压裂风险分析与风险控制研究及实践
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压裂技术经过60多年的研究和发展,已经成为一项成熟有效的增产技术而广泛应用。近年来我国新增的探明储量中约2/3为低/特低渗油气藏,压裂是该类油气藏勘探开发的必要措施和有效手段。同时压裂也是一项高投入、高风险的技术,单井的作业成本一般在数十万至数百万元;如果对储层特征认识不足、选井选层不当、入井材料选择不合理、施工设计不合理、施工质量不达标等都可能导致施工失败或压裂以后不能取得理想增产效果的情况,更有甚者可能导致本来有一定产能的油气井压裂后产能降低或没有产能的严重后果;对于注水开发的油田,如果储层改造以后形成的裂缝方位与油藏开采的注采井网不匹配的话,会给开发后期调整带来很大的影响。全面、系统、深入地研究压裂中可能遇到的各种风险,研究控制风险的方法,从降低风险的角度指导压裂的全过程,对于提高压裂的成功率和有效率、降低压裂投资风险、提高油田经济效益有重要意义。本文在前人研究的基础上,全面、系统的总结了压裂中可能面临的各种风险,以及风险发生的原因及控制风险的方法,初步尝试构建了压裂风险控制体系。为了研究人工裂缝对油藏生产动态的影响,运用油藏数值模拟研究了五点法井网油水井同时压裂裂缝长度有利和不利情况下裂缝长度对生产动态的影响。为了提高压裂风险决策的科学性和决策效率,将模糊综合评价方法引入到压裂风险决策中,构建了压裂风险评价的指标体系,综合运用层次分析法和专家经验法确定各项指标的权重,并通过实例说明如何运用模糊综合评价方法进行压裂风险决策,并且编制了基于模糊综合评价的压裂风险决策软件。最后结合靖边气田实施的交联酸携砂酸压新工艺,研究了该工艺可能面临的各种风险和降低风险的方法,运用该工艺先后对6口井进行了现场施工,施工的成功率和有效率均达到100%,压后最大产能37.0236×104m3/d,最大加砂量25.1m3。运用灰色关联分析法研究了影响该地区酸压后产能的主控因素,研究表明对于该地区而言影响携砂酸压产能的主控因素为有效厚度、施工规模和地层压力,可以为该地区下一步的选井选层和施工设计提供指导。
Fracturing has become a mature and effective technology widely used throughmorethan60 years ofresearch anddevelopment. Sincetwothirds ofthenewly-foundproved reserves in china are low or ultra-low permeabilityreservoirs, fracturingis thenecessary measures and effective means of this kind of reservoirs’exploration anddevelopment. At the same time, fracturing is a high investment and high risktechnology.and the operation cost for a single well is about hundreds of thousands tomillions Yuan. If we have not an full understanding to the reservoir characteristics, ifthewellandlayerselectionisunreasonable,iffracturingliquidandproppantselectionis not appropriate, if construction design is improper, if Construction quality is notreach the standard ,all of these may result construction failure or can not achieve thedesired yield,To make matters worse, it mayresult the well deliverabilityfall or haveno deliverability. To the waterflood development oil field, if the fracturing fracturedirection don’t match the flooding well network, it may bring great difficulties to thedevelopment plan adjustment. Making a complete , systematic and deep study to therisks that may be encountered in fracturing and making measures according to theconcrete situation to guide the whole course of fracturing from the reduce risk angle,have an important significance for improveing the succeeding rate and efficiencyrateof construction, decreasing the investment risk and advancing economy benefit.Based on the predecessors' study, this paper comprehensively and systematiclysummarized the risks that fracturing may counter, the cause that brought about therisks, and discussed the method to control risks. at the same time, the paperpreliminary attempt to establish a system of fracturing risk control,and studied themethod of fracturing risk decision-making. In order to study the influence ofhydraulic fracturing on the production dynamic of reservoir, the paper study theinfluence of fracturing length on the production dynamic of five-spot flood system in the situation of the favorable and unfavorable fracturing direction with the method ofreservoir simulation. To realize the science and effectiveness of the hydraulicfracturingriskdecisionmaking,themethodofFuzzycomprehensiveevaluation(FCE)has been used. The paper constructed an evaluation index system of hydraulicfracturing risk , and a compositive method of Specialist Grading and AnalyticalHierarchy Process (AHP) was used to confirm the index weights.Besides, through acomplete example,it has explained how to use Fuzzycomprehensive evaluation(FCE)to make assessment for hydraulic fracturing risks,on the basis of which, a softwarewas programmed. At last, as for the new technology of the proppant-carrying acidfracturing of cross-linking acid fluid which was used in jingbian gas field, the paperanalyses the risks during the process of its implementation and proposed methods todecrease the risk.6 wells have been treated by this technology, with the constructionsuccess ratio 100%, and the construction availability ratio 100%.The maximaldeliverabilityafterhydraulicfracturingis37.0236×104m3/d.andthemaximalproppantvolume is 25.1m3.At the same time, in order to analyze the main influencing factorsand influence degree of all kinds of factors to deliverabilityafter hydraulic fracturing,grey correlation analytical method was applied. The result shows that effectivethickness, operation scale and formation pressure are the main influencing factors,which has certain direction significance to the well and layer selection, fracturingdesign.
引文
[1]剖析中国石油进口态势[DB/OL].http://www.sinosure.com.cn/sinosure/xwzx/rdzt/jkyj/jkxsfx/81444.html,2008-09-08/2009-04-01.
    [2]宋永,刘春林,陆仁恒.影响油层压裂效果的因素分析[J].大庆石油地质与开发,1995,14(2):38-41.
    [3]吴建发.优选压裂井方法研究[D].四川:西南石油学院,2005.
    [4]赵卫蕊.七个泉油田压裂选井选层技术研究[D].北京:中国石油大学,2007.
    [5]牛世忠.红岗油田压裂选井选层方法研究与应用.石油天然气学报(江汉石油学院学报),2005,27(6):916-917.
    [6]蒋廷学,汪绪刚,等.水力压裂选井选层的快速评价方法.石油钻采工艺,2003,25(4):49-52.
    [7]蒋廷学.重复压裂选井选层的模糊识别方法.石油钻采工艺,1997,19(3):60-62.
    [8]肖芳淳.压裂酸化中选层的模糊物元评价分析.石油钻采工艺,1996,18(6):49-53.
    [9]付永强,郭建春,赵金洲,等.多层次模糊聚类在压裂酸化选井选层中的应用.天然气工业,2001,21(5):58-60.
    [10]刘洪,赵金洲,胡永全,等.模糊神经网络系统在优选压裂井层中的应用.钻采工艺,2002,25(5):34-37.
    [11]杜卫平.重复压裂选井选层人工神经网络方法.钻采工艺,2003,26(4):106-109.
    [12]吴亚红,李秀生,钟大康,等.人工神经网络在压裂选井及选层中的应用.石油大学学报(自然科学版),2001,25(5):42-44.
    [13]刘长印,孔令飞,张国英,等.人工智能系统在压裂选井选层方面的应用.钻采工艺,2003,26(1):37-38
    [14]王鸿勋,张士诚.水力压裂设计数值计算方法[M].北京:石油工业出版社,1998.
    [15]Stephen,A.Holidith,Jamesetc.TheOptimizationofOilSpacingandFractureLengthinLowPermeabilityGasReservoirs.SPE7496,1978.
    [16]LK.Britt.Optimized Oil Well Fracturing of Moderate-Permeability Reservoirs.SPE14371,1985.
    [17]D.N.Meehan,R.N.Horne,K.Aziz.EffectsofReservoirHeterogeneityandFractureAzimuthonOptimizationofFractureLengthandWellSpacing.SPE17606,1988.
    [18]D.N.Meehan. Optimization of Fracture Length and Well Spacing in HeterogeneousReservoirs.SPEPT,1995.
    [19]杨能宇.注水开发油田整体压裂改造水力裂缝参数对采收率的影响研究[D].北京:石油大学,1993.
    [20]杨能宇,张士诚,王鸿勋.整体压裂水力裂缝参数对采收率的影响[J].石油学报,1995,16(3):72-76.
    [21]张红玲,张琪,刘泽凯,等.樊128断块整体压裂改造布井方案研究[J].石油大学学报(自然科学版),2002,26(1):35-38.
    [22]赵力,新欢27块整体压裂优化设计[J].石油钻采工艺.2003,25(增刊):64-66
    [23]王永辉,蒋阗,路勇.低渗层重复压裂的油藏数值模拟研究[J].石油勘探开发,1997.24(1):47-49.
    [24]隋微波,张士诚.低渗复杂断块整体压裂裂缝参数优化设计[J].石油勘探开发,2007,34(1):98-103.
    [25]胡永全,任书泉.水力压裂裂缝高度控制分析[J].大庆石油地质与开发,1996,15(2):55-58.
    [26]周文高,胡永全,赵金洲,等.控制压裂缝高技术研究及影响因素分析[J].断块油气田,2006,13(4):70-72.
    [27]郭大立,赵金洲,曾晓慧,等.控制裂缝高度压裂工艺技术实验研究及现场应用[J].石油学报,2002,23(3):91-94.
    [28]王永辉、张福祥.水力压裂裂缝高度的控制技术及其成功应用[J].油气井测试,2006,15(4):55-58.
    [29]刘新全,刘新生,赵炜,译.水层或衰竭层上方产层压裂缝高的控制技术[J].国外油田工程,2001,17(9):7-10.
    [30]李年银,赵立强,刘平礼,等.裂缝高度延伸机理及控制缝高酸压技术研究[J].特种油气藏,2006,13(2):61-63.
    [31]宋毅,伊向艺,卢渊.地应力对垂直裂缝高度的影响及缝高控制技术研究[J].石油地质与工程.2008,22(1):75-77.
    [32]郭大立,赵金洲,吴刚,等.水力压裂设计方法研究[J],西南石油学院学报,1999,21(4):61-63.
    [33]蒋廷学.压裂优化设计的一些实用分析方法[J].低渗透油气田,2000,5(4):73-77.
    [34]姚海晶.压裂施工中前置液用量计算方法研究[J].大庆石油地质与开发,2007,26(6):107-109.
    [35]颜晋川,黄禹忠,任山,等.压裂设计中加砂浓度优化方法及应用[J].钻采工艺,2007,30(6):58-60.
    [36]冯彩琴,林景禹,刘喜杰,等.安棚油田部分井低砂比砂堵原因及对策[J].河南石油,2002,16(5):49-50.
    [37]张高玖,赵德勇,刘欣,等.安棚油田压裂砂堵因素分析及解决方法[J].重庆科技学院学报,2007,9(2):1-3.
    [38]李勇明,李崇喜,郭建春,等.M气藏压裂施工砂堵原因剖析[J].钻采工艺,2008,31(2):55-57,64.
    [39]陈要辉,阎铁,黄有泉,等.海拉尔油田凝灰质储层砂堵原因分析及对策[J].钻采工艺,2006,29(1):41-42.
    [40]Almond S W,Penny G S,Conway M W.Factors Affecting Proppant Flowback With ResinCoatedProppantsJ.SPE30096,1995.
    [41]AndrewsJ S,Kjorholt H.Rock Mechanical Principles To Predict Proppant Flowback FromHydraulicFractures[J].SPE/ISRM47382,1998.
    [42]宋军正,郭建春.压裂气井出砂机理研究[J].钻采工艺,2005,28(2):20-21.
    [43]李天才,郭建春,赵金洲.压裂气井出砂机理研究[J].西安石油大学学报,2006,21(3):44-47.
    [44]何世云,陈琛.加砂压裂压后排液的控砂技术[J].天然气工业,2002,22(3):45-46.
    [45]付丽霞,朱伟,蒋廷学.水力压裂的现场质量控制技术及应[J].钻采工艺,2002,25(4):39-41.
    [46]庾文静,陶红.增产作业添加剂主要安全风险与防护措施[J].钻采工艺,2007.30(1):138-140.
    [47]王长建,傅贵,王芳.基于风险管理的油田作业安全管理系统构建与实践[J].石油天然气学报(江汉石油学院学报),2006.28(5):141-143.
    [48]唐守安.国际石油公司的全面风险管理[J].国际石油经济,2007,第8期:37-45.
    [49]张景和,孙宗顺.地应力、裂缝测试技术在石油勘探开发中的应用[M].北京:石油工业出版社,2001.
    [50]李颖川主编.采油工程[M].北京:石油工业出版社,2002.
    [51]岳湘安,王尤富,王克亮.提高石油采收率基础[M].北京:石油工业出版社,2007.
    [52]周文,闫长辉,王世泽,等.油气藏现今地应力场评价方法及应用[M].北京:地质出版社,2006.
    [53]冯金德,程林松,李春兰,等.裂缝性低渗油藏整体压裂开发电模拟研究[J].钻采工艺,2006,29(2):43-45.
    [54]王允诚.油层物理学[M].北京:石油工业出版社,1993.
    [55]Bennett,C.O.,Camacho,R.G,Reynolds,A.C,Raghavan,R,–Approximate Solutions for FracturedWellsProducingLayeredReservoirs–SPEJournalOctober1985,729-742.
    [56]Bennett,C.O,Reynolds,A.C.,Raghavan,R.,Jacques,L.E.,–Performance of Finite Conductivity,Vertically Fractured Wells in Single-Layer Reservoirs–SPE Formation Evaluation–August1986,399-412.
    [57]Bennion,D.B,Thomas,F.B,Bietz,R.F–Low Permeability Gas Reservoirs: Problems,Opportunities and Solutions for Drilling, Completion, Stimulation and Production-SPE35577presentedatGasTechnologyConference,Calgary,Canada.May1996.
    [58]万仁溥,罗英俊.采油技术手册(修订本)第九分册(压裂酸化工艺技术)[M].石油工业出版社,1998.
    [59]董建华,刘鹏,王薇.地应力剖面在水力压裂施工中的应用[J].大庆石油学院学报,2005,:29(2):40-42.
    [60]李志明.地应力与油藏改造方案[J].石油钻采工艺,1998,20(6):47-52.
    [61]徐同台,赵敏,熊友明,等编著.保护油气层技术[M].北京:石油工业出版社,2001.
    [62]M.J.埃克诺米德斯,K.G.诺尔蒂,等.油藏增产措施(修订本)[M].北京:石油工业出版社,1991.
    [63]辛军,郭建春,赵金洲,等.控制支撑剂回流技术新进展[J].断块油气田,2008,15(5):99-102.
    [64]赵建平,何世云,宋永华,等.压裂井预防砂刺的综合措施研究及应用效果评价[J].油气井测试,2008,17(2):32-34.
    [65]焦国盈,王嘉淮,潘竟军,等.支撑剂回流研究进展[J].西部探矿工程,2007,第4期:64-66.
    [66]程兆惠,罗英俊.中深井油层水力压裂[M].北京:石油工业出版社,1991.
    [67]刘能强.适用现代试井解释方法[M].北京:石油工业出版社,2003.
    [68]白玉,王俊亮.井下作业实用数据手册[M].北京:石油工业出版社,2007.
    [69]丁云宏.难动用储量开发压裂酸化技术[M].北京:石油工业出版社,2005.
    [70]王新纯,李彤,王秀臣.压裂系统工程[M].北京:石油工业出版社,2002.
    [71]罗国勋.质量管理与可靠性[M].北京:高等教育出版社,2005.
    [72]郭伏,杨学涵.人因工程学[M].沈阳:东北大学出版社,2001.
    [73]梁保松,曹殿立.模糊数学及其应用[M].北京.科学出版社,2007.
    [74]闵琪,杨华.鄂尔多斯盆地油气勘探开发论文集[M].北京:石油工业出版社,2000:1-19.
    [75]伊向艺,卢渊,宋毅,等.靖边气田白云岩储层交联酸酸压技术实践[J].油气地质与采收率,2008,15(6):92-94.
    [76]LeonardJ.FractureAcidizing:History,PresentState,andFuture[J].SPE106371,2007.
    [77]中国石油油气储层改造重点实验室编.2008年低渗透油气藏压裂酸化技术新进展[M].北京:石油工业出版社.2008:64-74,325-334.
    [78]罗云,刘爱华,王俊明,等.交联酸加砂酸化压裂技术在复杂岩性油藏的应用[J].石油报.2008,29(2):266-268.
    [79]易积正,傅英,郭建春,等.复杂岩性储层酸携砂压裂技术室内研究[J].钻采工艺,2006,29(3):55-57.
    [80]M.J.埃克诺米德斯,K.G.诺尔蒂等著.油藏增产措施(修订本)[M].北京:石油工业出版社1991:654-668.
    [81]王学萌,张继忠,王荣.灰色系统分析及实用计算程序[M].武汉:华中科技大学出版社,2001:8-16.
    [82]邓聚龙.灰色系统基本方法[M].武汉:华中理工大学出版社,1988:1-42.
    [83]连承波,钟建华,蔡福龙.油田产量影响因素的灰色关联分析[J].天然气地球科学,2006,17(6):851-853.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700