磁黄铁矿微生物浸出机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展,矿产资源日渐贫乏,人们不得不考虑采用新的方法开发和利用低品位、难处理矿产资源。微生物冶金由于其成本低、污染小、工艺流程短等优点越来越受到研究者的关注。磁黄铁矿是有色金属硫化矿矿床中一种很常见的硫铁矿,其常与有价金属(如镍、钴、铜、锌等)伴生。研究磁黄铁矿在微生物浸出过程中的氧化溶解机理,对微生物浸出低品位硫化矿,有效回收有价金属有重要意义。
     本文采用A.ferrooxidans菌、L.ferriphilum菌和A.caldus菌,在讨论磁黄铁矿晶体性质及其浸出体系热力学分析的基础上,通过Zeta电位、吸附量和表面润湿性测定,结合X射线衍射、能谱分析等表面测试方法,考察磁黄铁矿与细菌作用后表面性质的变化及细菌作用机理。以A.ferrooxidans菌和L.ferriphilum菌为试验菌种,通过摇瓶浸出试验,结合扫描电镜,研究矿浆浓度、细菌接种量、矿浆pH值等因素对磁黄铁矿浸出的影响;并运用循环伏安、静电位、塔费尔曲线、交流阻抗等电化学分析技术研究磁黄铁矿在无菌体系和有菌体系中的电化学行为,从电化学角度揭示微生物浸出体系磁黄铁矿的氧化机理。
     利用FeS1.12-H2O系的Eh-pH图,分析磁黄铁矿浸出过程。微生物浸出磁黄铁矿的最佳电位-pH范围是Eh为0.4-0.8V、pH为1-3;在Eh=0.36-0.8V,pH=2.28-4.0范围内,Fe3+可能主要以沉淀的形式存在。在酸性溶液中,磁黄铁矿稳定存在的区域在0.4V以下,说明磁黄铁矿稳定性很差,在较低的电位水平下就会被氧化溶解。晶体结构性质决定着磁黄铁矿氧化溶解的行为,单斜磁黄铁矿的化学稳定性较差,在酸性体系下可以快速溶解。
     表面性质研究结果表明:不同类型的细菌均能快速吸附在磁黄铁矿表面,而矿驯化细菌具有更强的吸附能力。不同类型的细菌吸附后,磁黄铁矿的等电点朝细菌的等电点方向偏移,但偏移幅度不同。且不同的菌种浸出磁黄铁矿过程中,体系中生成和富集的产物不同,从而导致矿物表面接触角有不同的变化规律。研究表明:磁黄铁矿生物浸出初期以酸溶为主;微生物生长所需能源是决定其在浸出体系的作用机理关键因素,氧化亚铁细菌的微生物冶金过程中的作用机理是间接作用,硫化矿物被溶液中Fe3+氧化;氧化硫细菌的作用机理是直接作用,硫化物在细菌的参与下被O2所氧化。
     有菌和无菌酸性体系下磁黄铁矿氧化的电化学研究结果表明:磁黄铁矿表面首先在0.2V附近氧化产生三价铁沉淀和元素S,电位大于0.6V后,铁沉淀部分溶解,元素S被氧化生成S042-,钝化膜部分溶解,极化电流显著增加;交流阻抗研究进一步表明,随着电位由低到高,磁黄铁矿的氧化经历了钝化膜的形成和消除过程;细菌不改变磁黄铁矿的氧化机理,只对磁黄铁矿的腐蚀起加速作用,添加细菌后,磁黄铁矿的腐蚀电位降低,腐蚀电流增大,促进了腐蚀反应的发生,提高了腐蚀速率,磁黄铁矿发生化学反应的速率加快且此时电极氧化还原反应可逆性降低。
     摇瓶浸出研究结果表明:细菌的存在促进磁黄铁矿的溶解,在L.ferriphilum菌浸出体系中,浸出7天,全铁浸出率可达38.35%,高于相同条件下的无菌浸出;浸出体系温度是磁黄铁矿浸出的主要影响因素,磁黄铁矿极易氧化,浸出过程中体系电位一直高于0.3V,磁黄铁矿在细菌作用下被氧化生成Fe2+和5042-,以氧化亚铁为能源的细菌浸出磁黄铁矿的作用机理是间接作用;增大矿浆浓度抑制磁黄铁矿的溶解,矿浆浓度过大会影响溶氧量、增大矿粒间的剪切力从而影响细菌的生长;提高接种量和每天调整矿浆pH至初始值有利于细菌生长,促进磁黄铁矿浸出。
     本论文得到国家自然科学基金创新研究群体项目(50321402)和国家重点基础研究发展973项目(2010CB630903、2004CB619204)的资助。
With the development of economy, the mineral resources are reducing greatly. As a result, we ought to turn to use new methods to process mineral resources of low grade. Bioleaching technology now attracts more attention than ever before for its low cost, environmental acceptance and simplicity. Pyrrhotite is a common iron sulfide in nature and is usually associated with various useful components, such as nickel, cobalt, copper, zinc and other valuable metals. Therefore, the study of the oxidation dissolution of pyrrhotite in bioleaching process means a lot in comprehensive utilization of low grade sulfide minerals and the extraction of valuable metals.
     On the basis of property of pyrrhotite crystal and its leaching thermodynamics, the variation of surface properties of pyrrhotite after biological conditioning with Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum and Acidithiobacillus caldus was evaluated by zeta-potential, adsorption and contact angle measurements. The effect of slurry concentration, the amount of bacteria, pH value, etc. on pyrrhotite leaching in the presence of A.ferrooxidans and L.ferriphilum were conducted with SEM; the electrochemistry behavior of pyrrhotite with and without bacteria were conducted by electrochemical analysis methods (cyclic voltammetry (CV), Electrostatic potential, polarization curves and electrochemical impedance spectroscopy) to disclose the oxidation mechanism of pyrrhotite in microbic leaching system.
     The leaching process of pyrrhotite was analysed by the figure of Eh-pH of FeS1.12-H2O.The best conditions of bioleaching of pyrrhotite are Eh=0.4-0.8V and pH=1-3. When the system Eh is between 0.36-0.8V, pH is in 2.28-4.0, the ferric ion may mainly exist in the form of precipitates.In acidic solution, the stable existing zone is blow 0.4V, which means that pyrrhotite would be oxidized and dissolved at very low potential. The characteristics of pyrrhotite crystal determines the oxidization dissolution rate, and the polymorphism of monoclinic system is likely to present unstable chemistry property and be easily oxidized by acid and other oxidants.
     The results of research on surface properties showed that all types of bacterium adhered to pyrrhotite surface rapidly, but the pyrrhotite adapted bacteria had the stronger adsorption ability. The pyrrhotite isoelectric point (IEP) shifts towards the cell isoelectric point after interacting with bacteria cells, indicating the adsorption of cells on the pyrrhotite surface, and the shift degree was different. After treatment by different bacteria, due to the formation of sulfur membrane or the ferric ion was relatively enriched on the pyrrhotite surface, the change of contact angle and surface hydrophobicity were not the same. The results indicate that the pyrrhotite dissolution may be dominated by the acid dissolution during the initial bioleaching, the energy source for the microorganism growth determines its function mechanism in the bioleaching system. The iron-oxidizing bacteria offer an indirect mechanism function (sulfide mineral was oxidized by dissolved Fe3+) and the sulfur-oxidizing bacteria offer a direct mechanism function (sulfide mineral was oxidized by O2 in bioleaching process).
     The electrochemical study of oxidation of pyrrhotite in the presence and absence of bacteria in acidic system showed that pyrrhotite was firstly oxidized to sulfur or iron (ⅲ) complex at the potential of 0.2V, which covered the electrode and made electrode passivated; as the scanning potential rising, S was oxidized to SO42-, making the passive film dissolved. The result of AC impedance further showed within the electrode potential region of 0.2-0.7V, the oxidation of pyrrhotite firstly formed passive film and then passive film dissolved. In the solution with bacteria, the mechanism of pyrrhotite oxidation didn't changed, but the corrosion potential and corrosion current of pyrrhotite increased, which showed bacteria promoted the oxidation of pyrrhotite.
     The results of bioleaching experiments showed that bacteria can improved the leaching rate of pyrrhotite; at the 7th day of bioleaching experiment, the total-iron extraction reached 30.14%, much higher than that in sterile solution. The temperature of reaction system is the main factor for pyrrhotite leaching, and pyrrhotite can be easily oxidized. The system electric potential of leaching keeps above 0.3V and pyrrhotite was oxidized to Fe2+ and SO42-.The iron-oxidizing bacteria offer an indirect mechanism function. Increasing the mineral concentration can depress the dissolution of pyrrhotite; increasing inoculation amount and adjusting the pH value to initial number are beneficial to the growth of pyrrhotite and thus promoted the leaching of pyrrhotite.
     The dissertation was supported by "National Basic Research Program" (2010CB630903,2004CB619204) and "National Nature Science Foundation of China" (50621063).
引文
[1]李宏煦.硫化矿细菌浸出过程的电化学机理及工艺研究[D].长沙:中南大学,2001
    [2]邓敬石.中等嗜热菌强化镍黄铁矿浸出的研究[D].昆明:昆明理工大学2002
    [3]杨显万,邱定蕃著.湿法冶金[M].北京:冶金工业出版社,1998
    [4]Akcil A. Potential bioleaching developments towards commercial reality:Turkish metal mining's future [J]. Minerals Engineering.2004,17(3):477-480
    [5]魏以和,钟康年,王军.生物技术在矿物工程中的应用[J].国外金属选矿,1996(1):1-13
    [6]刘汉钊,张永奎.微生物在矿物工程上应用新进展[J].国外金属选矿,1999(12):9-12
    [7]Solisio C, Lodi A, Veglio F. Bioleaching of zinc and aluminum from industrial waste sludges by means of Thiobacillus ferrooxidans [J].Waste Managenment, 2002 (22):667-675
    [8]Murr L E. Theory and practice of copper sulphide leaching in dumps and in-situ (J). Mine [J]. Sci. Eng.,1980,12(3):121-189
    [9]Rossi G. Biohydrometallurgy [M]. Hamburg:McGraw-Hill,1999,1.
    [10]Klaus Bosecker.Bioleaching:Metal solubilization by microorganisms [J].FEMS Microbiology Reviews.1997(20):591-604
    [11]Deveci H. Effect of salinity on the oxidative activity of acidophilic bacteria during bioleaching of a complex Zn/Pb sulphide ore[J].The European Journal of Mineral Processing and Environmental Protection.2002,2:141-150
    [12]Chandraprabha M N, Modak J M, Natarajan K A. and Raichur A M. Strategies for efficient start-up continuous biooxidation process for refractory gold ores [J]. Minerals Engineering,2002(15):751-753
    [13]《浸矿技术》编委会.浸矿技术[M].北京:原子能出版社,1994
    [14]Torma A E. The role of Thiobacillus ferrooxidans in hydrometallurgical process[J]. Adv Biochem Eng,1977, (6):1-37
    [15]Rudolf W. Oxidation of pyrites by microorganisms and their use for making mineral phosphates available [J].Soil Sci,1922,14:135-147
    [16]Rudolf W, Helbronner A. Oxidation of zinc sulfides by microorganisms [J]. Soil Sci,1922,14:459-464
    [17]Clomer A R, Hinkle M E. The role of microorganisms in acid mine drainage:a preliminary report[C]. Science,1947(106):253-256
    [18]Temple K L, Delchamps E W. Autotrophic bacteria and the formation of acid in bituminous coal mine [J].Applied Microbiology,1953,1:255-258
    [19]Bryner L C, Jameson A K. Microorganisms in leaching of sulfide minerals [J]. Applied and environmental microbiology,1958,6(4):281-287
    [20]Zimerley S R, Wilson D G, Parater J D.U.S Patent,2829964.1985
    [21]Silverman M P, Mechanism of bacterial pyrite oxidation [J]. Bacterial,1967, 94:1046-1051
    [22]王淀佐.矿物生物提取技术的研究与进展[C].中国有色金属学会.铜镍湿法冶金技术交流及应用推广会论文集.北京:中国有色金属学会,2001:2-9
    [23]Kuyucak N. Microorganisms, biotechnology and acid rock drainage-emphasis on passive-biological control and treatment methods [J]. Minerals and Metallurgical Processing,2000,17 (2):85-95
    [24]Wood T A, Murray K R, Burgess J G Ferrous sulphate oxidation using Thiobacillus ferrooxidans cells immobilized on sand for the purpose of treating acid mine-drainage[J]. Appl Microbiol Biotechnol,2001,56(3):560-565
    [25]童雄.微生物浸矿的理论与实践[M].北京:冶金工业出版社,1997.20-60
    [26]桑瑟亚.用硫氧化硫杆菌调节方铅矿和闪锌矿的表面性质[J].国外金属矿选矿,2002,39(7):29-36
    [27]索洛日金.细菌在矿物工程中的应用[J].国外金属矿选矿,1991,10(5):1-10
    [28]格劳德夫.矿物原料的生物选矿[J].国外金属矿选矿,2000,20(6):2-9
    [29]Kawatra S K, Natarajan K A. Society for mining, metallurgy and exploration [J]. Mineral Biotechnology.2001:263
    [30]Bosecker. Bioleaching:metal solubilization by microorganisms [J]. FEMS Microbiol Rev,1997,20:591-604
    [31]Miller P C, Rhodes M K, winby R, Pinches A. Commercialization of bioleaching for base-metal extraction [J]. Minerals & Metallurgical Processing.1999,16 (4): 42-50
    [32]李样人.德兴铜矿堆浸厂萃取工艺生产现状与展望[J].湿法冶金,1998(4):24-28
    [33]Brierley C L. Bacterial succession in bioheap leaching [J]. Hydrometallurgy,2001, 59 (2-3):249-255
    [34]Amores M, Coedo A G, Alguacil F J. Extraction of copper from sulfate solutions by MOC 45:Application to Cu separation from leachates of copper flue dust [J]. Hydrometallurgy,1997,47 (1):99-112
    [35]Suttill Kei R. SX copper burns bright [J]. E&MJ,1993 (Dec):24-28
    [36]方金渭,黎维中.溶浸提铜技术发展概况及前景分析[J].湿法冶金,1998(4):15-19
    [37]兰兴华.金和基本金属生物浸出的新进展[J].世界有色金属,2002(5):28-31
    [38]Rhodes M, Deeplaul V. Bacterial oxidation of Mt.Lyell concentrates [C]. Proceedings of the A1TA 1998 Copper Sulfides Simposium, Brishbane, Australia, 19 October 1998
    [39]Barriga Mateos F, Pereda J, Marin, Palencia perez I. Bacterial leaching of a bulk flotation concentrate of chalcopyrite-sphalerite [J]. Biorecovery,1993 (2): 195-218
    [40]Palencia I, Carranza F, Gaicia M J. Leaching of a copper-zinc sulfide concentrate using an aqueous ferric sulfate diluent solution in a semi continuous system: Kinetics of dissolution of zinc [J]. Hydrometallurgy,1990 (23):191-202
    [41]Carranza F, Garcia M J, Palencia I, et al. Selective cyclic bioleaching of copper-zinc sulfide concentrate [J]. Hydrometallurgy,1990,24 (1):67-76
    [42]Aswegen P C, Marails H J. Advances in the application of the BIOX(?) Process for refractory gold ores [J]. Minerals & Metallurgical Processing,1999,16 (4):61-68
    [43]Brierley C L. Mining biotechnology:research to commercial development and beyond, in:D.E. Rawlings Ed., Biomining:Theory, Microbes and Industrial Processes [M]. Springer, New Yourk,1997, p.3
    [44]McCready R G L, Gould W D. Bioleaching of uranium. In:Microbial Mineral Recovery [M] (Ehrlich, H.L. & Brierley, C.L. Eds),1990, p.107-125. McGraw-Hill, New Yourk
    [45]Briggs A P, Millard M. Cobalt recovery using bacterial leaching at the Kasese Project [C], Uganda. IBS Biomine'97 Conference Processing, Australian Mineral Foundation, Adelaide,1997,Chap. M2.4.1
    [46]Hugues P D, Cezac P, Battaglia F, Morin D. Bioleaching of a cobaltiferrous pyrite at 20% solids:a continuous laboratory-scale study. In:R.Amils, A.Ballester Eds., Biohydrometallurgy and the Environment Toward the Mining of the 21st Century [M], Elsevier, Amsterdam,1999, P.167
    [47]钟点益摘译.镍精矿生物浸出工艺及中间工厂试验结果[J].有色冶炼,2000,29(1):27-31
    [48]Dew D W, Miller D M. The BioNIC process [C]. IBS Biomine'97 Conference Proceedings, Australian Mineral Foundation, Adelaide,1997, Chap, M7.1.1
    [49]Kumari A, Natarajan K A. Development of a clean bioelectrochemical process for leaching of ocean manganese nodules [J]. Minerals Engineering,2002,15 (1-2): 103-106
    [50]Kumari A, Natarajan K A. Electroleachign of polymetallic ocean nodules to recover copper, nickel and cobalt [J]. Minerals Engineering,2001,14 (8): 877-886
    [51]Kumari A, Natarajan K A. Electrochemical aspects of leaching of ocean nodules in the presence and absence of microorganisms [J]. Int. J. Miner. Process.2002, 66 (1-4):29-47
    [52]杨显万.微生物湿法冶金[M].北京,冶金工业出版社,2003
    [53]Attia Y A. Feasibility of selective biomodification of pyrite floatability in coal desulfurization by froth flotation [J].Resources Conservation and Recycling, 1990,3 (2):169-175
    [54]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review [J]. Hydrometallurgy,2006,84(1-2):81-108
    [55]Yelloji Rao M K, Natarajan K A, Somasundaran P. Effect of biotreatment with Thiobacillus ferrooxidans on the flotability of sphalerite and galena[J]. Miner Metallurg Processing,1992,9 (4):95-100
    [56]陈顺方,钟文远.难浸硫化矿的微生物氧化预处理及应用现状[J].国外金属矿选矿,2000,(2):6-10
    [57]Johnson D B, Hallberg K B. The microbiology of acidic mine waters[J]. Research in Microbiology,2003,154(7):466-473
    [58]Nicolette J Coram, Douglas E Rawlings. Molecular Relationship between two groups of the genus Leptospirillum and the finding that Leptospirillum ferriphilum sp nov Dominates South Afican commercial biooxidation tanks that operate at 40℃[J]. Applied and Environmental Microbiology,2002,68(2): 838-845
    [59]Naoko Okibe, Mariekie Gericke, Kevin B Hallberg. Enumeration and characterization of Acidophilic Microorganisms isolated from a pilot plant stirred-tank bioleaching operation [J]. Appl Environ Microbiol,2003,69(4): 1936-1943
    [60]Amaro A M, Hallberg K B, Lindtrom E B. Animmunlogical assay for detection and enumeration of thermophilic biomining microorganisms [J]. Appl Environ Microbiol,1994,60(2):3470-3473
    [61]Silverman M P, Ehrlich H L. Microbial formation and degradation of minerals [J]. Advances in Applied Microbiology 1964.6,153-206
    [62]Tributsch H.Direct versus indirect bioleaching[J]. Hydrometallurgy,2001.177-185
    [63]Crundwell F K. How do bacteria interact with minerals[J]. Hydrometallurgy, 2003,75-81
    [64]张英杰,杨显万.硫化矿细菌浸出机理[J].有色金属,1997,49(4):39-44
    [65]Geesey G G, Jang L. Metal Ions and Bacteria [M]. In:T.J. Bevenridge, R.J. Doyle (Eds.), Wiley, NewYork,1999
    [66]Wasserman E, Felmy A R. Computation of the electrical double layer properties of semipermeable membranes in multicomponent electrolytes [J]. Apli. Environ. Microbiol.1998,64 (6):2295-2300
    [67]Schippers A, Sand W. Bacterial leaching of metal sulfides proceeds by two indirect mechanisms via thiosulfate or via polysulfides and sulfur [J]. Appl. Environ. Microbiol.1999,65 (1):319-321
    [68]Crundwell F K. Influence of the electronic structure of solids on the anodic dissolution and leaching of semiconducting sulphide minerals[J]. Hydrometallurgy,1988,21 (2):155-190
    [69]Steudel R. Mechanism for the formation of elemental sulfur from aqueous sulfide in chemical and microbiological desulfurization processes [J]. Ind. Eng. Chem. Res.1996,35 (4):1417-1423
    [70]Guohua Gu, Kaile Zhao, Guanzhou Qiu, Yuehua Hu, Xiaojun Sun. Effects of Leptospirillum ferriphilum and Acidithiobacillus caldus on surface properties of pyrrhotite[J]. Hydrometallurgy,2009,100:72-75
    [71]Bhatti T M, Bigham J M, Carlson L,Touvinen O H. Mineral products of pyrrhotite oxidation by Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology,1993,59(6):1984-1990
    [72]德瓦西亚P.细菌生长条件和细菌吸附在氧化铁硫杆菌生物浸出黄铜矿中的作用[J].国外金属矿选矿,1992,(2):28-30
    [73]Michael Dunne W. Bacterial adhesion:Seen any good biofilms lately [J], Clinical Microbiology Reviews,2002,15(2):155-166
    [74]蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J].2007,52(15):1802-1813
    [75]Tilman G, Judit T, Dominique T, Wolfgang S. Importance of extracellular polymeric substances from thiobacillus ferrooxidans for bioleaching [J]. Applied and Enviromental Microbiology,1998,64 (7):2743-2747
    [76]李英堂,田淑艳,汪美风.应用矿物学[M].北京:科学出版社,1995:81-95.
    [77]Vavghan D J, Becker U, Wright K. Sulphide mineral surface:Theory and experiment [J]. Int Miner Process,1997,51(1):1-14
    [78]傅建华.硫化铜矿浸矿细菌超微结构与吸附机理及SFORase的纯化[D].长沙:中南大学,2004
    [79]Naoya O, Keiko K, Hiroshi S. Selective Adhesion of thiobacillus ferrooxidans to pyrite [J]. Applied and Environmental Microbiology,1993,59(12):4044-4050
    [80]Watling H R. The bioleaching of sulphide minerals with emphasis on copper sulphides-A review [J]. Hydrometallurgy,2006,84(1-2):81-108
    [81]李洪枚,柯家骏.细菌浸出磁黄铁矿机制的研究[J].稀有金属,2005,29(2):234-238
    [82]Baas Becking L G M, KaPIan I R, Moore D. Limits of natural enviroment in terms of pH and oxidation—reduetion Potentials [J]. J.Geol,1968,68:243-284
    [83]Pesie B, OilVer D J.An electroehemical method of measuring the oxidation rate of Ferrous to ferric iron with oxygen in the Presence of Thiobacillus ferrooxidans [J]. Bioteehnology and Bioengineering,1989,33:428-439
    [84]Yunker S B, Rodovieh J M. Enhaneement of growth and ferrous iron oxidation rate of T.ferrooxidans by eleetrochemical reduction of ferric iron[J]. Biotechnology and Bioengineering,1986,28:1867-1875
    [85]Blake R C,Howard G T, Mcginness S. Enhancd yields of iron-oxidizing bacteria by in situ-electrochemical reductiong of soluble iron in the growth medium[J]. Appl.Environ.Microbiol,1994,60:2704-2710
    [86]K A兰特拉金.硫化矿生物浸出电化学[J].国外金属矿选矿,1997,(2):44-45
    [87]S R莫里森著,吴辉煌译.半导体与金属氧化膜的电化学[M].科学技术出版社,1988
    [88]闵小波.含砷难处理金矿细菌浸出基础理论及工艺研究[D].长沙:中南大学,2000
    [89]柳建设.硫化矿的生物提取及腐蚀电化学研究[D].长沙:中南大学,2002
    [90]李骞.含砷金矿生物预氧化提金基础研究[D].长沙:中南大学,2007
    [91]朱莉张德诚,罗学刚.黄铜矿在硫酸介质中浸出的电化学行为[J].金属矿山,2008,383(5):66-70
    [92]余润兰,邱冠周,胡岳华.Ca(OH)2体系中铁闪锌矿和磁黄铁矿的电化学行为 差异[J].金属矿山,2005,(8):30-33
    [93]Wbods R. Recent advances in electrochemistry of sulfide mineral flotation [J].Trans.Nonferrous Met.Soc.China.2000,10(Special Issue):26-29
    [94]Palencia I, Wan R Y, Miller J D. The electrochemical behavior of a semiconducting natural pyrite in the presence of bacteria[J].Metallurgical Transactions,1991,22B:774
    [95]Choi W K, Torma A E. Eleetrochemical aspects of zinc sulphide leaehing by thiobaeillus ferrooxidans[J].Hydrometallurgy,1993,33:137-152
    [96]覃文庆,邱冠周,徐竞,李该有.双黄药在磁黄铁矿电极表面的电化学形成及吸附研究[J].中国矿业,1999,8(1):73-76
    [97]Qin Wen-Qing, Li Quan,Qiu Guan-Zhou. Electrochemical oxidation of pyrrhotite in aqueous solution [J]. Trans Nonferrous Met Soc China.2005,15(4):922-925
    [98]Riekkola-Vanhanen M, Heimala S. Electrochemical control in the biological leaching of sulfidic ores [J]. Biohydrometall Technology,1993,1,561-570
    [99]Jack Barrrett, Hughes M N, Karavaiko G L, Spencer P A.Metal extraction by bacterial oxidation of minerals,1993.115
    [100]王永华,刘文荣.矿物学[M].北京:地质出版社,1985:140
    [101]T佐尔泰,J H斯托特.矿物学原理[M].地质出版社,1992:310-429
    [102]王濮,潘兆鲁,翁玲宝等编著.系统矿物学[M].地质出版社,1982
    [103]顾连兴,赵明,吴昌志.镍铜硫化物矿石中磁黄铁矿固溶体的退火及其选矿意义[J].地质评论,2003,49(3):85-89
    [104]钟竹前,梅光贵.化学位图在湿法冶金和废水净化中的应用[M].长沙:中南工业大学出版社,1986:25-40
    [105]迪安J A.兰式化学手册[M].北京:科学出版社,2003:166-200
    [106]Solari J A, Huerta G, Escobar B. Interfacial phenomena affecting the adhension of T.ferrooxidans of sulfide mineral surface[J]. Colloids and surface,1992,69(3): 159-166
    [107]李宏煦.硫化铜矿的生物冶金[M].北京:冶金工业出版社,2007.103-120
    [108]Van der Mei H C, Noordmans J, Busscher H J.Molecular surface characterization of oral streptococci by fourier Transform infrared sprctroscopy[J]. Biophys. Acta 1989,991:395-398
    [109]Devasia P, Natarajan K A, Sathyanaryana D N, Ramananda R G. Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces.Applied and environmental Microbiology.1993,59(12):4051-4055
    [110]P K沙尔姆.氧化亚铁硫杆菌与硫化矿物的反应和从黄铁矿中优先浮选黄铜矿[J].国外金属矿选矿,2002,39(4):16-23
    [111]陈志亮.电化学交流阻抗技术表征自组装多层膜[J].分析化学,2001,01:78-81
    [112]Xiaoming Ren, Peter G Pickup. An impedance study of electron transport and electron transfer in composite polypyrrole+polystyrenesulphonate films [J]. Journal of Electroanalytical chemistry,1997,420:251-257
    [113]曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994,1

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700