基于SAWR的无源无线阻抗负载传感器的建模和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无源无线声表面波传感器被认为是最有希望取代有源的无线传感器,然而到目前为止,通过改变布局图的方法,或者采用不同声表面波形式的方法对拓展其应用范围的作用都是有限的。声表面波的物理特性决定了被测量直接施加到其传播路径上是最好的,然而有些被测量不适宜直接施加,限制了其测量领域。利用阻抗传感器做为声表面波器件的负载,使被测量施加到阻抗传感器上,通过负载的改变来影响声表面波器件的响应,成为扩展声表面波无源无线传感范围的新途径。因此,本文围绕着基于声表面波谐振器(简称SAWR)的无源无线阻抗负载型传感器开展研究,具有重大的理论意义和现实的应用价值。
     论文首先对无源无线声表面波传感器的研究和发展状况进行了综合评述。然后采用自内到外的思路和样条插值相结合的方法提取了SAWR的分立元件等效电路参数。获得的结果是,在主谐振峰,串、并联谐振频率的相对误差都为零,串联谐振点电导的误差0.135%;二阶谐振频率的最大误差为2.88ppm,谐振电导误差3.67%。包括谐振点在内共2MHz的考查频率范围内,测量与计算特性曲线一致性明显。
     在SAWR提取参数的基础上,确定以最佳匹配的匹配网络为研究对象。按照着眼于整体匹配导纳特性的思路,先用双电抗元件将SAWR在谐振点频率附近匹配成等效RLC串联谐振电路,再串联阻抗传感器来获得稳定的低失配匹配网络。研究首先表明,阻抗传感器出现在X_3所在的位置对于获得稳定的低失配是必要的。然后,该匹配网络对应电容值0.6~7.5pF的变化范围可以获得270KHz的中心频率变化量,每点所对应的最小驻波比都在1.015以下,该特性在双SAWR结构中得以保持。试验获得驻波比的平均值小于1.2。
     T-CLC型低失配网络要求电容传感器具有初始电容小相对变化量大的特点。本文在周边固支的双振动膜模型基础上,采用中心岛型电极结构,通过控制电极/振动膜半径比值m的方法来实现该要求。研究表明,当固定两振动膜的中心位移与初始间距的比值,m增加则电容比按指数规律下降。当m=0.37,获得的电容比为10.将获得的电容-压力数据带入前述低失配网络,得到具有良好线性度的中心频率-压力关系曲线。
     最后,将发射和接收天线的二端口网络模型引入无源无线SAWR传感单元,构建了可以考察天线间距影响的完整模型。基于该模型,讨论了其影响机制,并提出将天线自阻抗与传输线特性阻抗相匹配,可以获得最小的间距变化对中心频率的影响。试验结果表明,当采用单SAWR结构,对应约20cm的间距变化范围,获得低至-1.75ppm/cm的中心频率-间距灵敏度。
Passive Wireless SAW Sensors(PWSS)are considered the most promisingcandidates in place of active wireless sensors so far.However,changing the layout plan,orusing different SAWs forms seems not to make any further progress for the expansion ofthe application scope.The SAW's physical properties determine that it is the best methodto apply the physical to the transmission path of the SAW.But some are not suitable fordirect measurement,which restrict the application area of PWSSs.Taking conventionalimpedance sensors as the loads of SAW devices,the new sensors which are named thePassive Wireless SAW Impedance-loaded Sensors(PWSIS)can be constructed.It is a newway to expand the sensing scope of PWSSs.Therefore,the PWSISs based SAW resonator(SAWR)needs to be extensively investigated and thereof the theoretical and applicationvalues are significant.
     In this paper,the current status of PWSSs and research progresses are reviewed in thepreface.Then,combining the from-inside-out idea and the spline interpolation method,theparameters of lumped-element equivalent circuit are extracted.The obtained results are asfollowing:the relative errors of series and parallel resonant frequencies of the mainresonance peaks are zero,and the relative error of series resonant conductance is 0.135%;the maximum relative error of the second-order resonant frequency is 2.88ppm,and that ofthe resonant conductance is 3.67%.In the 2 MHz frequency range around resonant peaks,the results of measurement and calculation have well consistency.
     On the base of extraction parameters,the best-matched matching network is taken asthe study objective.Focus on the overall admittance characteristics,the steps to obtainstable low-mismatched matching network include matching the SAWR to equivalentseries RLC branch with two reactive components and connecting the impedance sensor.The study shows that it is necessary for the impedance sensor to take the location of X_3 as it's.For a capacitance range from 0.6 to 7.5 pF,the matching network can change thecenter frequency about 270 KHz,and the SWRs are all below 1.015.The characteristicsare maintained in the structure of dual-SAWR.The average value of measured SWR isbelow 1.2.
     The T-CLC low-mismatched matching network requires that the initial capacitance ofthe impedance sensor is small and the relative change is large.In this paper,on the base ofthe clamped-double-membrane model,using the center-island electrode structure,andcontrolling the electrode / diaphragm radius ratio m can meet previous requirements.Study shows that the capacitance ratio will decline with the increasing of m when the ratioof displacements of the two vibrating membrane and the initial distance is fixed.Whenm=0.37,the capacitance ratio is 10.Taking the obtained data of capacitance-pressure intothe previous low-mismatched matching network,the relation curve of center frequency-pressure has good linearity.
     Finally,the two-port network model of transmitting and receiving antennas isintroduced into the PWSIS unit,and the complete model which can examine the effects ofantenna distance on the center frequency is constructed.Based on the model,the influencemechanism is discussed,and a measure to weaken the impact is put forward.It ismatching the self-impedance of antenna to the characteristic impedance of transmissionline.The experimental results show that the sensitivity of center frequency-antennadistance is-1.75 ppm/cm.The results are obtained on the single-SAWR construct and adistance range about 20 cm.
引文
[1]吴连法.声表面波器件及其应用.第一版.北京:人民邮电出版社,1983.14~17.
    [2]日本电子材料工业会编.声表面波器件及其应用.第一版.许昌昆等译.北京:科学出版社,1984.1~3
    [3]萧鸣山,宋道仁.声表面波器件基础.第一版.济南:山东科学技术出版社,1980.33~54.
    [4]Campbell C.K.Surface acoustic wave devices for mobile and wireless communications.Edition 1 st.New York:Academic Press,1998.3~5.
    [5]Du J.,Harding G.L.,Collings A.F.et al.Experimental study of Love-wave acoustic sensors operating in liquids.Sensors and Actuators A,1997,60(1-3):54~61
    [6]Zimmermann C.,Rebiere D.,Dejous C.et al.A Love-wave gas sensor coated with functionalized polysiloxane for sensing organ phosphorus compounds.Sensors and Actuators B,2001,76(1-3):86~94.
    [7]Xfreudenberg C.,Schelle S.,Beck K.M.et al.Contactless surface acoustic wave biosensor.Biosensors and Bioelectronics,1999,14(4):423~425.
    [8]Reindl L.M.Unwired SAW sensors systems.In:Proceedings of LFNM.2005.189~198.
    [9]陈明,范东远,李岁劳.声表面波传感器.第一版.西安:西北工业大学出版社,1997.1~27.
    [10]Wolff U.,Franz L.D.,Fisherauer G.K.et al.SAW sensors for harsh environments.IEEE Sensor Journal,2001,1(1).4~13.
    [11] Pohl A. A review of wireless SAW sensors. IEEE Transactions on Ultrasonics,Ferroelectrics, and Frequency Control, 2000,47(2). 317-332.
    [12] Pohl A., Ostermayer G, Steifert F. Wireless sensing using oscillator circuits locked to remote high-Q SAW resonators. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998,45(5).1161-1168.
    [13] E. Schmidt, G Scholl. Wireless SAW identification and sensor systems. Advances in Surface Acoustic Wave Technology, Systems and Applications. World Scientific Publishing Co Ltd, 2001.
    [14] Reindl L. Wireless passive SAW identification marks and sensors. 2nd International Symposium Acoustic Wave Devices for Future Mobile Communication Systems.2004.
    [15] Hartmann C. Overview of SAW RFID. ISO/IECSC31 /WG (?) /SG3 Meeting. 2004.
    [16] Reindl L, Scholl G, Ostertag T. et al. Theory and application of passive radio transponders as sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998,45(5) :1281-1291.
    [17] Reindl L.M., Scholl G, Ostertag T. et al. Theory and application of passive SAW radio transponders as sensors. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 1998,45(5).1281-1292.
    [18] Steindl R., Pohl A., Seifert F. Impedance loaded SAW-sensors offer a wide range of measurement opportunities. IEEE Transactions on Microwave Theory and Techniques,1999,47(12). 2625-2629.
    [19] Guliyev E., Klett S. Pulling of SAW resonators for wireless sensor application. In:Proceedings of IEEE Ultrasonics Symposium. 2005. 2202-2206.
    [20] Buff W.. SAW sensors for direct and remote measurement. In: Proceedings of IEEE Ultrasonics Symposium. 2002.435-442.
    [21] Bao X.Q., Burkhard W, Varadan V.V., et al. SAW temperature sensor and remote reading system. In: Proceedings of IEEE Ultrasonics Symposium. 1987. 583-586.
    [22] Schmidt F, Sczesy O., Reindl L. et al. Remote sensing of physical parameters by means of passive surface acoustic wave device. In: Proceedings of IEEE Ultrasonics Symposium. 1994. 589-592.
    [23] Scherr H., Scholl G, Seifert F. et al. Quartz pressure sensor based on SAW reflective delay line. In: Proceedings of IEEE Ultrasonics Symposium. 1996. 347-350.
    [24] Reindl L., Ruppel C.C.W., R(?)ek K. et al. A wireless AQP pressure sensor using chirped SAW delay lines structures. In: Proceedings of IEEE Ultrasonics Symposium.1998. 355-358.
    [25] Pohl A., Seifert F. Wirelessly interrogable surface acoustic wave sensors for vehicular applications. IEEE Transactions on Instrumentation and Measurement, 1997,46(4). 1031-1038.
    [26] Pohl A., Steindl R., Reindl L. The intelligent tire utilizing passive SAW sensors measurement of tire friction. IEEE Transactions on Instrumentation and Measurement,1999,48(6).1041-1046.
    [27] Pohl A., Seifert F. Wireless interrogable SAW sensor for vehicular applications. In:Proceedings of IEEE Instrumentation and Measurement Conference. 1996.1465-1468.
    [28] Hornsteiner J., Born E., Fischerauer G et al. Surface acoustic wave sensors for high-temperature applications. In: Proceedings of IEEE Frequency Controll Symposium.1998.615~620.
    [29]Hinrichsen V.,Scholl G.,Schubert M.et al.Online monitoring of high-voltage metal-oxide surge arresters by wireless passive surface acoustic wave (SAW) temperature sensors.In:Proceedings of IEEE High Voltage Engineering Symposium.1999.2238~2241.
    [30]Pohl A.,Steindl R.,Reindl L.Measurements of vibration and acceleration utilizing SAW sensor.In:Proceedings of Sensor'99.
    [31]Technology Focus:Norway implements RF vehicle identification.Microwave and RF Engineering,1989,(2).42~43.
    [32]Http://www.siemens.de/vt.d/sofis/inhalt.htm.
    [33]Schimetta G.,Dollinger F.,Weigel R.A wireless pressure-measurement system using a SAW hybrid sensor.IEEE Transactions on Microwave Theory and Techniques,2000,48(12).2730~2735.
    [34]Reindl L.,Ruppel C.C.W.,Kirmayr A.et al.Passive radio request able SAW water content sensor.In:Proceedings of IEEE Ultrasonics Symposium.1999.461~466.
    [35]Hauser H.,Steindl R.,Hausleitner C.et al.Wirelessly interrogable magnetic field sensor utilizing giant magneto-impedance effect and surface acoustic wave devices.IEEE Transactions on Instrumentation and Measurement,2000,49(3).648~652.
    [36]Buff W.,Plath F.,Schmeckebier O.et al.Remote sensor system using passive SAW sensors.In:Proceedings of IEEE Ultrasonics Symposium.1994.585~588.
    [37]Buff W.,Rusko M.,Vandahl T.et al.A differential measurement SAW device for passive remote sensing.In:Proceedings of IEEE Ultrasonics Symposium.1996.343~346.
    [38] Buff W., Rusko M., Goroll M. et al. Universal pressure and temperature SAW sensor for wireless applications. In: Proceedings of IEEE Ultrasonics Symposium 1997.359-362.
    [39] Rusko M, Buff W., Binhack M. et al. Passive resonator identification tag for narrow-band wireless telemetry. In: Proceedings of IEEE Ultrasonics Symposium.1999.377-380.
    [40] Goroll M.. Pressure sensor technology with SAW-resonators on the basis of a-quartz-substrate for passive wireless telemetry applications. Ph.D Thesis.Preservation location: Lib. of Technical University of Ilmenau, 1999.
    [41] Kalinin V., Bown G., Leigh A.. Contactless torque and temperature sensor based on SAW resonators. In: Proceedings of IEEE Ultrasonics Symposium. 2006.1490-1493.
    [42] Kim J.S., Choi K., Yu I. A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect.IEEE Transactions on Ultrosonics, Ferroelectrics, and Frequency Control, 1993, 40(4).424-426.
    [43] Binhack M., Buff W, Klett S. et al. A combination of SAW- resonators and conventional sensing elements for wireless passive remote sensing. In: Proceedings of IEEE Ultrasonics Symposium. 2000. 495-498.
    [44] Klett S., Binhack M., Buff W. et al. Progress in modeling of sensor function for matched SAW resonators.In: Proceedings of IEEE Ultrasonics Symposium. 2002.471-474.
    [45] Binhack M., Klett S., Guliyev E. et al. Modeling of double SAW resonator remote sensor. In: Proceedings of IEEE Ultrasonics Symposium. 2003. 1416 - 1419.
    [46]李源,冯冠平,丁天怀.一种新型声表面波温度传感器的研究.清华大学学报(自然科学版),1997,37(11).100~103.
    [47]李源,冯冠平,丁天怀等.声表面波无源传感器及其遥测系统的研究.电子学报,1997,25(12).79~81.
    [48]刘艾,马伟方,施文康.基于声表面波传感的无线标签识别系统.上海交通大学学报,2001,35(5).710~712.
    [49]韩韬,林晓,施文康.一种新型声表面波无线测量系统.上海交通大学学报,2001,36(8).1165~1168.
    [50]吉小军,施文康,张国伟等.基于LGS的高温无线声表面波传感系统研究.压电与声光,2004,27(2).89~92.
    [51]李平,文玉梅,刘双临等.编码式谐振SAW无源无线温度传感阵列系统.仪器仪表学报,2003,24(6).551~554.
    [52]文玉梅,周志坤,李平等.声表面波无源无线传感器研究.传感器世界,2004,(4).6~10.
    [53]李平.无源无线声表面波传感器及仪器系统研究.博士论文,重庆大学,2003.
    [54]Zhang X.W.,Wang Z.,Gai L.F.et al.Design considerations on intelligent tires utilizing wireless passive Surface acoustic wave sensors.in:Proceedings of the 5th World Congress on Intelligent Control and Automation.2004.3696~3670.
    [55]陈明,王玮.声表面波谐振式力学量传感器的发展与现状.传感器技术,2000,19(5).1~3.
    [56]章安良.声表面波质量传感器.传感器技术,2005,24(1).60~63.
    [57]Shui Y.A.SAW in china.In:Proceedings of IEEE Ultrasonics Symposium.2004. 1074-1081.
    [58] Wang W., He S.T. Passive and remote polymer-coated Love wave chemical sensor.In: Proceedings of IEEE Ultrasonics Symposium. 2008. Digital Object Identifier:10.1109/ULTSYM.2008.0456.
    [59] Zhao J., Jiang C., Chen Y. et al. A study of Love wave sensors with SU-8 guiding layers.In: Proceedings of IEEE Ultrasonics Symposium. 2008. Digital Object Identifier: 10.1109/ULTS YM.2008.0270.
    [60] FU Q.Y.. Theoretical and experimental investigation of impedance-loaded SAW sensors. Ph.D. Thesis. 2005.
    [61] Fu Q.Y., Stab H., Fischer W.J. Simulate Surface Acoustic Wave devices using VHDL-AMS. In: Proceedings of 26th international spring seminar on Electronics technology. 2003. 95-99.
    [62] Fu Q.Y., Fischer W.J., Stab H. Simulation of wirelessly passive SAW ID-Tags /sensors using VHDL-AMS. In: Proceedings of IEEE Ultrasonics Symposium. 2004.2000-2004.
    [63] Fu Q.Y., Stab H., Fischer W.J. Investigation of single-finger interdigital transducer as programmable reflector. In: Proceedings of IEEE International UFFC Joint 50th Anniversary Conference. 2004.2000-2004.
    [64] Grossmann R., Michel J., Sachs T. et al. Measurement of mechanical quantities using quartz sensors.In: Proceedings of European Frequency Time Forum. 1996.376-481.
    [65] Beckley J., Kalinin V., Lee M. et al. Non-contact torque sensors based on SAW resonators. In: Proceedings of IEEE International Frequency Control Symposium and PDA Exhibition. 2002. 202-213.
    [66] Ruppel C.W., Ruile W, Scholl G.. et al. Review of Models for Low-loss Filter Design and Application. In: Proceedings of IEEE Ultrasonics Symposium.1994.313-324.
    [67] Suzuki Y., Shimizu H., Nakamura K. et al. Some Studies on SAW Resonators and Multiple-Mode Filters. In: Proceedings of IEEE Ultrasonics Symposium. 1976:297-302.
    [68] Haus H.A. Modes in SAW Grating Resonators. Journal of Applied Physics, 1977,48(12): 4955-4961.
    [69] Haus H.A. Bulk Scattering Loss of SAW Grating Cascades. IEEE Transaction on Sonics and Ultrasonics, 1979,24(4): 259-267.
    [70] Wright P.V. A new generalized modeling of SAW transducers and grating. 43rd Annual Symposium on Frequency control, 1989: 313-324.
    [71] Abbott B.P. A Coupling-of-Modes Model for SAW Transducers with Arbitrary Reflectivity Weighting. In: Proceedings of IEEE Ultrasonics Symposium, 1989.
    [72] Plessky V.. Coupling-of-modes analysis of SAW devices. International Journal of high speed electronics and systems. World scientific publishing, 2000.1-81.
    [73] Martin GE.. Determination of equivalent-circuit constants of piezoelectric resonators of moderately low Q by absolute-admittance measurements. Journal of the Acoustic Society of America, 1954,26(3). 413-420.
    [74] Tanski W.J. A configuration and circuit analysis for one-port SAW resonators.Journal of Apply Physical, 1978,49(4). 2559-2560.
    [75] Malocha D.C., Ng H., Fletcher M. Quartz resonator model measurement and sensitivity study. In: Proceedings of EIA quartz crystal conference. 1988. 1-9.
    [76] Park K., Malocha D., Belkerdid M. Quartz crystal resonator model measurement and sensitivity analysis.In:Proceedings of 43rd Annual Symposium on Frequency Control.1989.372~376.
    [77]Horine B.H.,Malocha D.C..Equivalent circuit parameter extraction of SAW resonators.In:Proceedings of IEEE Ultrasonics Symposium.1990.477~482.
    [78]Malocha D.C.,Belkerdid M.A.First-order sensitivity analysis of quartz crystal resonator model parameters.IEEE Transactions on Ultrosonics,Ferroelectrics,and Frequency Control,1990,37(6).602~603.
    [79]Cavin M.,Eisenhauer N.,Malocha D.C.Parameter extraction of SAW resonator equivalent circuit parameters and package parasitics.In:Proceedings of IEEE Frequency Control Symposium.1992.384~390.
    [80]Morgan D.P.Simplified analysis of surface acoustic wave one-port resonators.Electronics Letters,2003,39(18).
    [81]Hashimoto K.Y.声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.218~224.
    [82]Hashimoto K.Y.声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.248~251.
    [83]Kubat F.,Ruile W.,Reidl L.P-matrix based calculations of the potential and kinetic power in resonating SAW-structures.In:Proceedings of IEEE Ultrasonics Symposium.2002.329~332.
    [84]Hashimoto K.Y.声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.226~231.
    [85]Blφtekjaer K.,Ingebrigtsen K.A.,Skeie H.IEEE Transactions on Electron.Devices,ED-20 (1973).1139~1146.
    [86]Reichinger H.P.,Baghai-wadji A.R.Dynamic 2D analysis of SAW devices including massloading.In:Proceedings of IEEE Ultrasonics Symposium.1992.7~10.
    [87]Ventura P.,Hode J.M.,Solal M..A new efficient combined FEM and periodic Green's function formalism for the analysis of periodic SAW structure.In:Proceedings of IEEE Ultrasonics Symposium.1995.263~268.
    [88]Endoh G.,Hashimoto K.Y.,Yamaguchi M.SAW propagation characterization by finite element method and spectral domain analysis.Jpn.J.Appl.Phys.34,5B(1995).2638~2641.
    [89]Hashimoto K.Y..声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.287~288.
    [90]Hashimoto K.Y.,Yamaguchi M.Free software products for simulation and design of surface acoustic wave and surface transverse wave devices.In:Proceedings of IEEE International Frequency Control Symposium.1996.300~307.
    [91]Endoh G.,Hashimoto K.Y.Program for calculating discrete Green function on metallic grating with finite thickness FEMSDA Version 3.1.
    [92]Kajfez D.,Hwan E.J.Q-factor measurement with network analyzer.IEEE Transactions on microwave theory and techniques,1984,32(7).666~670.
    [93]Hashimoto K.Y.声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.255~256.
    [94]Hashimoto K.Y.声表面波器件的模拟和仿真.第一版.王景山,刘天飞,孙玮等译.北京:国防工业出版社,2002.135~142.
    [95]梁虹,梁洁,陈跃斌.信号与系统分析及Matlab实现.第一版.北京:电子工业出版社,2002.240~244.
    [96]Http://www.epcos.com/inf/40/ds/ae/R806.pdf.
    [97]Kwan G..Sensitivity analysis of one-port characterized devices in vector network analyzer calibrations:theory and computational analysis.In:Proceedings of NCSL International Workshop and Symposium.2002.
    [98]Hewlett Packard.HP8753ET/ES和HP8753ES选件011网络分析仪用户指南.
    [99]叶荣芳,徐佳.SOLT校准方法及其在射频测量中的应用.电子器件,29(1),2006.179~182.
    [100]Ludwig R.,Bretchko P.射频电路设计-理论与应用.第一版.王子宇,张肇仪,徐承和.北京:电子工业出版社,2002.42~45.
    [101]Puers R.Capacitive sensors:when and how to use them.Sensors and Actuators A:Physical,Vol.37-38,June-August 1993.93~105.
    [102]Ong K.G.,Zeng K.F.,Grimes C.A.A wireless passive carbon nanotube-based gas sensor.IEEE Sensors Journal,2(2),2002.82~88.
    [103]Canton J.G.,Moreno L.,Jimenez C.et al.EIS-Capacitor-Based LC wireless chemical sensors.2007.1903~1906.
    [104]Harpster T.J.,Stark B.,Najafi K.A passive wireless integrated humidity sensor.Sensors and Actuators A:Physical,95(2002).100~107.
    [105]Sippola C.B.,Ahn C.H.A ceramic capacitive pressure micro sensor with screenprinted diaphragm.1271~1274.
    [106]English J.M.,G.Allen M..Wireless micro machined ceramic pressure sensors.IEEE,1999.511~516.
    [107]尚永红,李艳秋,于红云等.非接触式电容压力传感器敏感元件的设计及性能分 析.传感技术学报,2008,21(2). 276-279.
    [108]Fonseca M.A., English J.M., Arx M.V. et al. Wireless micro machined ceramic pressure sensor for high-temperature applications. Journal of Microelectromechanical Systems, 2002,11(4). 337-343.
    [109]Balanis C.A. Antenna theory analysis and design. Ed.2nd.New York: John Wiley&Sons. Inc, 1997. 379-441.
    [110]Fu Q.Y., Wang J.L., Luo W. et al. Progress of Matching Network for Passive Remote Hybrid Sensor Based on SAW Resonator. 2008 IEEE International Ultrasonics Symposium. Digital Object Identifier (DOI): 10.1109 /ULTSYM. 2008.0368, pp.1512-1515.
    [111]Buff W, Goroll M., Klett S. et al. Wireless passive remote sensing with SAW resonators and a new solution for identical problems in multiple sensor systems. In:Proceedings of 29th European Microwave Conference. 1999. 391-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700