斜拉桥的合理成桥索力和施工阶段索力控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
斜拉桥的主要组成部分是主梁、斜拉索和索塔,是一种桥面体系主要受压,索体系受拉的桥式。其桥面体系由加劲梁构成,其支承体系由钢索组成。斜拉桥主梁、主塔受力对索力大小很敏感,而斜拉索索力可以调节,故斜拉桥的设计存在一个通过优化成桥索力来优化斜拉桥成桥内力的合理成桥受力状态确定问题。
     成桥受力状态确定可以不考虑施工过程,以成桥状态的受力体系为分析对象,通过对成桥索力的调整来获得一个合理的成桥状态。而本文正是需要解决这两个方面的问题:其一为什么样的成桥状态是合理的;其二为如何调整成桥索力来获得已定好的合理成桥状态。
     在斜拉桥的结构计算中,确定成桥目标状态和施工目标状态是两项至关重要的工作,通常是先确定成桥目标状态,然后以成桥目标状态为基础根据施工工序确定各施工目标状态。本文通过对重庆忠县长江大桥斜拉桥施工模拟计算,对斜拉桥在设计优化阶段对斜拉桥索力进行了优化,使其对桥塔,主梁,索等桥的各个方面(包括弯矩,挠度,应力,位移等等)的受力情况更合理,并对施工过程中出现的个方面问题进行的分析解决。
     主要开展了一下几个方面的工作:
     (1)对各种合理成桥的方法的对比,通过一种方法使斜拉桥更好的受力,使其得到最大的优化。通过对主梁的应力,位移,弯矩等各方面进行对比,来得到结果。
     (2)确定合理施工状态的计算方法有:倒拆法,正装迭代法,无应力状态法。通过这三种方法的对比,可以知道彼此的优点和存在的不足。
     并对正装迭代法计算中的问题进行了分析和考虑,如混凝土收缩、徐变问题和结构几何非线性问题。
     (3)对斜拉桥施工过程的节段索力和全桥索力进行了特别的研究。并对施工实测值和设计值进行对比,对施工中出现的问题进行解决。以保证施工过程中结构的安全。
     (4)如何减少索力在设计过程中和施工过程中的误差,是今后考虑的一个主要问题,至于索力优化问题,相信随着科学技术的发展,会得到一种更好的方法,会使结构受力更合理。
     通过以上问题的分析考虑,能为今后斜拉桥的建设提供一定的指导意义。
Cable-stayed bridge is the main component of the main beam, and the tower cable-stayed, which is a major pressure on the bridge deck system, cable system by widening the bridge. Its deck system is posed by stiffening beam, supported by the system of cables. The main tower of the cable force size is very sensitive, and the tension of the cable-stayed can be adjusted .So there is a cable-stayed bridge design through optimization of the cable bridge to optimize Cable-stayed bridge internal forces of the legitimate status of the bridge by identifying the problem.
     The state of bridge stress can not determine the status of the construction process in order to bridge the state's system for stress analysis of the object through the bridge of the cable force adjustments to get into a reasonable state of the bridge. In this paper, which is the need to solve two issues: first, why the bridge into a kind of state is reasonable; second, how to adjust the bridge for the cable force has been set to get into a reasonably good state of the bridge.
     Cable-stayed bridge in the structure of the calculation to determine the status and objectives of bridge construction is the goal of two states crucial to the work, usually to determine the bridge into the goal, and then to bridge the target based on a state based on the construction process to determine the construction the last state.Based on Zhongxian County in Chongqing Yangtze River Bridge Construction simulation of cable-stayed bridge, the cable-stayed bridge in the design stage to optimize the cable-stayed bridge cable force has been optimized to enable it to the bridge towers, the main beam, such as cable bridge in all its aspects (including moment, around, stress, displacement, etc.) of the force in a more reasonable and in the process of construction of the aspects of the issue resolved.
     Main problems solutioned include:
     (1) The reasonable bridge on the way, through a cable-stayed bridge to a better method of force to get the maximum optimization. Through the main beam of stress, displacement, the moment in areas such as compared to results.
     (2) Determining a reasonable state of the construction method of calculation are: inverted demolition, is loaded method, no stress state law. Through these three methods of comparison, you can let us know each other's merits and shortcomings.
     And the calculation method is with the problems that exist in an analysis and consideration, such as the shrinkage of concrete, creep and geometric structure of nonlinear problems.
     (3) Construction of the cable-stayed bridge section of the cable force and full-bridge cable force a special study. Construction and design value and actual value comparison, the construction of the problems to resolve. To ensure that the construction process of structural safety.
     (4) How to reduce power demand during the design process and construction in the process of error is taken into account in the future a major problem, as power demand optimization, I believe that with the development of science and technology, will be a better way, So that the force structure is more reasonable.
     Through the above analysis of the issues to consider, the cable-stayed bridge provide some guidance for the future.
引文
[1]刘士林,梁智超,候金龙,孟凡超主编.斜拉桥.人民交通出版社,2002年8月
    [2]姚玲森主编.桥梁工程.人民交通出版社,2002年7月
    [3]周孟波主编.斜拉桥手册.人民交通出版社,2005年1月
    [4]项海帆主编.高等桥梁结构理论.人民交通出版社,2001年4月
    [5]李克银,吉小军.斜拉桥施工控制中的温度影响分析.铁道工程学报,2006年8月第5期第59-62页.
    [6]杜蓬娟、张哲、谭素杰.斜拉桥合理成桥状态索力确定的优化方法.公路交通科技.第22卷第7期.82-85页.2005年7月.
    [7]颜东煌,张太科,李学文,裴炳志.荆州大桥南汊通航孔主桥合理成桥状态确定.中外公路,2003年6月,第23卷第3期第15-18页
    [8]李学文,田仲初,颜东煌.混凝土斜拉桥采用前支点挂篮悬臂浇注施工的中间索力确定方法.公路交通科技,2002年10月第19卷第5期第77-79页
    [9]汪正兴,陈开利,庄茁,黄东平,钟继卫.荆州长江大桥南汉通航孔主桥非线性仿真分析一成桥状杰静力分析.桥梁建设,2002年第6期第11-15页
    [10]钟继卫.斜拉桥合龙后索力最优调整的实现.世界桥梁,2002年第4期第43-44页
    [11]颜东煌,陈常松,涂光亚.混凝土斜拉桥施工控制温度影响及其现场修正.中国公路学报,2006年7月,第19卷第4期第71-76页
    [12]张建民,肖汝诚.预应力混凝土斜拉桥施工过程中的力学行为研究.中国工程科学,2007年5月,第9卷第5期第36-41页
    [13]陈政清,颜全胜.大跨度斜拉桥的非线性分析.长沙铁道学院学报,1991年,第9卷第3期第29-33页
    [14]高剑.斜拉桥理想成桥状态与合理施工状态研究.硕士学位论文.西安:长安大学,2003
    [15]颜东煌、李学文、刘光栋、易建伟.用应力平衡法确定斜拉桥主梁的合理成桥状态.中国公路学报,2001,(7)
    [16]伏首圣.公和斜拉桥索力的确定与调整.硕士学位论文.大连:大连理工大学,2003
    [17]肖汝城编著.桥梁结构分析及程序系统.人民交通出版社,2002
    [18]施笃铮、汪劲丰、项贻强、徐兴.斜拉桥施工过程中的索力控制与优化研究.浙江大学学报,2002,(2)
    [19]朱灿.斜拉桥成桥索力调整的最优化方祛.硕士学位论文.长沙:长沙交通学院,2001
    [20]肖汝城、项海帆.斜拉桥索力优化的影响矩阵法.同济大学学报,1998,(9)
    [21]陈铁冰,张伟.大跨度斜拉桥极限承载能力研究.公路交通科技,2004(4).
    [22]詹建辉.高低塔斜拉桥静力性能研究及施工控制硕士学位论文.南京:东南大学,2000
    [23]马文田.韩大建.斜拉桥施工最优控制[J].华南理工大学学报,1999.27(11)
    [24]周可夫.PC斜拉桥施工仿真计算与控制[D].西安:长安大学硕士学位论文,2005
    [25]Nakayama,H.Kaneshige,K.,Takemoto,S.and Watada,Y.,"Application of a multi-objective programming technique to construction accuracy control of cable-stayed bridges",European Journal of Operational Research,1995,Vol.87,No.3,731-738
    [26]Sung,Y.C.,Chang,D.W.,and Teo,E.H.,"Optimum post-tensioning cable forces of Mao-Lo Hsi cable-stayed bridge",Engineering Structures,2006,Vol.28,No.10,1407-1417
    [27]Wang,P.H.,Tang,T.Y.,Zheng,H.N.,"Analysis of cable-stayed bridges during construction by cantilever methods",Computers and Structures,2004,Vol.82,No.4-5,329-346
    [28]Noda,Y.,Nakayama,Y.,Arai,T.,"Deflection control system for prestressed concrete bridges by CCD camera",Proceedings of the Japan Society of Civil Engineers,1994,35-440.
    [29]Kaneyoshi,M.,Tanaka,H.,Kamei,M.,Furuta,H.,"Optimum cable tension adjustment using fuzzy regression analysis",In Proceedings of the 3rd IFIP WG 7.5 Conference on Reliability and Optimization of Structural System,1991,No.16,197-209.
    [30]Reddy,P.,Ghaboussi,J.,and Hawkin,N.M.,"Simulation of construction of cable-stayed bridges",Journal of Bridge Engineering,ASCE,1999,Vol.4,No.4,249-257.
    [31]Abraham,D.M.,Halpin,D.W.,"Simulation of the construction of cable-stayed bridges",Canadian Journal of Civil Engineering,1998,Vol.25,No.3,490-499.
    [32]Khalil,M.S.,"Nonlinear analysis of cable-stayed bridges at ultimate load level",Canadian Journal of Civil Engineering,1996,Vol.23,No.5,1111-1117.
    [33]Schlaich,M.,"Erection of cable-stayed bridges having composite decks with precast concrete slabs",Journal of Bridge Engineering,ASCE,2001,Vol.6,No.5,333-339.
    [34]Kaji,K.,Tanikawa,K.,Inoue,K.,Tomita N.,and Itaya,T.,"Precision control system for cable-stayed bridges under construction",Technical Review-Mitsubishi Heavy Industries,Vol.25,No.1,1988,37-43
    [35]Xie,X.,Yamaguchi,H.,Nagai,M.,"Static behaviors of self-anchored and partially earth-anchored long-span cable-stayed bridges",Structural Engineering and Mechanics,vol.5,No.6,1997,767-774.
    [36] Rees, A. and Kim, S.J., "Jindo and Dolsan Bridges: construction", Proceedings of the Institution of Civil Engineers (London), 1985, Vol. 78, No. 1, 1301-1324.
    [37] Dilger, W. H., Tadros, G.S., Giannelia, P., "Method proposed for construction of multi-span cable-stayed bridges", Journal of Construction Engineering and Management, ASCE, 1992, Vol. 118, No. 2, 273-282.
    [38] Kasuga, A., Arai, H., Breen, J.E., Furukawa, K., "Optimum cable-force adjustments in concrete cable-stayed bridges", Journal of Structural Engineering, ASCE, 1995, Vol. 121, No. 4, 685-693.
    [39] Furuta, H., Kamei, M., Kaneyoshi, M., and Tanaka, H., "Optimum cable tension adjustment using fuzzy mathematical programming", In Proceedings of the Second International Symposium on Uncertainty Modelling and Analaysis, 1993, 506-513.
    [40] M. S.Troisky, Cable-stayed Bridge Theory and Design, 1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700