主干直径27mm,左锁骨下动脉直径8mm,分支血管与主干血管呈76°相交。主干内支架采用临床上最常用的主动脉支架构型,支架厚度为1mm,每个支架环长8mm,每个圆周上包括6个“V”型单元。因为本研究只针对分支部位的流体动力学,所以长度方向上只有2个支架环。模型A为无支架的正常血管模型作为对比,模型B为支架置入的理想状态,即分支开口完全敞开,主干的支架杆未突入分支开口处,模型C为主干支架的某个“V”型单元突入分支开口处,且这个“V”型单元的两根支架杆关于分支血管截面中心线对称,模型D为某单根支架杆突入分支开口处。将模型导入计算流体力学软件ANASYS11.0-CFX中建立流体模型,规定边界条件后进行计算流体动力学分析。
     结果
     1.有三个因素进入了腔内修复术的最终模型,分别是X2(高血压)、X3(肾功能不全)和X5(瘤体直径)。由此建立的腔内修复术模型为:h(t,x)=h0(t)exp(3.131 X2+6.743X3+2.111X5)。
     2.术前瘤体直径与术后6个月、12个月比较都有统计学差异,而术后6个月和术后12个月瘤体直径之间没有统计学差异。
     3.主动脉矢状剖面上的速度矢量图中,模型A、B、C、D的截面低速涡流区面积所占百分比分别为31.2%、33.4%、41.2%、59.4%,可见模型B、C中涡流区分布与A相仿,C中涡流区略大于A,模型D面积明显大于对照组A。
     4.分支血管起始部横截面上的速度矢量图中,模型A和B没有显而易见的差别,两者中低流速区所占总面积的百分比分别为21.2%和22.8%。模型C中图像上部月牙形低速区和对照组A基本相同,模型D中形成了大面积(比例为78.2%)的低速涡流区。
     5.分支血管纵切面上的速度矢量分图中,模型A和B无明显差异。模型C与对照组相比略有不同,在“V”型支架杆的两个对称的分支周围血流分别发生分离再附流动,两股血流完全对称,方向相向,互相抵消,最终血流仍保持向上的射流趋势。模型D中形成多个偏中心的低流速涡流区。
     6.各模型分支血管表面的低剪切力区(深蓝色区域,<0.55Pa)面积所占总面积比例分别为12.8%、18.1%、20.2%、65.8%,模型B、C分支血管壁面低剪切力区多于对照组A,且都分布在分支血管内支架周围,而模型D分支血管壁面低剪切力区明显大于前三者。
     7.模型B与对照组模型A中血流速度和剪切力分布没有明显差异,模型D中分支血管内血流速度明显减慢,并且形成了大量杂乱的偏中心涡流区,血管壁遍布低剪切力区,而模型C对于血流的影响介于B和D之间。
     结论
     1.是否合并高血压、肾功能不全及瘤体直径是影响腔内修复术预后的相关因素。
     2.支架厚度和网格密度是支架内再狭窄的促进因素。而纵向连接结构的加入使低剪切力区明显减少,可以降低支架内再狭窄的发生几率。
     3.从血流动力学角度分析推断,采用分支型主动脉支架行腔内隔绝术较应用侧孔支架更有利于维持左锁骨下动脉的远期通畅,是治疗累及左锁骨下动脉的动脉瘤的良好方法。
Background and Objective
     Both aortic aneurysm and dissecting aneurysm are very common in interventional radiology.During traditional surgery the patients are often harmed badly and can not endure the operation.Endovascular repair avoid seriously complication of traditional surgery and the period in hospital is shorten,which give a lot of patients the chance to treat.Though Endovascular repair have developed for about ten years in china,the Retrospective Research on treating the disease of aorta by endovascular abdominalaortic aneurysm repair has not been reported.
     Though endovascular abdominalaortic aneurysm repair became better and approaching perfection day by day in recently years,there are still many problems demanding prompt solution.When the former supporting part of stent exactly locate in the inlet of left subclavian artery.It is difficult to select the supporting part and dangerous to do endovascular abdominalaortic aneurysm repair.The feasible solution of this problem is to put a stent into the left subclavian artery,which can protect the left subclavian artery involvement and prevent the stent sliding into false lumen.As we all know,the implant of stent will induce the change of Hemodynamics,and this change have a intimate connection with restenosis of implanted stent.Because of the appearance of double stents in aorta and left subclavian artery,the branch structure is formed which is entirely different with traditional tube-shape stent structure,the hemodynamics change after the implant of branch stent is more complicated than usual.
     According to the different situation of the stent structure in the inlet of subclavian artery, the change of hemodynamics is different too.So it is necessary to do hemodynamic analysis for different stent sturct and choose the best one.
     Our research explored the regular pattern of aneurysm change though following up the patients after endovascular abdominalaortic aneurysm repair,and set up CoX survival prognostic model,analyze the correlation of the prognosis and hypertension、renal insufficiency etc and filter the relative factors that influence the curative of endovascular abdominalaortic aneurysm repair.To analyze the effect of stent structure change on the formation of in-stent restenosis by researching the influence of these change on hemodynamic using Pro/engineer wildfire3.0 and computational fluid dynamics software Ansysl 1.0-CFX and choose the best stent structure.
     Material and Method
     The experimental subjects composed of 102 cases after endovascular abdominalaortic aneurysm repair in the affiliated hospital of China Medical University between 2000-11 and 2007-10.All of them were all confirmed by medical imaging proof,46 patients was diagnosed as aortic aneurysm and another 56 dissecting aneurysm.All patients were examined by 3D-CTA.There are three kinds of stent including Talent aorta stent(Medtronic)、Zenith aorta stent(Cook)、aorta stent made in china(Yuhengjia company) which were used in the operation.Endovascular abdominalaortic aneurysm repair was executed in catheter room.Though retrospective analysis and look up the medial record,we fill up the table.The content of table include age of onset、sex、diameter of aneurysm、the position、life time、hypertension、coronary heart disease、renal insufficiency etc.Multiple factor regression model were conducted by SPSS 13.0 to filter the related factor of prognosis.For 27 cases which have completed imaging data,variance analysis was done to reveal the regular pattern of aneurysm change.
     The models were builded up in Pro/engineer wildfire3.0 according to the measurement of normal aorta and left subclavian artery,the diameter of aorta is 27mm, the diameter of left subclavian artery is 8mm,the angle between of them is 76°.The structure of aorta stent is the most common used stent structure in clinic,the thickness of stent is 1mm,the length of every circle is 8mm,every circle include 6“V”stent structure.Because our research only aimed at hemodynamic change of the branch part, so there are two circles in length.model A:the healthy aortic arch model without any stent;model B:the inlet of LSA open completely;model C:the“V”stent struts protruding into the inlet of LSA;model D:the single stent struts protruding into the inlet of LSA.Then the models were imported into ANASYS11.0-CFX to build up the fluid model,computational fluid dynamics analysis were executed after setting the boundary conditions.
     Results
     1.The correlative factors of affecting the prognosis of endovascular abdominalaortic aneurysm repair are hypertension、renal insufficiency and the diameter of aneurysm.
     2.The deflation of aneurysm is most remarkable in 6~(th) month after endovascular abdominalaortic aneurysm repair.The difference between 6~(th) month and 12~(th) month is not so obvious.
     3.Velocity vectors in the vertical plane of aorta,the velocity vectors of model B is similar to model A,The percentage of the low velocity and eddy area in model A、B、C、D are 31.2%、33.4%、41.2%、59.4%.the low velocity vectors of model C is a little more than model A,model D is full of low velocity vectors and vertex flow.
     4.Velocity vectors in the transverse section of LSA inlet,the velocity vectors of model B is similar to model A,The percentage of the low velocity and eddy area in model A、B are 21.2%、22.8%.there are high velocity vectors between two stent struts in model C,model D is full of low velocity vectors and vertex flow because of the single stent strut
     5.Velocity vectors in longitudinal section of LSA,the velocity vectors of model B is similar to model A,there are low velocity vectors around the stent struts of model C,LSA in model D is full of low velocity vectors and decentered vertex flow
     6.Wall shear stress distributions of 4 models,low shear stress distributions in model B and C are a little more than model A,The percentage of the low shear stress area in model A、B、C、D are 12.8%、18.1%、20.2%、65.8%.low shear stress distributions spread all over in model D
     7.The velocity vectors and shear stress area of model B is similar to model A.The stent structures in the inlet of LSA in Model D influent hemodynamics in LSA most seriously,blood velocity slow down obviously,a lot of eddy area and low shear stress conformed,model C is between model B and D.
     Conclusion
     1.The correlative factors of affecting the prognosis of endovascular abdominalaortic aneurysm repair are hypertension、renal insufficiency and the diameter of aneurysm.
     2.The change of stent construction can obviously influence hemodynamic,the increase of the thickness and/or meshes density is the main factor that induce the formation of low wall shear stress,which can lead to in-stent restenosis,the vertical link structure can reduce the formation oflow wall shear stress and the chance to be in-stent restenosis.
    
     3.The stent strcuts protruding into the inlet of LSA induced the conspicuous decrease of blood speed and the emergence of large-scale low shear stress,which will cause thrombogenesis、neointimal hyperplasia and result in in-stent restenosis,so it would be judicious to use dedicated bifurcated stents to treat bifurcation lesions.
引文
1 Won JY,Lee DY.Shim WH,et al.Elective endovascular treatment of descending thoracic aortic aneurysms and chronic dissections with stent-grafts.J Vase Interv Radiol,2001;12(5):575-582.
    2 Lundbom J,Wesche J,Hatlinghus S,et al.Endovasccular treatment of type B aortic dissections.Cardiovasc Surg,2001;9(3):266-271.
    3 Li C,Li YL,Wang ZG,et al.Application of endovascular thoracic branched aortic stent-grafts in the treatment of aortic arch dissection.Chinese Journal of Surgery,2005;43(18):l 184-1186.
    4 Kane GC,Hambly N,Textor SC,et al.Restenosis following percutaneous renal artery revascularization.Nephron Clin Pract.2007;107(2):63-9.
    5 Mauri L,Hsieh WH,Massaro JM,et al.Stent thrombosis in randomized clinical trials of drug-eluting stents.N Engl J Med.2007;356(10):1020-9.
    6 James E,Moore JR,Joel LB.Fluid and solid mechanical impli cations of vascular stenting.Annals of Biomedical Engineering,2002;30(4):498-508.
    7 Andreas OF,Peter WW,James EM.Computational fluid dynamics and stent design.Artificial Organs.2002;26(7):614-621.
    8 Wentzel JJ,Whelan DM,van der Giessen WJ,et al.Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution.Journal of Biomechanics.2000;33:1287-1295
    9 David EKJames ET,James PZ.Coronary artery stents:evaluating new designs for contemporary percutaneous intervention.Catheterization and Cardiovascular Interventions.2002;56:562-576.
    10 LaDisa JFJ,Olson LE,Guler I,et al.Stent design properties and deployment ratio influence indexes of wall shear stress:a three-dimensional computational fluid dynamics investigation within a normal artery.J Appl Physiol.2004;97:424-430.
    11 Jing ZP,Muller WH,Raithel D,et al.Endovascular exclusion of abdominal aortic aneurysm.Chinese Journal Of Surgery.l998;36(4):212-214.
    12 Wang YM,Zhang ZQ.Spiral CT angiography in diagnosis and measurement of abdominal aortic aneurysm.Chin Med Imaging Technol.2006;22(2):293-295.
    13 Song YL,Wang D,Zang WS,et al.Evaluation of spiral CT angiography in post-operative follow-up of endoluminal stent grafting with aortic diseases.Chinese Journal Of Interventional Imaging And Therapy.2007;4(2):106-109.
    14 Parodi JC,Palmaz JC,Barone HD.Transfemoral intraluminal graft implantation for abdominal aortic aneurysms.Ann Vasc Surg.1991;5(6):491-499.
    15 Zhang XT,Xu K,Zhang Q,et al.Endovascular stent-graft exclusion for treatment of thoracic and abdominal aneurysms.Chinese Journal Of Interventional Imaging And Therapy.2004;1(2):111-114.
    16 Carpenter JP,Anderson WN,Brewster DC,et al.Multicenter pivotal trial results of the Lifepath System for endovascular aortic aneurysm repair.J Vasc Surg,2004,;9(1):34-43.
    17 James E,Moore JR,Joel LB.Fluid and solid mechanical implications of vascular stenting.Annals of Biomedical Engineering.2002;30:498-508.
    18 Andreas OF,Peter WW,James EM.Computational fluid dynamics and stent design.Artificial Organs.2002;26:614-621.
    19 FRANK,AO,Walsh RW,MOORE JE.Computational fluid dynamics and stent design.Artif Organs.2002;26:614-621.
    20 Choi HW,Barakat AI.Numerical study of the impact of non-Newtonian blood behavior on flow over a two-dimensional backward facing step.Biorheology.2005;42:493-509.
    21 John FL,David CW,Ismail G,et al.Stent geometry and deployment ratio influence distributions of wall shear stress:three-dimensional numerical simulations exploiting properties of an implanted stent.2003 Summer Bioengineering Conference.2003;6:845-846.
    22 Qiao AK,Liu YJ.Endovascular stent for thoracic aneurysm:numerical study.Biorheology.2005;42:137-138.
    23 欧阳墉.血液流变学及其在支架置入术后的变化.介入放射学杂志.2002;11,382-384.
    24 Pakala R,Watanabe T,Benedict CR.Induction of endothelial cell proliferation by angiogenic factors released by activated monocytes.Cardiovasc Radiat Med.2002;3:95-101.
    25 Li C,Li YL,Wang ZG,et al.Application of endovascular thoracic branched aortic stent-grafts in the treatment of aortic arch dissection.Chinese Journal of Surgery.2005;43(18):1184.
    26 Abdul I Barakat,Tina EC.Numerical simulation of fluid mechanical disturbance induced by intravascular stents.International Conference on Mechanics in Medicine and Biology.2000;4:635.
    27 HE X,Ku DN.flow in T-bifurcations:effect of the sharpness of the flow divider.Biorheology.1995;32(4):447.
    28 Natarajan S,Mokhtarzadeh-Dehghan MR.A numerical and experimental study of periodic flow in a model of corrugated vessel with application to stented arteries,Medical Engineering Physics.2000;22(8):555.
    29 Wentzel JJ,Krams R,Schuurbiers JC,et al.Relationship between neointimal thickness and shear stress after Wallstent implantation in human coronary arteries.Circulation,2001;103(13):1740.
    1 Cwikiel W,Lewin RF,Sachdev N,et al.Percutaneous atherectomy of occlusive peripheral vascular disease:stenoses and/or occlusions.Cathet Cardiovasc Diagn.1989;18:1-6.
    2 James E,Moore JR,Joel LB.Fluid and solid mechanical implications of vascular stenting.Annals of Biomedical Engineering.2002;30:498-506.
    3 Andreas OF and Peter WJ.Computational fluid dynamics and stent design.Artifical Organs.2002;26:614-622.
    4 胡金麟主编.细胞流变学.北京科学出版社.2000;1-30,78-83,235-237.
    5 班兴敏,张延芳.动脉血栓形成过程的血流动力学有限元分析.医学生物力学.2001;16:44-47.
    6 Nicolas B,Damien C,Erwan D,et al.Experimental study of laminar blood flow through an artery treated by a stent implantation:characterisation of intra-stent wall shear stress.Journal of biomechanics.2003;36:991-1001.
    7 John FL,David W,Ismail G.et al.Stent geometry and deployment ratio influence distributions of wall shear stress:Three-dimensional numerical simulations exploiting properties of an implanted stent.2003 Summer Bioengineering Conference.Florida.2003;845-853.
    8 Stephane GC,Luc CA,Van D,et al.Augmentation of wall shear stress inhibits neoitimal hyperplasia after stent implantation:inhibition through reduction of inflammation.Circulation.2003;107:2741-2750.
    9 Esper RJ,Nordaby RA,Vilarino JO,et al.The endothelial dysfunction.Cardiovasc Diabetol.2006;23(1):4-9.
    10 Rneman RS,Arts T,Hoeks AP.Wall Shear Stress-an important determinant of endothelial cell function and structure-in the arterial system in vivo.Discrepancies with theory.J Vasc Res.2006;43(3):251-269.
    11 Irace C,Ceravolo R,Notarangelo L,et al.Comparison of endothelial function evaluated by strain gauge plethysmography and brachial artery ultrasound.Atherosclerosis.2001;158(1):53-59.
    12 Ziegler T,Bouzourene K,Harrison VJ,et al.Influence of oscillatory and unidirectional flow environment on the exp ression of endothelial and nitric synthase in cultured endothelial cells. Arterioscler Thromb Vase Biol.l998;18:686-692.
    13 George J,Herz I,Goldstein E,et al.Number and Adhesive Properties of Circulating Endothelial Progenitor Cells in Patients With In-Stent Restenosis.Arterosclerosis,Thrombosis,and Vascular Biology.2003;23:57-60.
    14 Dangas G,Kuepper F.Renstenosis:repeat narrowing of a coronary artery.prevention and treatment.Circulation.2002;105:2586-1587.
    15 Helmke BP,Goldman RD,Davise PF.Rapid displacement of vimentin Intermediate filaments in living endothelial cells exposed to flow.Circ Res.2000;86(7):745-752.
    16 Cheng C,Tempel D,Van Haperen R,et al.Shear stress-induced changes in atherosclerotic plaque composition are modulated by chemokines.J Clin Invest.2007;117(3):616-26.
    17 Deng X,Szabo S,Khomenko T,et al.Gene tiierapy with adenoviral plasmids or naked DNA of vascular endothelial growth factor and platelet-derived growth factor accelerates healing of duodenal ulcer in rats.J Pharmacol Exp Ther.2004;311(3):982-988.
    18 Hsieh HJ,Li NQ,Frangos JA,et al.Pulsatile and steady flow induces c-fos exp ression in human endothelial cells.J Cell Physiol.1993;154:143-151.
    19 Bao XP,Lu CY,Frango s JA.Temporal gradient in shear but not steady shear st ress induces PDGF-A and MCP-1 expression in endo thelial cells role of NO,N FJB,and erg-1.Arterio scler Thromb Vase Bio.l999;19:996-1003.
    20 Keulenaer GWD,Chappell DC,Ishizaka N,et al.Oscillatory and steady laminar shear stress differentially affect human endothelial redox state role of a superoxied-producing NADH oxidase.Circ Res.l998;82:1094-1101.
    21 Kastrati A,Mehilli J,Dirschinger J,et al.Restenosis after coronary placement of various stent types.Am J Cardio.2001;87:34-39.
    22 Farb A,Weber DK,Kolodgie FD,et al.Morphological predictors of restenosis after coronary stenting in humans.Circulation.2002;105:2974-2980.
    23 Duda SH,Wiskirchen J,Tepe G,et al.Physical properties of endovascular stents:an experimental comparison.Journal of Vascular and Interventional Radiology.2000;11:645-654.
    24 Rogers C,Edelman ER.Endovascular stent design dictates experimental restenosis and thrombosis.Circulation.1995;91:2995-3001.
    25 Schulz C,Herrmann RA,Beilharz C,et al.Coronary stent symmetry and vascular injury determine experimental restenosis.Heart.2000;83:462-467.
    26 LaDisa JFJ,Olson LE,Guler I,et al.Stent design properties and deployment ratio influence indexes of wall shear stress:a three-dimensional computational fluid dynamics investigation within a normal artery.J Appl Physiol.2004;97:424-430.
    27 Kleinstreuer C,Hyun S,Buchanan JR,et al.Hemodynamic parameters and early intimal thickening in branching blood vessels.Crit Rev Biomed Eng.2001;29:1-64.
    28 Tardy Y,Resnick N,Nagel T,et al.Shear stress gradients remodel endothelial monolayers in vitro via a cell proliferation-migration-loss cycle.Arterioscler Thromb Vase Bio.1997;17:3102-3106.
    29 Kute SM,Vorp DA.The effect of proximal artery flow on the hemodynamics at the distal anastomosis of a vascular bypass graft:computational study.J Biomech Eng.2001;123:277-283.
    30 Myers JG,Moore JA,Ojha M,et al.Factors influencing blood flow patterns in the human right coronary artery.Annals of Biomedical Engineering.2001;29:109-120.
    31 LaDisa JFJ,Guler I,Olson LE,et al.Three-dimensional computational fluid dynamics modeling of alterations in coronary wall shear stress produced by stent implantation.Ann Biomed Eng.2003;31:972-980.
    32 Prendergast PJ,C Lally,S Daly,et al.Analysis of prolapse in cardiovascular stents:a constitutive equation for vascular tissue and finite element modeling.Transaction of the ASME.2003;125:692-699.
    33 David EK,James ET,James PZ.Coronary artery stents:evaluating new designs for contemporary percutaneous intervention.Catheterization and Cardiovascular Interventions.2002;56:562-576.
    34 James E,Moore JR,Joel LB.Fluid and solid mechanical implication of vascular stenting.Annals of Biomedical Engineering.2002;30:498-502.
    35 Ladisa JF,Olson LE,Warltier DC,Pagel PS,et al.Computational fluid dynamics modeling of hemodynamic changes caused by coronary stenting in vivo.Annals of Biomedical Engineering. 2001;29:28-37.
    36 Wentzel JJ,Whelan DM,Giessen WJ,et al.Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution.Journal of Biomechanics.2000;33:1287-1295.
    37 Ku DN,Giddens DP,Zarins CR,et al.Glagov:Pulsatile flow and atherosclerosis in the human carotid bifurcation:positive correlation between plaque localization and low and oscillating shear stress.Arteriosclerosis.l985;5:293-305.
    38 Moire JR,Xu C,Glagov S,et al.Fluid wall shear stress measurements in a model of the human abdominal aorta:oscillatory behavior and the relationship to atherosclerosis.Arteriosclerosis.1994;110:225-232.
    39 Andreas OF,Peter WW,James EM.Computational fluid dynamics and stent design.Artificial Organs.2002;26:614-622.
    40 Henry FS.Flow in stented arteries.In:intra and extracorporeal cardiovascular fluid dynamics.Boston.2000;333-364.
    41 Berry JL,Santamarina A,Moore JE,et al.Routh:Experimental and computational flow evaluation of coronary stents.Ann Biomed Eng.2000;28,386-397.
    42 Abdul I,Barakat E,Tina Cheng:Numerical simulation of fluid mechanical disturbance induced by intravascular stents.International Conference on Mechanics in Medicine and Biology.2000;33-36.
    43 Perktold K,Rappitsch G.Compuer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model.Journal of Biomechanics.1995;28(7):845-856.
    44 Natarajan S,Mokhtarzadeh-dehghan MR.A numerical and experimental study of periodic flow in a model of a corrugated vessel with application to stented arteries.Medical Engineering& Physics.2000;22:555-566.
    45 Etave F,Finet G,Boivina M.Mechanical properties of coronary stents determined by using finite element analysisJournal of Biomenchanics.2001;34:1065-1075.
    46 Fattori R,Pive T.Drug-eluting stents in vascular intervention.Lancet.2003;361:247-249.
    47 Virmani R,Farb A,Guagliumi G,et al.Drug-eluting stentsxaution and concerns for long-term outcome.Coronary Artery Disease.2004;15:313-318.
    48 Virmani R,Kolodgie FD,Farb A,et al.Drug eluting stents:are human and animal studies comparable? Heart.2003;89:133-138.
    49 LaDisa JFJ,Hettrick DA,Olson LE,et al.Coronary stent implantation alters coronary artery hemodynamics and wall shear stress during maximal vasodilation.J Appl Physiol.2002;93:1939-1946.
    50 Wentzel JJ,Whelan DM,vander Giessen WJ,et al.Coronary stent implantation changes 3-D vessel geometry and 3-D shear stress distribution.Journal of Biomechanics.2000;33:1287-1295.
    51 Deplano V,Bertolotti C,Barragan P.Three-dimensional numerical simulations of physiological flows in a stented coronary bifurcation.Medical & Biological Engineering & Computing.2004;42:650-659.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700