两边连接钢板剪力墙及组合剪力墙抗震性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两边连接钢板剪力墙和钢板混凝土组合剪力墙通过高强螺栓或焊缝仅与框架梁连接,与四边连接钢板及组合剪力墙相比消除了对框架柱的依赖,避免了框架柱过早发生破坏;小跨高比的两边连接剪力墙布置灵活,可以在一跨中分段布置,便于开设门窗和过道,通过调整墙板尺寸或数量,方便地改变剪力墙的刚度和承载力。本文采用试验研究与理论分析相结合的方法,分别对两边连接钢板剪力墙、开缝钢板剪力墙和钢板混凝土组合剪力墙进行了弹性屈曲分析、试验研究和有限元分析,研究了上述三类剪力墙的抗震性能和受力机理,并提出了方便工程设计和应用简化设计计算方法和设计建议。具体完成了以下工作:
     (1)对两边连接侧边自由、侧边约束及侧边加肋钢板剪力墙进行了弹性屈曲分析,建立了弹性屈曲承载力的计算公式,提出“界限肋板刚度比”作为衡量侧边加劲肋约束效果的主要参数。进行了1块两边连接侧边自由、2块侧边加肋钢板剪力墙在低周往复荷载下的滞回性能试验研究,详细分析了受力过程中的耗能能力和变形特征。试验结果表明:两边连接钢板剪力墙具有较高的初始刚度和承载力,进入弹塑性阶段后通过沿对角线方向形成拉力带充分发挥屈曲后强度承担荷载并耗能,具备良好的耗能能力和延性。通过对两边连接钢板剪力墙抗剪静力性能的有限元分析,讨论了受力机理以及主要参数的影响规律,提出了侧边加劲肋的设计方法。
     (2)对跨高比为1.0、开设1~3排竖缝的两边连接侧边约束开缝钢板剪力墙进行了弹性屈曲分析,综合考虑了开缝钢板的整体屈曲以及缝间小柱的局部屈曲,提出能使开缝钢板达到平面内工作且以缝间小柱端部形成塑性铰承担荷载并耗能时的理想开缝原则为:缝间小柱宽厚比小于15且高宽比大于3。进行了5块两边连接侧边加肋开缝钢板剪力墙在低周往复荷载下的滞回性能试验研究,详细分析了受力过程中的耗能能力和变形特征,讨论了开缝钢板剪力墙在低周往复荷载作用下的工作机理。通过对两边连接开缝钢板剪力墙静力性能的有限元分析,详细分析了开缝钢板剪力墙的受力特征以及主要设计参数和影响规律,揭示了缝间小柱的参数取值是影响开缝钢板剪力墙抗剪性能的主要因素,通过试验研究和有限元分析进一步验证了理想开缝原则下开缝钢板剪力墙能够基本保持平面内工作,具备相对饱满的滞回环,表现出良好的延性和耗能能力,但初始刚度和承载力较两边连接钢板剪力墙有显著降低。
     (3)从小挠度板弹性理论分析入手,推导出了钢板混凝土组合剪力墙组合截面刚度和叠合截面刚度的计算方法,建立了两边连接钢板混凝土组合剪力墙弹性屈曲承载力的计算公式,从弹性屈曲分析角度获得了能够完全约束钢板面外变形时的“混凝土板临界厚度”。进行了6块两边连接钢板混凝土组合剪力墙和1块两边连接单排开缝钢板混凝土组合剪力墙在低周往复荷载作用下的滞回性能试验研究,试验研究表明:角部设置短加劲肋的两边连接组合剪力墙具有较高的初始刚度和承载力,钢板基本保持平面内工作,滞回环饱满,表现出良好的耗能能力和延性,刚度、承载力、耗能面积以及能量耗散系数与两边连接钢板剪力墙相比均有显著提高,经合理设计的混凝土板能够在后期参与承担荷载,进而提高组合剪力墙在后期的刚度和承载能力。通过对两边连接钢板混凝土组合剪力墙抗剪静力性能的有限元分析,讨论了受力机理,从弹塑性分析角度提出了更符合实际的混凝土板临界厚度。
     (4)在钢板面内工作性能的基础上建立了上述三类两边连接剪力墙骨架曲线简化模型的计算方法,并提出便于结构体系分析的统一简化模型——偏心交叉支撑模型,该模型中考虑了两边连接钢板剪力墙拉、压区域应力差异的影响,在准确模拟骨架曲线的同时,更为合理地模拟了梁、板间的相互作用力。此外,本文在试验研究和理论分析的基础上提出了上述三类两边连接钢板及组合剪力墙的设计方法和建议。
The steel plate shear walls with two-side connections and the steel- concrete composite shear walls with two-side connections that are connected only with frame beams by high-strength bolts or welding seams, possess the following advantages over the shear walls with four-side connections: They can reduce the reliability on frame columns and thus prevent the premature failure of columns. They can also be placed along the spans with small span-depth ratio specimens to accommodate the arrangement of doors, windows and corridors. They can modify the stiffness and strength of steel shear walls by changing the dimensions and number of the wall plates. In this dissertation, the steel plate shear wall with two-side connections, the slited steel plate shear walls with two-side connections, and the steel-concrete composite shear walls with two-side connections, by the way of combined experimental and theoretical research, were analyzed systematically from the aspects of elastic buckling analysis, experimental research and finite element analysis. Seismic behaviors and load-bearing mechanism were investigated and simplified computational methods and design suggestions were proposed for applications in engineering practice. The main works are listed as follows:
     (1)The elastic buckling analysis was carried out on the steel plate shear walls with two-side connections and with other two sides free, the steel plate shear walls with two-side connections and with other two sides constrained, and the steel plate shear walls with two-side connections and with other two sides stiffened. The calculation formula of elastic buckling strength was established and the critical rib stiffness ratio was proposed as main parameter measuring the constraining effect of ribs. A quasi-static test of one steel plate shear wall with two-side connections and with other two sides free and two steel plate shear walls with two-side connections and with other two sides stiffened were carried out under cycle horizontal loads to obtain the energy dissipation capacity and deformation characteristics. Experimental results showed that, steel plate shear walls with two-side connections performed high initial stiffness and bearing capacity. Tension field formed along diagonal line in elastic-plastic stage, developed the post-buckling strength to bear loads and dissipate energy, so that good energy dissipation and ductility can be reached. Finite element method was employed to study the shear-resistant static behavior, and further more, the load-bearing mechanism and the influence of main parameters were investigated, and finally design method of ribs was proposed.
     (2)The elastic buckling analysis was carried out on slited steel plate shear wall with two-side connections and other two sides constrained. The steel plates had a span-width ratio of 1.0 and 1~3 rows of vertical slits. Comprehensively considering the overall buckling of steel plate with slits and the local buckling of steel strips between slits, the slitting law, width-thickness ratio being less than 15 and depth-width ratio being more than 3, which makes the slited steel plate in-plane work and makes steel strips between slits form plastic hinges to bear loads and dissipate energy was proposed. Quasi-static tests on five steel plate shear walls with two-side connections and with other two sides stiffened was carried out under horizontal cyclic loads. The energy dissipation capacity and deformation characteristics were analyzed in detail and the mechanism of the walls under external loads was investigated. Finite element method was employed to study the shear-resistant static behavior, and further more, the load-bearing mechanism and the influence of main parameters were investigated, in which the parameters of steel strips between slits were the major factors to shear-resistant property. From the experimental research and finite element analysis, appropriate slitting law was put forward and verified. The steel plate shear walls satisfying the above law basically were kept in-plane working and performed relatively full hysteretic loops, which meant good ductility and energy dissipation capacity, although the initial stiffness and strength were significantly reduced compared with that of steel plate shear walls with two-side connections.
     (3)The computational method of composite shear walls’composite section stiffness and superposed section stiffness were proposed based on small deflection plate theory and computational formula of elastic buckling strength. Therefore critical concrete plate thickness completely restraining the out-plane deflection was obtained from the perspective of elastic buckling analysis. Quasi-static tests on six steel-concrete composite shear walls with two-side connections, and one steel plate-concrete composite shear wall with one row of slits and two-side connections were carried out under horizontal cyclic loads. Results demonstrated that the specimens with corners stiffened behaved high initial stiffness and strength, and the steel plates basically worked in-plane. The seismic behavior was substantially improved than that of steel plate shear wall with two-side connections, because the composite shear walls had full hysteretic loop, the good energy dissipation and ductility, higher stiffness and strength, more energy-dissipation area and larger energy-dissipation factor. Concrete slabs with proper design can make them to participate in bearing horizontal load in later period so as to increase the stiffness and strength of composite shear walls. Finite element method was employed to study the shear-resistant static behavior, and further more, the load-bearing mechanism was investigated, and consequently, the critical concrete plate thickness was proposed from the perspective of elastic-plastic analysis.
     (4)The simplified skeleton curve models of the above three types of shear walls with two-side connections were established, based on the property of steel plate in-plain working. An eccentric cross-bracing model, which facilitates the structural system analysis, was also proposed. The model, involving the differences of stress between the tensile field and compressive field, can simulate accurately the skeleton curves and more reasonably the interaction between beam and plate. In additions, based on the experimental research and theoretical analysis, design method and suggestions of the three kinds of shear walls with two-side connections were proposed.
引文
1赵西安.高层建筑结构实用设计方法(第三版).同济大学出版社, 1998.
    2中华人民共和国国家标准.建筑抗震设计规范(GB 50011-2001).中国建筑工业出版社, 2001.
    3李国强.多高层建筑钢结构设计.中国建筑工业出版社, 2004.
    4胡聿贤.地震工程学(第二版).地震出版社, 2006.
    5李国强.我国高层建筑钢结构发展的主要问题.建筑结构学报. 1998, 19(2):24~32.
    6钢结构住宅建筑产业化技术导则.中华人民共和国建设部, 2001.
    7林同炎, S. D.斯多台斯伯利著.高立人,方鄂华,钱稼茹译.结构概念和体系(第二版).中国建筑工业出版社, 1999.
    8陈云涛,吕西林.联肢剪力墙抗震性能研究—试验和理论分析.建筑结构学报. 2003, 24(3).
    9武藤清著.腾家禄等译.结构物动力设计.中国建筑工业出版社, 1984.
    10廉晓飞,邹超英.带竖缝混凝土剪力墙板在低周反复荷载作用下的工作性能试验研究.哈尔滨建筑大学学报. 1996(2).
    11廉晓飞,邹超英.高层建筑钢结构中带竖缝混凝土剪力墙板设计方法建议.哈尔滨建筑大学学报. 1996(4).
    12中华人民共和国行业标准.高层民用建筑钢结构技术规程(JGJ 99-98).中国建筑工业出版社, 1998.
    13夏晓东.钢筋混凝土有边框带缝槽低剪力墙抗震性能的试验研究和延性设计.东南大学博士研究生学位论文. 1989.
    14夏晓东,丁大均,程文穰,兰宗建.钢筋混凝土延性低剪力墙的试验研究.结构工程学报. 1991(1,2).
    15康胜.钢筋混凝土双功能带缝剪力墙抗震性能研究.清华大学硕士学位论文. 1999.
    16叶列平,康胜,曾勇.双功能带缝剪力墙的弹性受力性能分析.清华大学学报. 1999, 39(12) :79~81.
    17赵文辉,王志浩,叶列平.双功能带缝剪力墙连接键的试验研究.工程力学. 2001, 18(1):126~136.
    18李爱群,曹征良,丁大均.带摩阻控制装置钢筋混凝土低剪力墙极限承载力分析.东南大学学报. 1994, 24(3): 70~74.
    19李爱群,丁大均,曹征良,唐键.带摩阻控制装置钢筋混凝土低剪力墙试验研究.工程力学(增刊). 1994:546~550.
    20吕西林,孟良.一种新型抗震耗能剪力墙结构模型的振动台试验研究.世界地震工程. 1995(1):29~34.
    21蒋欢军,吕西林.新型耗能剪力墙模型低周反复荷载试验研究.世界地震工程. 2000, 16(3):63~67.
    22曹万林,胡国振等.带暗支撑抗震墙研究.世界地震工程. 1998, 14(4):76~80.
    23曹万林,庞国新,胡国振等.带暗支撑抗震墙层刚度及其衰减过程研究.世界地震工程. 1999, 15(1):45~52.
    24曹万林,周明杰,郝春森等.带暗支撑剪力墙抗震耗能性能试验及计算分析.河北工业大学学报. 2000, 29(1):57~61.
    25曹万林,刘春燕,张建伟等.暗支撑倾角对剪力墙抗震性能的影响.世界地震工程. 2000, 16(3):68~72.
    26曹万林,庞国新,董宏英等.带暗支撑剪力墙中暗支撑形式及其合理设计研究.地震工程与工程振动. 2000, 20(4):73~79.
    27曹万林,王洪星,田宝发等.带X型暗支撑设暗缝剪力墙抗震性能试验研究.世界地震工程. 2001, 17(2):39~42.
    28曹万林,田宝发,王洪星等.钢筋混凝土带暗支撑双功能剪力墙的力学计算模型.地震工程与工程振动. 2001, 21(2):84~87.
    29曹万林,崔立长,张建伟等.暗支撑与其它抗震措施在剪力墙中的联合应用.世界地震工程. 2001, 17(4):67~70.
    30曹万林,张建伟,田宝发等.钢筋混凝土带暗支撑中高剪力墙抗震性能试验研究.建筑结构学报. 2002, 23(6):26~32,55.
    31曹万林,张建伟,崔立长等.钢筋混凝土带暗支撑双功能低矮剪力墙抗震性能试验研究.建筑结构学报. 2003, 24(1):46~53.
    32张建伟.带暗支撑剪力墙体系抗震性能及设计理论研究.北京工业大学博士学位论文. 2004.
    33 L. J. Thorburn, G. L. Kulak and C. J. Montgomery. Analysis of steel plate shear walls. Structural Engineering Report No.107. University of Alberta, Canada, 1983.
    34 A. Astaneh-Asl. Seismic behavior and design of steel shear walls. Steel Tips Report. Structural Steel Educational Council, Moraga, CA, 2001.
    35陈国栋.钢板剪力墙结构性能研究.清华大学博士学位论文. 2002.
    36 P. A. Timler, G. L. Kulak. Experimental Study of Steel Plate Shear Walls. Structural Engineering Report. 1983:114.
    37 Changqing Du. Nonlinear response of thin steel plate structures subjected to static, cyclic, and dynamic loads. Ph.D. Dissertation. University of Maine, 1991.
    38 Ruobo Chen. Cyclic behavior of unstiffened thin steel plate shear wall. Ph.D. Dissertation. University of Maine, 1991.
    39 T. M. Roberts. Seismic resistance of steel plate shear walls. Engineering Structures. 1995, 17(5):344-351
    40 H. Fujitani, H. Yamanouchi, I. Okawa, et al. Damage and Performance of Tall Buildings in 1995 Hyogoken Nanbu Earthquake. The 67th Regional Conference. Council on Tall Building and Urban Habitat, Chicago, 1996: 103~125.
    41 R. G. Troy, R. M. Richard. Steel Plate Shear Wall Resist Lateral Load. Cut Costs. Civil Engineering-ASCE, 1979(2): 53~55.
    42 R. G. Troy, R. M. Richard. Steel Plate Shear Wall Design. Structural Engineering Review. 1988, 1(1).
    43 F. Naeim. Lessons Learned from Performance of Nonstructural Components During the January 17, 1994 Northridge Earthquake Case Studies of Six Instrumented Multistory Buildings. JSEE, 1999, 2(1).
    44郭彦林,董全利.钢板剪力墙的发展与研究现状.钢结构. 2005, 20(1): 1~6.
    45汪大绥,陆道渊,黄梁等.天津津塔结构设计.第十二届全国高层建筑结构学术会议论文集. 2008:1~9.
    46 M. Xue, L. W. Lu. Monotonic and cyclic behavior of infilled steel shear panels. Proceedings of 17th Czech and Slovak International Conference on Steel Structures and Bridges. Bratislava, Slovakia, 1994.
    47缪友武.两侧开缝钢板剪力墙结构性能研究.清华大学硕士学位论文.2004.
    48 T. Hitaka, C. Matsui. Experimental study on steel shear wall with slits. Journal of Structural Engineering. 2003: 586~595.
    49计学闰,张新中.内藏钢板支撑剪力墙受力特点及构造措施的试验研究.哈尔滨建筑工程学院学报. 1990, 23(2):129~136.
    50张新中.内藏钢板支撑剪力墙工作性能及恢复力特性试验研究.哈尔滨建筑工程学院硕士论文. 1989.
    51 A. Astaneh-Asl. Seismic behavior and design of composite steel plate shear walls. Steel Tips Report. Structural Steel Educational Council, Moraga, CA, 2002.
    52 R. G. Dean, T. J. Canon and C. D. Poland. Unusual structural aspects of H.C. Moffit Hospital. Proceedings of 46th Annual Convention. SEAOC, Coronado, CA, 1977.
    53徐嫚.两边连接钢板剪力墙与钢板组合剪力墙抗剪静力性能.哈尔滨工业大学硕士学位论文. 2006.
    54徐嫚,王玉银,马欣伯.两边连接钢板组合剪力墙抗剪静力性能.中国钢结构协会钢—混凝土组合结构分会第十一次年会论文集.哈尔滨工业大学学报(增刊). 2007: 352~356.
    55 T. Hitaka, C. Matsui. Strength and behavior of steel-concrete composite bearing wall. Proceedings of 6th ASCCS conference on composite and hybrid structures. Los Angeles, USA, 2000: 777~784.
    56 H. Wagner. Flat Sheet Metal Girder with Very Thin Metal Web. General theories and assumptions. Technical memorandum. 1931:524~558.
    57 P. Kuhn, J. P. Peterson and L. R. Levin. A Summary of Diagonal Tension. Experimental evidence. Technical memorandum. 1952.
    58 P. Kuhn. Stresses in Aircraft Structures. McGraw-Hill Book Co., 1956.
    59 K. Basler. Strength of Plate Girder in Shear. Journal of Structural Engineering. 1961, 87(7):151~180.
    60 K. C. Rockey, M. Skaloud. Influence of Flange Stiffness upon the Load Carrying Capacity of Web in Shear. Proc. 8th Congress. IABSE. New York, 1968:429~439.
    61 C. R. Calladine. A Plastic Theory for Collapse of Plate Girders under Combined Shearing Force and Bending Moment. The Structural Engineering. 1973, 151(4):147~154.
    62 D. M. Porter, K. C. Rockey and H. R. Evans. The Collapse Behavior of Plate Girders Loaded in Shear. Structural Engineer. 1975, 53(8):313~325.
    63 T. Takahash, Y. Takemoto, et al. Experimental Study on Thin Steel Shear Walls and Particular Bracings under Alternative Horizontal Load. IABSE Symposium. International Association for Bridge and Structural Engineering, Lisbon, Portugal, 1973:185~191.
    64 H. Mimura, H. Akiyama. Load-deflection relationship of earthquake-resistantsteel plate shear walls with a developed diagonal tension field. Trans., Arch. Inst. of Japan, Tokyo, Japan, 1977:109~114(in Japanese).
    65 P. A. Timler. Design Procedures Development, Analytical Verification, and Cost Evaluation of Steel Plate Shear Wall Structures. EERF Tech. Rep. No.98-01. Dept. of Civil Engineering, University of British Columbia, Vancouver.
    66 G. L. Kulak. Behaviour of steel plate shear walls. Proceedings of the AISC Engineering Symposium on Structural Steel. AISC, Chicago, 1985:225~243.
    67 E. W. Tromposch, G. L. Kulak. Cyclic and static behavior of thin panel steel plate shear walls. Structural Engineering Report 145. University of Alberta, Canada, 1987.
    68 G. L. Kulak. Unstiffened steel palte shear walls. Structures subjected to repeated loading-stability and strength. Elsevier Applied Science Publishing, London, UK, 1991:237~246.
    69 G. L. Kulak. Behaviour of steel plate shear walls. Proceedings of the AISC Engineering Symposium on Structural Engineering. ASCE, 1993, 119(2).
    70 S. Sabouri-Ghomi, T. M. Robert. Nonlinear Dynamic Analysis of Thin Steel Plate Shear Walls. Computer and Structures. 1991, 39 (1/2):121~127.
    71 V. Caccese, M. Elgaaly and R. Chen. Experimental study of thin steel-plate shear walls under cyclic load. J. Struct. Engrg. ASCE, 1993, 119(2):573~587.
    72 Ruobo Chen. Cyclic behaviour of unstiffened thin steel plate shear walls. Thesis for the degree of doctor of philosophy. University of Maine, America, 1991.
    73 M. Xue, L. W. Lu. Interaction of infilled steel shear wall panels with surrounding frame members. Proc., Struct. Stability Res. Council Annu. Tech. Session, Bethlehem, Pa., 1994:339-354.
    74 M. Xue, L. W. Lu. Monotonic and cyclic behavior of infilled steel shear panels. Proc., 17th Czech and Slovak Int. Conf. on Steel Struct. and Bridges. Bratislava, Slovakia, 1994.
    75 M. Elgaaly, Y. Liu. Analysis of Thin-steel-plate Shear Walls. Journal of Structural Engineering. ASCE, 1997, 123(11):1487~1496.
    76 M. Elgaaly. Thin Steel Plate Shear Walls Behavior and Analysis. Thin-Walled Structures. 1998, 32:151~158.
    77 R. G. Driver, G. L. Kulak, D. J. Laurie Kennedy and A. E. Elwi. Seismic behaviour of steel plate shear walls. Structural Engineering Report No.215.University of Alberta, 1997.
    78 R. G. Driver, G. L. Kulak, D. J. Laurie Kennedy and A. E. Elwi. Cyclic test of four-story steel plate shear wall. Journal of Structural Engineering. 1998(2):112~120.
    79 R. G. Driver, G. L. Kulak, A. E. Elwi and D. J. Laurie Kennedy. FE and simplified models of steel plate shear wall. Journal of Structural Engineering. 1998(2):121~130.
    80 M. Elgaaly. Post-buckling Behavior of Thin Steel Plates Using Computational Models. Advances in Engineering Software. 2000, 31:511~517.
    81 S. Lubell Adam, G. L. Prion Helmut, E. Ventura Carlos and Mahmoud Rezail. Unstiffened Steel Plate Shear Wall Performance under Cylic Loading. Journal of Structural Engineering. ASCE. 2000, 126(4): 453~460.
    82 Jeffrey Berman, Michel Bruneau. Plastic analysis and design of steel plate shear walls. Journal of Structural Engineering. ASCE, 2003, 129(11): 1448~1456.
    83 M. R. Behbahanifard. Cyclic behaviour of unstiffened steel plate shear walls. Thesis for the degree of doctor of philosophy. University of Alberta, Canada, 2003.
    84 J. J. Shishkin, R. G. Driver and G. Y. Grondin. Analysis of steel plate shear walls using the modified strip model. Structural Engineering Report No.261. University of Alberta, 2005.
    85 J. J. Shishkin. Analysis of steel plate shear walls using the modified strip model. Thesis for the degree of Master of Science. University of Alberta, Canada, 2006.
    86 CAN/CSA-S16.1-94. Limit state design of steel structures. Canadian Standard Association, Toronto, Ontario, 1994.
    87 ANSI/AISC 341-05. Seismic provisions for structural steel buildings. American Institute of Steel Construction, 2005.
    88中华人民共和国国家标准.钢结构设计规范(GB 50017-2003).中国计划出版社, 2003.
    89苏幼坡,刘英利,王绍杰.薄钢板剪力墙抗震性能试验研究.地震工程与工程振动. 22(4):81~84.
    90栗献增.薄钢板剪力墙抗震性能分析.河北理工学院硕士学位论文. 2004.
    91陈国栋,郭彦林.非加劲板抗剪极限承载力.工程力学. 2003, 20(4): 49~54.
    92陈国栋,郭彦林.十字加劲钢板剪力墙的抗剪极限承载力.建筑结构学报. 2004, 25(1): 71~78.
    93陈国栋,郭彦林,范珍,韩艳.钢板剪力墙低周反复荷载试验研究.建筑结构学报. 2004, 25(2): 19~38.
    94郭彦林,陈国栋,缪友武.加劲钢板剪力墙弹性抗剪屈曲性能研究.工程力学. 2006, 23(2): 84~91,59.
    95董子建.非劲肋钢板剪力墙试验与理论研究.西安建筑科技大学硕士学位论文. 2005.
    96侯蕾.纵横加劲肋钢板剪力墙试验与理论研究.西安建筑科技大学硕士学位论文. 2005.
    97侯蕾,郝际平,董子建,孙彤.十字加劲肋钢板剪力墙低周反复荷载的试验.钢结构. 2006, 21(2): 12~16.
    98方礼凯.开孔和未开孔钢板剪力墙抗剪性能研究.哈尔滨工业大学硕士学位论文. 2005.
    99钟玉柏.钢板剪力墙和开缝钢板剪力墙抗剪静力性能研究.哈尔滨工业大学硕士学位论文. 2005.
    100吴志坚.钢板剪力墙和组合剪力墙的抗剪静力性能.哈尔滨工业大学硕士学位论文. 2006.
    101邵建华,顾强,申永康.钢板剪力墙的弹-塑性抗剪承载力分析.河海大学学报. 2006, 34(5): 537~541.
    102王迎春,郝际平,李峰,孙彤.钢板剪力墙力学性能研究.西安建筑科技大学学报(自然科学版).2008, 39(2): 181~186.
    103蔡克栓,林盈成,林志翰.钢板剪力墙抗震行为与设计.建筑钢结构进展. 2007, 9(5): 19~25.
    104曹春华.斜加劲钢板剪力墙性能研究.西安建筑科技大学博士学位论文. 2008.
    105邵建华,顾强,申永康.钢板剪力墙抗震性能的有限元分析.华南理工大学学报. 2008, 36(1): 128~133.
    106邵建华,顾强,申永康.基于等效拉杆模型的钢板剪力墙有限元分析.武汉理工大写学报. 2008, 30(1): 75~78.
    107邵建华,顾强,申永康.多层多跨钢板剪力墙水平极限承载力分析.重庆建筑大学学报. 2008, 30(2): 71~72.
    108邵建华,顾强,申永康.多层钢板剪力墙水平荷载作用下结构性能的有限元分析.工程力学. 2008, 25(6): 140~145.
    109郭彦林,缪友武,董全利.全加劲两侧开缝钢板剪力墙弹性屈曲研究.建筑钢结构进展. 2007, 9(3): 58~62.
    110缪友武,董全利,郭彦林.两侧边开缝钢板剪力墙弹性屈曲分析.钢结构. 2007, 22(9): 95~98.
    111王玉银.三边连接钢板剪力墙抗剪静力性能研究.哈尔滨工业大学博士后出站报告(II). 2006.
    112 Toko Hitaka, Chiaki Matsui, Keigo Tsuda, et al. Elastic-plastic behavior of building steel frame incorporation steel bearing wall with slits. Journal of Structure Construction Engineering. AIJ. 2000, 543: 153~160.(in Japanese).
    113 Toko Hitaka, Chiaki Matsui and Jun’ichi Sakai. Cyclic tests on steel and concrete-filled tube frames with slit walls. Earthquake Engineering and Structural Dynamics. 2007, 36: 707~727.
    114温沛刚.带缝钢板剪力墙的理论分析与试验研究.华南理工大学硕士学位论文. 2004.
    115苏磊.带缝钢板剪力墙结构分析与试验研究.武汉理工大学硕士学位论文. 2004.
    116魏德敏,温沛纲.新型钢板剪力墙钢框架结构的地震响应分析.地震工程与工程振动. 2004, 24(1): 63~67.
    117魏德敏,温沛纲,卞宗舒.新型带缝钢板剪力墙的试验研究及数值模拟.地震工程与工程振动. 2006, 26(1): 129~133.
    118曹志亮.带缝钢板剪力墙稳定性分析.武汉理工大学硕士学位论文. 2004.
    119王心心.两边连接开缝钢板剪力墙抗剪静力性能.哈尔滨工业大学硕士学位论文. 2006.
    120曲巍.单排开缝钢板剪力墙抗剪静力性能.哈尔滨工业大学硕士学位论文. 2006.
    121王恒.带缝钢板剪力墙性能研究.西安建筑科技大学硕士学位论文. 2006.
    122王恒,余安东,郝际平.带缝钢板剪力墙性能研究.钢结构. 2007, 22(9): 70~78.
    123赵作周,肖明,钱稼茹,柯江华.开缝钢板墙抗震性能的试验研究.建筑结构. 2007, 37(12): 105~109.
    124陈华龙.开缝钢板剪力墙的屈曲分析.华南理工大学硕士学位论文. 2007.
    125朱玲玲.带竖缝钢板剪力墙抗震性能研究.河北工程大学. 2007.
    126曹春华,郝际平,王迎春等.开缝薄钢板剪力墙低周反复荷载试验研究.西安建筑科技大学学报(自然科学版). 2008, 40(1): 46~52.
    127 Q. H. Zhao, A. Astaneh-Asl. Cyclic behavior of traditional and innovative composite shear wall. Journal of Structural Engineering.ASCE, 2004: 271~283.
    128 Qiuhong Zhao. Experimental and analytical studies of cyclic behavior of steel and composite shear wall systems. Dissertation for the Degree of Doctor of Philosophy. University of California, Berkeley, 2006.
    129 Toko Hitaka, Chiaki Matsui. Strength and behavior of steel-concrete composite bearing wall. Proceedings of 3rd International Conference on Steel and Composite Structures.ASCCS, 1997.
    130李国强,张晓光,沈祖炎.钢板外包混凝土剪力墙板抗剪滞回性能试验研究.工业建筑. 1995, 25(6): 32~35.
    131董全利.防屈曲钢板剪力墙结构性能与设计方法研究.清华大学博士学位论文. 2007.
    132郭彦林,周明.两层单跨钢板墙的比较试验研究及其简化分析模型.第六届全国土木工程研究生学术论坛.北京清华大学, 2008.
    133董莉.开缝与不开缝钢板混凝土组合剪力墙抗剪性能研究.哈尔滨工业大学硕士学位论文. 2005.
    134管娜.两边连接钢板混凝土组合剪力墙试验研究与理论分析.哈尔滨工业大学硕士学位论文. 2008.
    135高辉.组合钢板剪力墙试验研究与理论分析.同济大学硕士学位论文.2007.
    136 Feifei Sun, Guoqiang Li and Hui Gao. Experimental research on seismic behavior of two-sided composite steel plate walls. Steel and Composite Structures. 2007: 805~811.
    137陈骥.钢结构稳定理论与设计.科学出版社, 2003.
    138 R.G. Troy&R.M. Richard. Steel Plate Shear Wall Design. Struct. Engrg. Rev. Oxford, UK, 1988, 1(1):35~39
    139尚晓江等. ANSYS结构有限元高级分析方法与范例应用.中国水利水电出版社, 2006.
    140夏志皋.塑性力学.同济大学出版社, 1991.
    141任重. ANSYS实用分析教程.北京大学出版社, 2003:95~96.
    142龙驭球,包世华.结构力学教程.高等教育出版社, 1999.
    143王天稳.土木工程结构试验.武汉理工大学出版社, 2003.
    144湖南大学等.建筑结构试验(第二版).中国建筑工业出版社, 2000.
    145中华人民共和国国家标准.金属材料室温拉伸试验方法(GB/T 228-2002).中国建筑工业出版社, 2002.
    146中华人民共和国行业标准.普通混凝土配合比设计规程(JGJ 101-96).中国建筑工业出版社, 1997.
    147中华人民共和国行业标准.钢结构高强度螺栓连接的设计、施工及验收规程(JGJ82-91).中国建筑工业出版社, 1993.
    148中华人民共和国行业标准.建筑抗震试验方法规程(JGJ 101-96).中国建筑工业出版社, 1997.
    149沈聚敏,周锡元等.抗震工程学.中国建筑工业出版社, 2000.
    150过镇海.钢筋混凝土原理.清华大学出版社. 1999.
    151中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).中国建筑工业出版社, 2001.
    152周云.金属耗能减震结构设计.武汉理工大学出版社, 2006.
    153中华人民共和国国家标准.钢结构工程施工及验收规范(GB50205-2001).中国建筑工业出版社, 2001.
    154徐芝纶.弹性力学简明教程(第三版).高等教育出版社, 2002.
    155张如三.弹性力学.宇航出版社, 1992.
    156中华人民共和国行业标准.钢筋焊接网混凝土结构技术规程(JGJ/T 114-97).中国建筑工业出版社, 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700