钢筋混凝土柱地震破坏方式及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢筋混凝土柱、墩作为房屋、桥梁等结构的重要竖向承重构件,地震作用下极易发生破坏。我国是地震多发国家,许多结构都处于高烈度地震区,从抗震防灾的角度考虑,如果承重柱破坏严重且难以修复,即使结构未倒塌,但仍需要拆除重建。所以有必要研究钢筋混凝土柱地震破坏方式及性能,保证其具有足够的承载力和良好的延性,避免在地震作用下发生破坏。基于此,本文对地震作用下钢筋混凝土柱的性能进行了试验研究和理论分析,主要内容及结论如下:
     1.对10根钢筋混凝土柱进行了水平单调加载试验和24根钢筋混凝土柱进行了低周反复试验,研究了钢筋混凝土柱的地震破坏方式及性能,测量、计算了弯曲变形、剪切变形和端部钢筋拔出滑移变形及3种变形占总水平变形的比例。研究表明,低周反复荷载作用下,钢筋混凝土柱主要发生3种形式的破坏,即弯曲破坏、弯剪破坏和剪切破坏。随着剪跨比减小或轴压比增大或配箍率减小,试件趋向于发生弯剪或剪切脆性破坏,柱的滞回曲线捏缩,耗能能力和延性降低;随着总变形的增大,弯曲变形在总水平变形中所占比例减小,剪切变形所占比例增大,钢筋拔出滑移变形所占比例约为30%-40%。
     2.根据本文试验和美国太平洋地震研究中心钢筋混凝土柱抗震性能试验数据库(PEER-Structural Performance Database)低周反复荷载下钢筋混凝土柱的试验资料,分析了剪跨比、轴压比、配箍率、纵筋配筋率、混凝土和钢筋强度对钢筋混凝土柱破坏方式的影响规律,给出了钢筋混凝土柱破坏方式判别参数的计算公式,提出钢筋混凝土柱弯曲破坏、弯剪破坏和剪切破坏的概率判别方法。
     3.根据试验结果,分析了剪跨比、轴压比、配箍率对钢筋混凝土柱弯剪破坏时抗剪承载力和位移延性的影响,提出钢筋混凝土柱弯剪破坏时抗剪承载力和位移延性系数的计算公式。
     4.给出了发生弯剪破坏的钢筋混凝土柱开裂荷载、屈服荷载、弯剪破坏荷载及其相应变形的计算方法,提出了地震作用下钢筋混凝土柱弯剪破坏时恢复力模型骨架曲线的简化方法。
     5.对受腐蚀钢筋混凝土圆柱进行了低周反复试验,分析了钢筋锈蚀率和轴压比对柱破坏方式和抗震性能的影响,建立了锈蚀柱荷载、刚度、延性和耗能等抗震性能退化模型。研究表明,随着钢筋锈蚀率或轴压比的增大,柱的延性和耗能能力逐渐降低,当箍筋受到严重锈蚀时,柱可能会由弯曲破坏转化为弯剪或剪切破坏。
Reinforced concrete (RC) columns are often used as the main vertical load-bearing elements in building structures, highway bridges and so on. They play a crucial role in overall structural performance and easily fail in earthquake. In China, which is a multi-earthquake-happening country, many structures are located in regions with moderate and high seismicity. From the view of earthquake disaster prevention, the structure still need reconstruction even if it does not collapse because the damage of support columns in structure is so serious that it is difficult to get them repaired. Therefore, investigations on the failure modes and seismic performance of RC columns are necessary. Effective measures should be taken to ensure that the columns develop sufficient bearing capacity and ductility to prevent failure in earthquake. The seismic performance of RC columns is studied in the paper by experimental and theoretical analysis. The main content and conclusion are listed as follow:
     1. The monotonic loading tests on ten RC columns and cyclic horizontal loading tests on twenty-four RC columns were carried out. Failure modes and seismic performance of RC columns were studied. Also the contributions of flexura deformation, anchorage slip deformation, and shear deformation, to the total deformation of columns were measured and investigated, respectively. Experimental results show that RC columns under cyclic loading may exhibit three failure mechanisms:flexural failure, flexure-shear failure and shear failure. With the decrease of span-to-depth ratio or transverse steel ratio, or the increase of axial load ratio, specimen failure models are changed from flexural to flexure-shear and shear with poor energy dissipation capacity and ductility, and more obvious pinch can be seen from the hysteresis loops. With the increase of total displacement, the contribution of flexure deformation to the total deformation is reduced; the contribution of shear deformation is increased; and the contribution of anchorage slip deformation keeps at about30%-40%
     2. According to the anti-seismic test data of RC columns at home and abroad, the influences of span-to-depth ratio, axial load ratio, transverse reinforcement ratio, longitudinal reinforcement ratio, concrete compressive strength and reinforcement strength on failure modes of column were analyzed. Considering these influence factors, a probabilistic estimation method was developed to identify column failure mode, and an equation of discriminant parameter for columns failure modes was proposed.
     3. Based on test results of columns failed in flexural-shear, the effects of axial load, span-to-depth ratio and stirrup ratio on shear capacity and displacement ductility were estimated, and equations for predicting shear capacity and displacement ductility factor were proposed.
     4. Based on analytical and experimental results, approaches were developed for predicting the cracking, yielding and failure loads, as well as corresponding deformations, for RC columns failed in flexural-shear. And then according to three feature points, a simplified method was proposed to describe the backbone curve of restoring force model for RC columns in flexural-shear under seismic loads.
     5. RC circular columns were tested under combined cyclic lateral displacement excursions and constant axial load after being subjected to accelerated corrosion tests. The controlled variables in the test were corrosion level and axial load ratio. Based on the test results, degradation models for loading capacity, stiffness, ductility and energy dissipation capacity of columns were proposed. Test results show that higher corrosion levels or higher axial loads may result in worse energy dissipation capacity and ductility, and the failure mode of columns damaged seriously by reinforcement corrosion may change from flexure to flexure-shear or shear.
引文
[1]吕西林,周德源,李思明.房屋结构抗震设计理论与实例[M].上海:同济大学出版社,1995.
    [2]胡幸贤,谢礼立,赵振东.城市与工程减灾基础研究报告[R].北京:中国地震局地球物理研究所,1998.
    [3]高振世,朱继澄,唐九如,等.建筑结构抗震设计[M].北京:中国建筑工业出版社,1995.
    [4]谢礼立,罗学海.“国际减轻自然灾害十年”和地震工程研究的任务[J].地震工程与工程振动,1990,10(4):101~108.
    [5]刘大海,杨翠如,钟锡根.高层建筑抗震设计[M].北京:中国建筑工业出版社,1993.
    [6]Watanabe F. Behavior of reinforced concrete buildings during the Hyougoken-Nanbu earthquake [J]. Cement and Concrete Composites,1997,19(3):203-211.
    [7]周炳章.日本阪神地震的震害及教训[J].工程抗震,1996,1(1):39-42.
    [8]罗俊雄,钟立来,黄炯宪.集集地震初步勘灾报告[R].台北:“国家地震工程研究中心”,1999.
    [9]莫庸.台湾9.21大地震多层框架结构震害特点和经验[J].工程抗震,2002,24(4):26-30.
    [10]廉践维.台湾地震的若干经验教训[J].工程抗震,2000,22(3):42-45.
    [11]霍林生,李宏男,肖诗云,等.汶川地震钢筋混凝土框架结构震害调查与启示[J].大连理工大学学报,2009,49(5):718-723.
    [12]温增平,徐超,陆鸣,等.汶川地震重灾区典型钢筋混凝土框架结构震害现象[J].北京工业大学学报,2009,35(6):753-760.
    [13]夏珊,刘爱文.汶川地震框架柱震害的初步分析[J].震灾防御技术,2008,3(3):237-242.
    [14]孙治国,王东升,李宏男,等.汶川地震钢筋混凝土框架震害及震后修复建议[J].自然灾害学报,2010,19(4):114-123.
    [15]陈彦江,袁振友.美国加利福尼亚州桥梁震害及其抗震加固原则和方法[J].东北公路,2001,24(1):70-73.
    [16]刘季,刘志刚.美国加州桥梁震害及其抗震加固[J].工程抗震,1997,19(2):36-40.
    [17]Mitchell D, Bruneau M, Saatcioglu M, et al. Performance of bridges in the 1994 Northridge earthquake [J]. Canadian Journal of Civil Engineering,1995,22(2):415-427.
    [18]卓卫东.桥梁延性抗震设计研究[D].上海:同济大学,2000.
    [19]Kawashima K. Seismic performance of RC bridge piers in Japan:an evaluation after the 1995 Hyogo-ken nanbu earthquake [J]. Progress in Structural Engineering and Materials,2000,2(1): 82-91.
    [20]中国赴日地震考察团.日本阪神大地震考察[M].北京:地震出版社,1995.
    [21]Fujino Y, Hashimoto S, Abe M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake.Ⅰ:residual inclination of reinforced concrete piers [J]. Journal of Bridge Engineering, ASCE,2005,10(1):45-53.
    [22]Hashimoto S, Fujino Y, Abe M. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. Ⅱ:damage mode of single reinforced concrete piers [J]. Journal of Bridge Engineering, ASCE.2005,10(1):54-60.
    [23]Hashimoto S, Abe M, Fujino Y. Damage analysis of Hanshin expressway viaducts during 1995 Kobe earthquake. Ⅲ:three-span continuous girder bridges [J]. Journal of Bridge Engineering, ASCE, 2005,10(1):61-68.
    [24]集集地震桥梁勘灾报告[R].台北:“国家地震工程研究中心”,1999.
    [25]Hsu YT, Fu CC. Study of damaged Wushi bridge in Taiwan earthquake [J]. Practice Periodical on Structural Design and Construction, ASCE,2000,5(4):166-171.
    [26]Kawashima K. Damage of bridges resulting from fault rupture in the 1999 Kocaeli and Duzce, Turkey earthquakes and the 1999 Chi-Chi, Taiwan earthquake [J]. Earthquake Engineering,2001,19(2): 179-197.
    [27]Hsu YT, Fu CC. Seismic effect on highway bridges in Chi Chi earthquake [J]. Journal of Performance of Constructed Facilities, ASCE,2004,18(1):47-53.
    [28]王东升,郭迅,孙治国,等.汶川大地震公路桥梁震害初步调查[J].地震工程与工程振动,2009,29(3):84-94.
    [29]李信桥,戚承志.地震对地下结构的破坏及其中柱抗震措施研究:第六届全国土木工程研究生学术论坛论文集,[C].北京:清华大学,2008.
    [30]庄海洋,程绍革,陈国兴.阪神地震中大开地铁车站震害机制数值仿真分析[J].岩土力学,2008,29(1):245-250.
    [31]李绍祥.底层薄弱结构抗震性能研究[D]:重庆:重庆大学,2004.
    [32]Sezen H, Elwood K, Whittaker A, et al. Structural engineering reconnaissance of the August 17,1999 Kocaeli (Izmit), Turkey earthquake:PEER Report 2000/09. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley,2000.
    [33]胡德鹿.日本短柱委员会试验研究成果简介[J].建筑结构,1982,12(3):64-66.
    [34]陕西省建筑设计院.钢筋混凝土框架柱抗震性能的试验研究(译文集)[M].北京:地震出版社,1979.
    [35]陕西省建筑设计院.防止钢筋混凝土短柱破坏的综合研究[M].北京:地震出版社,1981.
    [36]Priestley MJN, Verma R, Xiao Y. Seismic shear strength of reinforced concrete columns [J]. Journal of Structural Engineering, ASCE,1994,120(8):2310-2329.
    [37]Mayes R, Sharpe R. Seismic design guidelines for highway bridges [R]. Berkeley:Final Report Applied Technology Council, Berkeley, CA.,1981.
    [38]Ang BG, Priestley M, Paulay T. Seismic shear strength of circular bridge piers [R]. Christchurch, New Zealand:Department of Civil Engineering, University of Canterbury,1985.
    [39]Mau S. Concrete shear in earthquake [M]. Oxon:Taylor & Francis,1992.
    [40]Xiao Y, Martirossyan A. Seismic performance of high-strength concrete columns [J]. Journal of Structural Engineering, ASCE,1998,124(3):241-251.
    [41]Lynn A, Moehle J, Mahin S, et al. Seismic evaluation of existing reinforced concrete building columns [J]. Earthquake Spectra,1996,12(4):715-739.
    [42]Sezen H. Seismic behavior and modeling of reinforced concrete building columns [D]. Berkeley. University of California at Berkeley,2002.
    [43]Sezen H, Moehle JP. Seismic tests of concrete columns with light transverse reinforcement[J]. ACI Structural Journal,2006,103(6):842-849.
    [44]路湛沁,陈家夔,崔锦.钢筋混凝土框架柱在低周反复荷载作用下的抗弯强度及延性[J].西南交通大学学报,1987,20(1):1-10.
    [45]徐贱云,吴健生,铃木计夫.多次循环荷载作用下钢筋混凝土柱的性能[J].土木工程学报,1991,24(3):57-70.
    [46]管品武.钢筋混凝土框架柱塑性铰区抗剪承载力试验研究及机理分析[D].长沙:湖南大学,2000.
    [47]司炳君,李宏男,王东升,等.基于位移设计的钢筋混凝土桥墩抗震性能试验研究(Ⅰ):拟静力试验[J].地震工程与工程振动,2008,28(1):123-129.
    [48]司炳君,孙治国,杜修力,等.钢筋混凝土桥墩地震弯剪破坏机理与震后快速修复技术研究[J].土木工程学报,2011,44(7):90-99.
    [49]Tanaka H. Effect of lateral confining reinforcement on the ductile behaviour of reinforced concrete columns [D]. Christchurch:University of Canterbury,1990.
    [50]Park R, Paulay T. Strength and ductility of concrete substructures of bridges:presented at the bridge design and research seminar (Use of interlocking spirals for transverse reinforcement in bridge columns) [M]. Christchurch:Transit New Zealand,1990.
    [51]Jaradat OA, McLean DI, Marsh ML. Performance of existing bridge columns under cyclic loading-part 1:experimental results and observed behavior [J]. ACI Structural Journal,1998,95(6):695-704.
    [52]Jaradat OA, McLean DI, Marsh ML. Performance of existing bridge columns under cyclic loading-part 2:analysis and comparison with theory [J]. ACI Structural Journal,1999,96(1):57-67.
    [53]Wehbe NI, Saiidi MS, Sanders DH. Seismic performance of rectangular bridge columns with moderate confinement [J]. ACI Structural Journal,1999,96(2):248-258.
    [54]Calderone A, Henry L. Experimental evaluation of the seismic performance of reinforced concrete bridge columns [J]. Journal of Structural Engineering, ASCE,2004,130(6):869-879.
    [55]Xiao J, Zhang C. Seismic behavior of RC columns with circular, square and diamond sections [J]. Construction and Building Materials,2008,22(5):801-810.
    [56]抗剪强度专题研究组.钢筋混凝土框架柱的抗剪强度[J].建筑结构学报,1987,19(8):23-35.
    [57]邹银生,刘伯贤.抗震设计中钢筋混凝土柱矩形约束箍筋[J].工程力学,1990,7(2):49-56.
    [58]孙卓,李建中,闫贵平,等.钢筋混凝土单柱式桥墩抗震性能试验研究[J].同济大学学报(自然科学版),2006,34(2):160-164.
    [59]叶献国,王海波,孙利民,等.钢筋混凝土桥墩抗震耗能能力的试验研究[J].合肥工业大学学报:自然科学版,2006,28(9):1171-1177.
    [60]鞠彦忠,阎贵平,刘林.低配筋大比例尺圆端型桥墩抗震性能的试验研究[J].土木工程学报,2004,36(11):65-69.
    [61]鞠彦忠,阎贵平,李永哲.低配筋铁路桥墩抗震性能的试验研究[J].铁道学报,2004,26(5):91-95.
    [62]孙治国,司炳君,王东升,等.高强箍筋高强混凝土柱抗震性能研究[J].工程力学,2010,27(5):128-136.
    [63]Mander JB. Seismic design of bridge piers [D]. Christchurch:University of Canterbury,1983.
    [64]Zahn FA. Design of reinforced concrete bridge columns for strength and ductility [D]. Christchurch: University of Canterbury,1985.
    [65]Park R, Priestley M, Gill WD. Ductility of square confined concrete columns [J]. Journal of the Structural Division, ASCE,1982,108(4):929-950.
    [66]Wong YL, Paulay T, Priestley M. Squat circular bridge columns under multi-directional seismic attack [R]. Christchurch:University of Canterbury,1990.
    [67]Watson S. Simulated seismic load tests on reinforced concrete columns [J]. Journal of Structural Engineering, ASCE,1994,120(6):1825-1849.
    [68]Taylor AW, Stone WC. A summary of cyclic lateral load tests on spiral reinforced concrete columns [R]. Christchurch:Building and Fire Research Laboratory, National Institute of Standards and Technology,1993.
    [69]Aschheim M, Moehle JP. Shear strength and deformability of RC bridge columns subjected to inelastic cyclic displacements [M]. Earthquake Engineering Research Center, University of California, 1992.
    [70]Moretti M, Tassios T. Behaviour of short columns subjected to cyclic shear displacements: experimental results [J]. Engineering Structures,2007,29(8):2018-2029.
    [71]Ho J, Pam H. Inelastic design of low-axially loaded high-strength reinforced concrete columns [J]. Engineering Structures,2003,25(8):1083-1096.
    [72]Park R. Capacity design of ductile RC building structures for earthquake resistance [J]. ACI Structural Engineering,1992,70(16):279-289.
    [73]Priestley M, Park R. Strength and ductility of concrete bridge columns under seismic loading [J]. ACI Structural Journal,1987,84(1):61-76.
    [74]Watson S, Zahn F, Park R. Confining reinforcement for concrete columns [J]. Journal of Structural Engineering, ASCE,1994,120(5):1798-1824.
    [75]Ichinose T. A shear design equation for ductile R/C members [J]. Earthquake Engineering & Structural Dynamics,1992,21(3):197-214.
    [76]Zagajeski SW, Bertero VV, Bouwkamp JG, et al. Hysteretic behavior of reinforced concrete columns subjected to high axial and cyclic shear forces [R]. Berkeley:Earthquake Engineering Research Center, University of California,1978.
    [77]Wight JK, Sozen MA. Strength decay of RC columns under shear reversals [J]. Journal of the Structural Division, ASEC,1975,101(5):1053-1065.
    [78]山田稔,河村广.制筋混凝土柱的临界剪跨比[A].陕西省建筑设计院编译.钢筋混凝土框架柱抗震性能的试验研究[M].北京:地震出版社,1979:78-80.
    [79]山田稔.钢筋混凝土短柱的抗剪强度、变形记剪切爆裂[A].陕西省建筑设计院编译.钢筋混凝土框架柱抗震性能的试验研究[M].北京:地震出版社,1979:81-95.
    [80]山田稔,河村广.钢筋混凝土构件破坏形态的研究[A].陕西省建筑设计院编译.钢筋混凝土框架柱抗震性能的试验研究[M].北京:地震出版社,1979:96-105.
    [81]张先进,陈家夔.在高轴压和循环剪刀作用下钢筋混凝土框架短柱的抗剪性能[J].西南交通大学学报,1989,24(1):60-67.
    [82]张国军,吕西林,刘伯权.钢筋混凝土框架柱在轴压比超限时抗震性能的研究[J].土木工程学报,2006,39(3):47-54.
    [83]郭子雄,吕西林.高轴压比框架柱抗震性能试验研究[J].华侨大学学报:自然科学版,1999,20(3):258-263.
    [84]荒川卓.柱中部箍筋减少的影响[A].日本短柱委员会主编(陕西省建筑设计院编译).防止钢筋混凝土短柱破坏的综合研究[M].北京:地震出版社,1981:126-132.
    [85]菊池利武,武田寿一,吉冈研三.同时采用封闭箍筋和拉条的钢筋混凝土短柱多次反复循环加载试验[A].日本短柱委员会主编(陕西省建筑设计院编译).防止钢筋混凝土短柱破坏的综合研究[M].北京:地震出版社,1981:220-226.
    [86]Hwang SK, Yun HD. Effects of transverse reinforcement on flexural behaviour of high-strength concrete columns [J]. Engineering Structures,2004,26(1):1-12.
    [87]Zagajeski SW, Bertero VV. Optimum inelastic design of seismic-resistant reinforced concrete frame structures [J]. Earthquake Engineering Research Center Report Series,1980,80(3):1-96.
    [88]梅村魁,岛津孝之.配有双向螺旋形腹筋的钢筋混凝土柱的试验研究[A].陕西省建筑设计院编译.钢筋混凝土框架柱抗震性能的试验研究[M].北京:地震出版社,1979:129-135.
    [89]Hindi R, Turechek W. Experimental behavior of circular concrete columns under reversed cyclic loading [J]. Construction and Building Materials,2008,22(4):684-693.
    [90]吴智眉,李珍,王丽妍.箍筋在钢筋混凝土框架结构柱抗剪强度中的作用[J].天津大学学报,1985,18(4):33-39.
    [91]钱国芳,童岳生.配置不同形式箍筋的钢筋混凝土短柱抗震性能试验研究[J].西安冶金建筑学院学报,1991,23(3):248-257.
    [92]东洋一,大久保全陆,大冢宗嗣.加荷程序对钢筋混凝土构件抗震性能的影响[A]. 日本短柱委员会主编(陕西省建筑设计院编译).防止钢筋混凝土短柱破坏的综合研究[M].北京:地震出版社,1981:296-300.
    [93]Applied Technology Council (ATC 32). Improved Seismic Design Criteria for California Bridges [S]. 1996.
    [94]Martin-Perez B, Pantazopoulou S. Effect of bond, aggregate interlock and dowel action on the shear strength degradation of reinforced concrete [J]. Engineering Structures,2001,23(2):214-227.
    [95]Council BSS, Council AT, Agency E-UFEM. NEHRP Commentary on the guidelines for the seismic rehabilitation of buildings [M]. Federal Emergency Management Agency,1997.
    [96]Kowalsky MJ, Priestly MJN, Seible F. Shear and flexural behavior of lightweight concrete bridge columns in seismic regions [J]. ACI Structural Journal,1999,96(1):136-148.
    [97]Sezen H. Shear deformation model for reinforced concrete columns [J]. Structural Engineering and Mechanics,2008,28(1):39-52.
    [98]Ravi Mullapudi T, Ayoub A. Modeling of the seismic behavior of shear-critical reinforced concrete columns [J]. Engineering Structures,2010,32(11):3601-3615.
    [99]Sima JF, Roca P, Molins C. Cyclic constitutive model for concrete [J]. Engineering Structures, 2008,30(3):695-706.
    [100]Park HG, Yu EJ, Choi KK. Shear-strength degradation model for RC columns subjected to cyclic loading [J]. Engineering Structures,2012,34(1):187-197.
    [101]王辉家.压弯剪作用下钢筋混凝土短柱抗剪性能试验研究[J].西安冶金建筑学院学报,1989,21(1):76-84.
    [102]洪柏年.钢筋混凝土框架柱在反复循环荷载作用下的抗剪强度和延性的试验研究[J].西安建筑科技大学学报(自然科学版),1982,14(3):77-96.
    [103]顾毅云.强震动下钢筋混凝土桥墩的残余剪切强度研究[D]:福州:福州大学,2003.
    [104]毕桂平.城市大型复杂立交工程抗震关键性问题研究[D].上海:同济大学,2004.
    [105]王东升,司炳君,孙治国,等.地震作用下钢筋混凝土桥墩塑性铰区抗剪强度试验[J].中国公路学报,2011,24(2):34-41.
    [106]AASHTO. AASHTO LRFD Bridge Design Specification AASHTO LRFD-2007 [S]. Washington, D C,2007.
    [107]European Committee for Standardization. Eurocode8:Design of structures for earthquake resistance-Part 1:General rules, seismic actions and rules for buildings [S]. Brussels CEN,2005.
    [108]European Committee for Standardization. Eurocode2:Design of concrete structures-Part1-1:General rules and rules for buildings [S]. Brussels CEN,2004.
    [109]Caltrans. Seismic Design Criteria Version 1.1 [S]. Sacramento California Department of Transportation,1999.
    [110]Japan Road Association. Design specifications of highway bridges [S]. Tokyo, Japan,1996.
    [111]Standards Association of New Zealand. NZS 3101. Concrete Structures Standard [S]. Wellington, NZ,1995.
    [112]中华人民共和国交通部JTJ 004-89公路工程抗震设计规范[S].北京:人民交通出版社,1989.
    [113]中华人民共和国交通运输部.JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [114]Sozen MA, Moehle JP. Stiffness of reinforced concrete shear walls. EPRI Research Project 3094-1 [R]. Palo Alto, Calif:Electric Power Research Institute,1993.
    [115]Aschheim M, Moehle JP, Mahin SA. Design and evaluation of reinforced concrete bridges for seismic resistance. UCB/EERC-97/04 [R]. Berkeley, Calif:Earthquake Engineering Research Center, University of California,1997.
    [116]Lehman DE, Moehle JP. Seismic performance of well-confined concrete bridge columns. Report No. PEER-1998/01 [R]. Berkeley:Pacific Earthquake Engineering Research Center, University of California,2000.
    [117]郭子雄,吕西林.低周反复荷载下高轴压比RC框架柱的研究[J].建筑结构,1999,29(4):19-22.
    [118]李杨. 钢筋混凝土柱非线性变形分解试验及模拟[D].重庆:重庆大学, 2010.
    [119]蔡茂, 顾祥林, 华晶晶,等.考虑剪切作用的钢筋混凝土柱地震反应分析[J]. 建筑结构学报,2011,32(11):97-108.
    [120]Iwasaki T, Kawashima K, Hagiwara R, et al. The Seconnd Joint US-Japan workshop on performace and strengthening of bridge structures and research needs:experimental investigation on hysteretic behavior of reinforced concrete bridge pier columns[C]. San Francisco,1985.
    [121]Davey B, Park R. Reinforced concrete bridge piers under seismic loading [R]. Christchurch: University of Canterbury,1977.
    [122]Stone WC, Cheok GS. Inelastic behavior of full-scale bridge columns subjected to inelastic loading [M]. Washington D.C.:US Dept. of Commerce, National Institute of Standards and Technology, 1989.
    [123]Sakai K, Sheikh SA. What do we know about confinement in reinforced concrete columns?(A critical review of previous work and code provisions) [J]. ACI Structural Journal,1989,86(2): 192-207.
    [124]Atalay MB, Penzien J. The seismic behavior of critical regions of reinforced concrete components as influenced by moment, shear and axial force [R]. Berkeley, Calif.:Earthquake Engineering Research Center, University of California,1975.
    [125]Sheikh SA, Khoury SS. Confined concrete columns with stubs [J]. ACI Structural Journal, 1993,90(6):414-414.
    [126]Zahn FA, Park R, Priestley M. Design of reinforced concrete bridge columns for strength and ductility [R]. Christchurch:Dept. of Civil Engineering, University of Canterbury,1986.
    [127]东洋一,大久保全陆,仪健一.高轴力作用多次反复循环加载试验[A]. 日本短柱委员会主编(陕西省建筑设计院编译).防止钢筋混凝土短柱破坏的综合研究[M].北京:地震出版社,1981:226-231.
    [128]张明,孟焕陵,沈蒲生.考虑轴压比影响时框架侧移计算的试验及理论研究[J].建筑结构学报,2007,28(6):191-197.
    [129]Sheikh SA, Uzumeri S. Analytical model for concrete confinement in tied columns [J]. Journal of the Structural Division, ASCE,1982,108(12):2703-2722.
    [130]Lam S, Wu B, Wong Y, et al. Drift capacity of rectangular reinforced concrete columns with low lateral confinement and high-axial load [J]. Journal of Structural Engineering, ASCE,2003,129(2): 733-742.
    [131]袁万城,Simsch G, Konig G.反复荷载作用下高强约束混凝土柱的弯曲延性[J].土木工程学报,1995,28(5):55-61.
    [132]张国军,吕西林,白国良.周期反复荷载作用下高轴压比框架柱抗震性能的试验研究[J].地震工程与工程振动,2005,25(6):70-75.
    [133]孙克俭.钢筋混凝土构件的延性及延性分析[J].内蒙古电子技术,1991,9(S1):16-25.
    [134]沈聚敏,翁义军,冯世平.周期反复荷载下钢筋混凝土压弯构件的性能[J].土木工程学报,1982,15(2):53-64.
    [135]翁义军,沈聚敏,马宝民.复合箍对钢筋混凝土柱延性的改善[J].建筑结构学报,1985,6(1):41-47.
    [136]王清湘,林立岩.高强混凝土柱延性的试验研究[J].建筑结构学报,1995,16(4):22-31.
    [137]梁书亭,丁大钧.钢筋混凝土复合配箍柱铰的延性和抗震耗能试验研究[J].工业建筑,1994,24(11):16-20.
    [138]吕西林,周定松,蒋欢军.钢筋混凝土框架柱的变形能力及基于性能的抗震设计方法[J].地震工程与工程振动,2006,25(6):53-61.
    [139]Maekawa K, An X. Shear failure and ductility of RC columns after yielding of main reinforcement [J]. Engineering Fracture Mechanics,2000,65(2-3):335-368.
    [140]蔡健,周靖,方小丹.钢筋混凝土框架抗震位移延性系数研究[J].工程抗震与加固改造,2005,27(3):2-6.
    [141]Setzler EJ, Sezen H. Model for the lateral behavior of reinforced concrete columns including shear deformations [J]. Earthquake Spectra,2008,24(2):493-511.
    [142]Setzler EJ. Modeling the behavior of lightly reinforced concrete columns subjected to lateral loads [D]:The Ohio State University,2005.
    [143]Ozcebe G, Saatcioglu M. Hysteretic shear model for reinforced concrete members [J]. Journal of Structural Engineering, ASCE,1989,115(1):132-148.
    [144]Elwood K. Shake table tests and analytical studies on the gravity load collapse of reinforced concrete frames [D]. Berkeley:University of California at Berkeley,2002.
    [145]Chowdhury T. Hysteretic modeling of shear-critical reinforced concrete columns [D]. Columbus: The Ohio State University,2007.
    [146]Zhang J, Xu S. Seismic response simulations of bridges considering shear-flexural interaction of columns [J]. Structural Engineering and Mechanics,2009,31(5):545-565.
    [147]Mostafaei H, Kabeyasawa T. Axial-shear-flexure interaction approach for reinforced concrete columns [J]. ACI Structural Journal,2007,104(2):218-226.
    [148]魏巍巍.基于修正压力场理论的钢筋混凝土结构受剪承载力和变形研究[D].大连:大连理工大学,2010.
    [149]张勤,贡金鑫.弯剪破坏钢筋混凝土柱的荷载-变形关系[J].建筑科学与工程学报,2010,27(3):78-84.
    [150]张勤,贡金鑫,姜凤娇,等.钢筋混凝土柱非线性特性的分析方法[J].土木建筑与环境工程,2011,33(6):51-58.
    [151]Almusallam AA, Al-Gahtani AS, Aziz AR, et al. Effect of reinforcement corrosion on flexural behavior of concrete slabs [J]. Journal of Materials in Civil Engineering, ASCE,1996,8(2): 123-127.
    [152]Aquino W. Long-term performance of seismically rehabilitated corrosion-damaged columns [D]. Urbana-Champaign:University of Illinois at Urbana-Champaign,2002.
    [153]Castel A, Francois R, Arliguie G. Mechanical behaviour of corroded reinforced concrete beams—part 2:bond and notch effects [J]. Materials and Structures,2000,33(9):545-551.
    [154]Castel A, Francois R, Arliguie G. Mechanical behaviour of corroded reinforced concrete beams—part 1:experimental study of corroded beams [J]. Materials and Structures,2000,33(9): 539-544.
    [155]Chung L, Cho SH, Jay Kim JH, et al. Correction factor suggestion for ACI development length provisions based on llexural testing of RC slabs with various levels of corroded reinforcing bars [J]. Engineering Structures,2004,26(8):1013-1026.
    [156]Mangat PS, Elgarf MS. Flexural strength of concrete beams with corroding reinforcement [J]. ACI Structural Journal,1999.96(1):149-158.
    [157]Rodriguez J, Ortega L, Casal J. Load carrying capacity of concrete structures with corroded reinforcement [J]. Construction and Building Materials,1997,11(4):239-248.
    [158]Lee HS, Kage T, Noguchi T, et al. An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fiber sheets [J]. Cement and Concrete Research,2003,33(4):563-570.
    [159]Bousias SN, Triantafillou TC, Fardis MN, et al. Fiber-reinforced polymer retrofitting of rectangular reinforced concrete columns with or without corrosion [J]. ACI Structural Journal,2004,101(4): 512-520.
    [160]Aquino W, Hawkins NM. Seismic retrofitting of corroded reinforced concrete columns using carbon composites [J]. ACI Structural Journal,2007,104(3):348-356.
    [161]史庆轩,牛荻涛.反复荷载作用下锈蚀钢筋混凝土压弯构件恢复力性能的试验研究[J].地震工程与工程振动,2000,20(4):44-50.
    [162]牛荻涛,陈新孝,王学民.锈蚀钢筋混凝土压弯构件抗震性能试验研究[J].建筑结构,2004,34(10):36-38.
    [163]陈新孝,牛荻涛,王学民.锈蚀钢筋混凝土压弯构件的恢复力模型[J].西安建筑科技大学学报:自然科学版,2005,37(2):155-159.
    [164]颜桂云,王泽军,孙炳楠.锈蚀钢筋混凝土压弯构件抗震性能的试验研究[J].建筑结构,2003,33(2):16-18.
    [165]贡金鑫,仲伟秋,赵国藩.受腐蚀钢筋混凝土偏心受压构件低周反复性能的试验研究[J].建筑结构学报,2004,25(5):92-97.
    [166]李金波.锈蚀钢筋混凝土柱抗震加固研究[D].大连:大连理工大学,2009.
    [167]Yoshikawa H, Miyagi T. Ductility and failure modes of single reinforced concrete columns [J]. Nippon Konkurito Kogaku Kyokai Ronbunshu,1999,51(1):229-244.
    [168]赵国藩.高等钢筋混凝土结构学[M].北京:机械工业出版社,2008.
    [169]刘伯权,白国良,张国军.高轴压比高强混凝土框架柱抗震性能试验研究[J].土木工程学报,2005,38(1):45-50.
    [170]Sezen H, Setzler EJ. Reinforcement slip in reinforced concrete columns [J]. ACI Structural Journal, 2008,105(3):280-289.
    [171]Okamura H, Higai T. Proceedings of Japanese Society of Civil Engineers:proposed design equation for shear strength of reinforced concrete beams without web reinforcement [C].1980.
    [172]Otani S, Sozen MA. Behavior of multistory reinforced concrete frames during earthquakes [R]. Urbana:University of Illinois,1972.
    [173]Alsiwat JM. Reinforcement anchorage slip under monotonic loading [J]. Journal of Structural Engineering, ASCE,1992,118(12):2421-2438.
    [174]Eligehausen R, Popov EP, Bertero VV. Local bond stress-slip relationships of deformed bars under generalized excitations:experimental results and analytical model [R]. Berkeley:Earthquake Engineering Research Center, University of California at Berkeley,1983.
    [175]Hawkins NM, Lin I, Jeang F. Local bond strength of concrete for cyclic reversed loadings [R]. London:Applied Science Publishers,1982.
    [176]Zhu L. Probabilistic drift capacity models for reinforced concrete columns [D]. Vancouver: University of British Columbia,2005.
    [177]刘鸣,陆本燕,刘伯权.钢筋混凝土桥墩破坏模式识别方法[J].中国公路学报,2011,24(3):58-63.
    [178]贡金鑫,魏巍巍,胡家顺.中美欧混凝土结构设计[M].北京:中国建筑上业出版社.2007.
    [179]中华人民共和国建设部.GB 50010-2010,混凝土结构设计规范[S].北京:中国建筑工业出版社, 2010.
    [180]Park R, Paulay T. Reinforced concrete structures [M]. Christchurch:John Wiley & Sons Inc,1975.
    [181]Priestley MJN, Ranzo G, Benzoni G, et al. Yield displacement of circular bridge columns [R]. Sacramento, California:Fourth CalTrans Research Workshop,1996.
    [182]Wight JK, Sozen MA. Shear strength decay in reinforced concrete columns subjected to large deflection reversals [R]. Structural Research Series No.403, Civil Engineering Studies. Urbana-Champaign:University of Illinois,1973.
    [183]过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.
    [184]仲伟秋,贡金鑫.钢筋电化学快速锈蚀试验控制方法[J].建筑技术开发,2002,29(4):28-29.
    [185]Sun Z, Si B, Wang D, et al. Experimental research and finite element analysis of bridge piers failed in flexure-shear modes [J]. Earthquake Engineering and Engineering Vibration,2008,7(4):403-414.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700