变分能量方法及其在医学图像处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像处理分析要解决的两个核心问题是:1)如何提高图像的质量和信息量;2)如何从大量的图像数据信息中快速地获取人们真正关心的信息。变分能量方法是应用数学领域中的一个重要方法,近三十年来在图像处理中得到广泛的应用和发展。图像超分辨和分割是(医学)图像处理中的两类典型问题,前者着眼于增大图像包含的信息量,后者主要是定量的提取目标物体的轮廓。本文主要是从这两类问题出发展开研究,利用医学数据特征、凸优化和低秩矩阵恢复的理论,建立了一系列高效的变分能量泛函,并提出了相应的快速求解算法。我们试图通过这些方法的建立作为搭建医学图像处理和临床医学之间桥梁的一个新的尝试。主要工作包括:
     首先,针对医学图像中分割中的一类典型问题——肝脏CT图像分割,本文建立了一个基于图像表征的自适应混合变分模型。受到模糊的边界、复杂的背景、低对比度、组织间灰度重叠等因素的影响,肝脏CT图像分割是一个具有挑战性的问题。此外图像中有识别力的特征如灰度、边界等分布的不均匀性进一步增加了分割的难度。提出的模型在不同的图像区域有选择性地根据灰度、边界及局部上下文信息确定目标区域。针对周围组织粘连及模糊边界难于识别的问题,我们引入了一个基于整体和局部区域表征的势能场函数,它能够利用局部“上下文”信息有效地识别弱边界。实验表明通过有机的结合不同的图像信息,提出的模型能够很好地处理带有复杂背景、灰度重叠以及弱边界的医学分割问题。提出的模型具备较高的分割精度和较短的处理时间,能够很好地满足医学的实际需求。
     其次,本文建立了一个带约束的凸的肝脏分割模型,并提出了一个改进的原始对偶算法。非凸模型由于一般只能局部求解,因此对初值有很大的依赖性。凸模型能够从任意初值出发得到全局解,但是很多模型的全局解缺少实际意义。对于带有复杂背景及灰度重叠的两区域肝脏分割问题,使得其全局最优解对应想要的分割。这需要有效地去除复杂背景的干扰,将全局解限制在目标分割上。对此我们提出了一个灰度-边界变分能量项,并结合了区域表征约束以及初始交互约束。我们给出了带交互约束的凸模型的解的松弛-阀值最优性。针对提出的非严格凸非光滑模型,我们提出了一个加速的原始对偶算法。大量的数据实验表明提出的模型能够有效地分割肝脏,而且仅仅需要很简单的交互初始化。
     最后,本文提出了基于矩阵结构低秩正则化的单张图像超分辨能量模型。众所周知,由于大量的细节缺失,单张图像超分辨问题是一个严重不适定的反问题。为了得到稳定的解,人们往往引入正则化方法。一般的基于数据学习的超分辨模型的重建结果,不仅因训练集合和模型参数的不同而不同,而且存在很多异值(Outlier)噪声误差或不适当重建。本文中提出了一种基于重建矩阵结构低秩正则化的超分辨方法。该方法通过融合不同的粗糙超分辨结果得到干净的超分辨。在异值噪声随机、稀疏的假设下,我们提出的方法在保持图像结构的同时,能够有效地去除异值噪声误差。实验表明,提出的方法的结果不仅远远好于输入的粗糙超分辨结果,而且要优于当前主流的算法。
Image process and analysis aim to improve the image quality through post-processing and rapidly extract the information that the specific application needs from huge mount of image data. Variational energy method is one of the most important methods in applied mathematics. In the last few decades have seen a great many applications and developments of variational methods in image pro-cessing. Super-resolution and segmentation are two typical problems in (medical) image processing. The first task targets to increase the amount of information and the second is to extract the boundary the specific object. Focussing on these two problems, we present here several efficient formulations of these problems based the variational method, relaxation, convex optimization and the theory of low rank matrix recovery, while also taking account of the features of specific data and the needs of their applications. Several efficient computational schemes and algorithms are also developed for the corresponding energies. With these new models and algorithms, we are trying to build a bridge for the daily clinical practice and the image processing techniques. Main research includes:
     Firstly, A region appearance based adaptive variational model is proposed for the liver segmentation from CT image, which is a typical problem in medical image processing. Due to intensity overlapping, ambiguous edges and complex backgrounds, liver segmentation is a difficult task.the non-uniform distributions of discriminative image features pose further challenges. In view of this, a spa-tially varying weight is incorporated by the proposed hybrid model such that the model can locate liver regions and edges selectively according to intensity, gradient and local context. Given the adhering tissues and weak edges, a novel potential field based on global and local region appearance is introduced to re-solve ambiguity. The experiments on standard data sets show that through the adaptive integration of different image cues, the proposed model can efficiently address complex background, intensity overlapping and weak edges. Moreover, it is robust to initialization and data quality. Quantitative validations and com- parative results demonstrate the accuracy, efficiency and robustness of the model and thus can well satisfy the clinical requirement.
     Secondly, we propose a constrained convex model with an efficient algo-rithm for liver segmentation problem, which is complicated by complex back-ground and intensity overlapping. Nonconvex models are prone to get stuck in local minima and thus sensitive to initialization. While convex models can be minimized globally with any initialization, one of the biggest challenges is to define an energy with meaningful global minimizer, especially for problems with complex background and ambiguous edges. In this paper we proposed a model which combined a novel intensity-edge term, a region appearance term and user specified constrains in initial stage,which can maximally restrict the solution space to target segmentation. Also we prove the optimal property thresholded solution of the convex model. Moreover, we proposed an accelerated primal-dual algorithm.
     Finally, we propose a structural low rank regularization method for the sin-gle image super-resolution. As is well known, single image super-resolution is a highly ill-posed problem due to the large amount of missing information in reg-ular positions. To obtain stable and reasonable solution, the general approach is to introduce regularization terms. One popular method is the learning based approach which can be adaptive to data structure. However, the results are heav-ily affected by the content of training data and learning algorithms. Moreover, they are plagued by artifacts such as inconsistent reconstructions and outliers which usually have significantly different values than neighborhoods. To address these problems, we propose a new variational energy with a structural low rank regularization, which produces clear reconstruction by fusing different coarse re-constructions. With the assumption of randomness and sparsity of the outliers, the proposed model can simultaneously remove the artifacts and keep the image structures.
引文
[1]Aubert G, Kornprobst P. Mathematical problems in image processing:par-tial differential equations and the calculus of variations [M]. Springer Science Business Media,2006.
    [2]Chan T, Shen J. Image processing and analysis:variational, PDE, wavelet, and stochastic methods [M]. Society for Industrial and Applied Mathematics, 2005.
    [3]Paragios N, Chen Y, Faugeras O D. Handbook of mathematical models in computer vision [M]. Springer Publishing Company, Incorporated,2010.
    [4]冯象初,王卫卫.图像处理的变分和偏微分方程方法[M].科学出版社,2009.
    [5]Aster R C, Borchers B, Thurber C H. Parameter estimation and inverse problems [M]. Academic Press,2012.
    [6]Tarantola A. Inverse problem theory and methods for model parameter es-timation [M]. Society for Industrial Applied,2005.
    [7]Tikhonov, A. N. Regularization of incorrectly posed problems [M]. Soviet Math Dokl,1963,4(1):1624-1627.
    [8]Kass M, Witkin A, Terzopoulos D. Snakes:Active contour models [J]. In-ternational journal of computer vision,1988,1(4):321-331.
    [9]Caselles V, Kimmel R, Sapiro G. Geodesic active contours [J]. International journal of computer vision,1997,22(1):61-79.
    10] Mumford D, Shah J. Optimal approximations by piecewise smooth func-tions and associated variational problems [J]. Communications on pure and applied mathematics,2006,42(5):577-685.
    [11]Zhu S C, Yuille A. Region competition:Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1996,18(9):884-900.
    [12]Xu C, Prince J L. Snakes, shapes, and gradient vector flow [J]. Image Pro-cessing, IEEE Transactions on,1998,7(3):359-369.
    [13]Cohen L D. On active contour models and balloons [J]. CVGIP:Image un-derstanding,1991,53(2):211-218.
    [14]Melonakos J, Pichon E, Angenent S, et al. Finsler active contours [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2008,30(3):412-423.
    [15]Kichenassamy S, Kumar A, Olver P, et al. Conformal curvature flows:from phase transitions to active vision [J]. Archive for Rational Mechanics and Analysis,1996,134(3):275-301.
    [16]Chan T F, Vese L A. Active contours without edges [J]. Image Processing, IEEE Transactions on,2001,10(2):266-277.
    [17]Ronfard R. Region-based strategies for active contour models [J]. Interna-tional Journal of Computer Vision,1994,13(2):229-251.
    [18]Vese L A, Chan T F. A multiphase level set framework for image segmenta-tion using the Mumford and Shah model [J]. International Journal of Com-puter Vision,2002,50(3):271-293.
    [19]Ni K, Bresson X, Chan T, et al. Local histogram based segmentation using the Wasserstein distance [J]. International journal of computer vision,2009, 84(1):97-111.
    [20]Lankton S, Tannenbaum A. Localizing region-based active contours [J]. Im-age Processing, IEEE Transactions on,2008,17(11):2029-2039.
    [21]Li C, Kao C Y, Gore J C, et al. Implicit active contours driven by local binary fitting energy [C]. Computer Vision and Pattern Recognition IEEE Conference on.,2007:1-7.
    [22]Zhang K, Zhang L, Song H, et al. Active contours with sefective local or global segmentation:A new formulation and level set method [J]. Image and Vision Computing,2010,28(4):668-676.
    [23]Jung M, Peyre G, Cohen L D. Nonlocal active contours [J]. SIAM Journal on Imaging Sciences,2012,5(3):1022-1054.
    [24]Yezzi A, Zollei L, Kapur T. A variational framework for integrating segmen-tation and registration through active contours [J]. Medical Image Analysis, 2003,7(2):171-185.
    [25]Leclerc Y G. Constructing simple stable descriptions for image partitioning [J]. International journal of computer vision,1989,3(1):73-102.
    [26]Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation:integrating color, texture, motion and shape [J]. International journal of computer vision,2007,72(2):195-215.
    [27]Yezzi Jr A, Tsai A, Willsky A. A statistical approach to snakes for bimodal and trimodal imagery [C]. Computer Vision,1999. The Proceedings of the Seventh IEEE International Conference on. IEEE,1999,2:898-903.
    [28]Par agios N, Deriche R. Geodesic active regions:A new framework to deal with frame partition problems in computer vision [J]. Journal of Visual Com-munication and Image Representation,2002,13(1):249-268.
    [29]Brox T, Cremers D. On local region models and a statistical interpretation of the piecewise smooth Mumford-Shah functional [J]. International journal of computer vision,2009,84(2):184-193.
    [30]Leventon M E, Grimson W E L, Faugeras O. Statistical shape influence in geodesic active contours [C]. Computer Vision and Pattern Recognition, 2000. Proceedings. IEEE Conference on. IEEE,2000,1:316-323.
    [31]Pizer S M, Fritsch D S, Yushkevich P A, et al. Segmentation, registration, and measurement of shape variation via image object shape [J]. Medical Imaging, IEEE Transactions on,1999,18(10):851-865.
    [32]Tsai A, Yezzi Jr A, Wells W, et al. A shape-based approach to the seg-mentation of medical imagery using level sets [J]. Medical Imaging, IEEE Transactions on,2003,22(2):137-154.
    [33]Cremers D, Tischh?user F, Weickert J, et al. Diffusion snakes:Introducing statistical shape knowledge into the Mumford-Shah functional [J]. Interna-tional journal of computer vision,2002,50(3):295-313.
    [34]Chen Y, Tagare H D, Thiruvenkadam S, et al. Using prior shapes in geo-metric active contours in a variational framework [J]. International Journal of Computer Vision,2002,50(3):315-328.
    [35]Cremers D, Osher S J, Soatto S. Kernel density estimation and intrinsic alignment for shape priors in level set segmentation [J]. International Journal of Computer Vision,2006,69(3):335-351.
    [36]Prisacariu V A, Reid I. Nonlinear shape manifolds as shape priors in level set segmentation and tracking [C]. Computer Vision and Pattern Recognition (CVPR),2011 IEEE Conference on. IEEE,2011:2185-2192.
    [37]Freedman D, Zhang T. Active contours for tracking distributions [J]. Image Processing, IEEE Transactions on,2004,13(4):518-526.
    [38]Mory B, Ardon R, Thiran J P. Variational segmentation using fuzzy re-gion competition and local non-parametric probability density functions [C]/ ICCV IEEE 11th International Conference on.2007:1-8.
    [39]Kim J, Fisher III J W, Yezzi A, et al. A nonparametric statistical method for image segmentation using information theory and curve evolution [J]. Image Processing, IEEE Transactions on,2005,14(10):1486-1502.
    [40]Herbulot A, Jehan-Besson S, Duffner S, et al. Segmentation of vectorial image features using shape gradients and information measures [J]. Journal of Mathematical Imaging and Vision,2006,25(3):365-386.
    [41]Michailovich O, Rathi Y, Tannenbaum A. Image segmentation using active contours driven by the Bhattacharyya gradient flow [J]. Image Processing, IEEE Transactions on,2007,16(11):2787-2801.
    [42]Escolano F, Suau P, Bonev B. Information theory in computer vision and pattern recognition [M]. Springer,2009.
    [43]Parzen E. On estimation of a probability density function and mode [J]. The annals of mathematical statistics,1962,33(3):1065-1076.
    [44]Piovano J, Papadopoulo T. Local statistic based region segmentation with automatic scale selection [J]. Computer Vision-ECCV 2008,2008:486-499.
    [45]Li S Z. Markov random field modeling in image analysis [M]. Springer,2009.
    [46]Clifford P. Markov random fields in statistics [J]. Disorder in physical sys-tems,1990:19-32.
    [47]Blake A, Kohli P, Rother C. Markov random fields for vision and image processing [M]. Mit Pr,2011.
    [48]Potts R B. Some generalized order-disorder transformations [C]. Proceedings of the Cambridge Philosophical Society.1952,48(2):106-109.
    [49]Zhang Y, Matuszewski B J, Shark L K, et al. Medical image segmenta-tion using new hybrid level-set method [C]. BioMedical Visualization,2008. MEDIVIS'08. Fifth International Conference. IEEE,2008:71-76.
    [50]Mumford D. Elastica and computer vision [M]. Center for Intelligent Control Systems, Massachusetts Institute of Technology,1991.
    [51]Masnou S. Disocclusion:a variational approach using level lines [J]. Image Processing, IEEE Transactions on,2002,11(2):68-76.
    [52]Shen J, Kang S H. Chan T F. Euler's elastica and curvature-based inpainting [J]. SIAM Journal on Applied Mathematics,2003,63(2):564-592.
    [53]Rudin L I, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [J]. Physica D:Nonlinear Phenomena,1992,60(1):259-268.
    [54]Gilboa G, Darbon J, Osher S, et al. Nonlocal convex functionals for image regularization [J]. UCLA CAM-report,2006:06-57.
    [55]Mallat S. A wavelet tour of signal processing:the sparse way [M]. Academic press,2008.
    [56]Donoho D L, Johnstone J M. Ideal spatial adaptation by wavelet shrinkage [J]. Biometrika,1994,81(3):425-455.
    [57]Shen Z. Wavelet frames and image restorations [C]. Proceedings of the In-ternational Congress of Mathematicians.2010,4:2834-2863.
    [58]Shah J. A common framework for curve evolution, segmentation and anisotropic diffusion [C]. IEEE Proceedings Computer Vision and Pattern Recognition,1996:136-142.
    [59]Jung M, Bresson X, Chan T F, et al. Nonlocal Mumford-Shah regularizers for color image restoration [J]. Image Processing, IEEE Transactions on, 2011,20(6):1583-1598.
    [60]Kendall D G. A survey of the statistical theory of shape [J]. Statistical Science,1989,4(2):87-99.
    [61]Heimann T, Meinzer H P. Statistical shape models for 3D medical image segmentation:a review [J]. Medical image analysis,2009,13(4):543.
    [62]Cootes T F, Taylor C J, Cooper D H, et al. Active shape models-their train-ing and application [J]. Computer vision and image understanding,1995, 61(1):38-59.
    [63]Peng J, Dong F, Kong D X. Recent advances of variational model in medical imaging and applications to computer aided surgery [J]. Applied Mathematics-A Journal of Chinese Universities,2012,27(4):379-411.
    [64]Elad M, Figueiredo M A T, Ma Y. On the role of sparse and redundant rep-resentations in image processing [J]. Proceedings of the IEEE,2010,98(6): 972-982.
    [65]Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM journal on scientific computing,1998.20(1):33-61.
    [66]Chartrand R, Staneva V. Restricted isometry properties and nonconvex com-pressive sensing [J]. Inverse Problems,2008,24(3):035020.
    [67]Aharon M, Elad M, Bruckstein A. K-SVD:Design of dictionaries for sparse representation [J]. Proceedings of SPARS,2005,5:9-12.
    [68]Tseng P. Applications of a splitting algorithm to decomposition in convex programming and variational inequalities [J]. SIAM Journal on Control and Optimization,1991,29(1):119-138.
    [69]Lu T, Neittaanmaki P, Tai X C. A parallel splitting up method and its application to Navier-Stokes equations [J]. Applied Mathematics Letters, 1991,4(2):25-29.
    [70]Zhao H K, Chan T, Merriman B, et al. A variational level set approach to multiphase motion [J]. Journal of computational physics,1996,127(1): 179-195.
    [71]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations [J]. Journal of computa-tional physics,1988,79(1):12-49.
    [72]Almgren F, Taylor J E, Wang L. Curvature-driven flows:a variational ap-proach [J]. SIAM Journal on Control and Optimization,1993,31(2):387-438.
    [73]Luckhaus S, Sturzenhecker T. Implicit time discretization for the mean cur-vature flow equation [J]. Calculus of Variations and Partial Differential Equa-tions,1995,3(2):253-271.
    [74]Chambolle A. An algorithm for mean curvature motion [J]. Interfaces and free Boundaries,2004,6(2):195-218.
    [75]Chambolle A, Darbon J. On total variation minimization and surface evolu-tion using parametric maximum flows [J]. International journal of computer vision,2009,84(3):288-307.
    [76]Boyd S, Vandenberghe L. Convex optimization [M]. Cambridge university press,2004.
    [77]Bresson X, Esedo?lu S, Vandergheynst P, et al. Fast global minimization of the active contour/snake model [J]. Journal of Mathematical Imaging and vision,2007,28(2):151-167.
    [78]Chan T F, Esedoglu S, Nikolova M. Algorithms for finding global minimizers of image segmentation and denoising models [J]. SIAM Journal on Applied Mathematics,2006,66(5):1632-1648.
    [79]Nieuwenhuis C, Toeppe E, Cremers D.A Survey and Comparison of Discrete and Continuous Multilabel Segmentation Approaches [J]. In International Journal of Computer Vision, to appear,2013.
    [80]Castillo E, Garcia-Bertrand R M R. Decomposition techniques in mathe-matical programming [M]. Springer-Verlag Berlin Heidelberg,2006.
    [81]Goldstein T, Osher S. The split Bregman method for L1-regularized prob-lems [J]. SIAM Journal on Imaging Sciences,2009,2(2):323-343.
    [82]Bertsekas D P. Multiplier methods:a survey [J]. Automatica,1976,12(2): 133-145.
    [83]Tai X C, Wu C. Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model [M]. Scale space and variational methods in computer vision. Springer Berlin Heidelberg,2009:502-513.
    [84]Osher S, Burger M, Goldfarb D, et al. An iterative regularization method for total variation-based image restoration [J]. Multiscale Modeling Simulation, 2005,4(2):460-489.
    [85]Chambolle A. An algorithm for total variation minimization and applications [J]. Journal of Mathematical imaging and vision,2004,20(1-2):89-97.
    [86]Zhu M. Chan T. An efficient primal-dual hybrid gradient algorithm for total variation image restoration [J]. UCLA CAM Report,2008:08-34.
    [87]Arrow K J, Hurwicz L, Uzawa H. Studies in linear and non-linear program-ming [M]. Stanford University Press,1958.
    [88]Esser E, Zhang X, Chan T F. A general framework for a class of first order primal-dual algorithms for convex optimization in imaging science [J]. SI AM Journal on Imaging Sciences,2010,3(4):1015-1046.
    [89]Pock T, Cremers D, Bischof H, et al. An algorithm for minimizing the Mumford-Shah functional [C]. Computer Vision,2009 IEEE 12th Interna-tional Conference on. IEEE,2009:1133-1140.
    [90]He B, Yuan X. Convergence analysis of primal-dual algorithms for a saddle-point problem:From contraction perspective [J]. SIAM Journal on Imaging Sciences,2012,5(1):119-149.
    [91]Chambolle A, Pock T. A first-order primal-dual algorithm for convex prob-lems with applications to imaging [J]. Journal of Mathematical Imaging and Vision,2011,40(1):120-145. with Applications to Imaging
    [92]Rusk6L, Bekes G, Fidrich M. Automatic segmentation of the liver from multi-and single-phase contrast-enhanced CT images [J]. Medical image analysis,2009,13(6):871.
    [93]Liu F, Zhao B, Kijewski P K, et al. Liver segmentation for CT images using GVF snake [J]. Medical Physics,2005,32:3699.
    [94]Dawant B M, Li R, Lennon B, et al. Semi-automatic segmentation of the liver and its evaluation on the MICCAI 2007 grand challenge data set [J]. 3D Segmentation in The Clinic:A Grand Challenge,2007:215-221.
    [95]Lee J, Kim N, Lee H, et al. Efficient liver segmentation exploiting level-set speed images with 2.5 D shape propagation [J].3D Segmentation in the Clinic:A grand Challenge,2007:189-196.
    [96]Chen G, Gu L, Qian L, et al. An improved level set for liver segmentation and perfusion analysis in MRIs [J]. Information Technology in Biomedicine, IEEE Transactions on,2009,13(1):94-103.
    [97]Heimann T, van Ginneken B, Styner M A, et al. Comparison and evaluation of methods for liver segmentation from CT datasets [J]. Medical Imaging, IEEE Transactions on,2009,28(8):1251-1265.
    [98]Kainmuller D, Lange T, Lamecker H. Shape constrained automatic segmen-tation of the liver based on a heuristic intensity model [C]. Proc. MICCAI Workshop 3D Segmentation in the Clinic:A Grand Challenge.2007:109-116.
    [99]Ling H, Zhou S K, Zheng Y, et al. Hierarchical, learning-based automatic liver segmentation [C]. Computer Vision and Pattern Recognition,2008. CVPR 2008. IEEE Conference on. IEEE,2008:1-8.
    [100]Wimmer A, Soza G, Hornegger J. A generic probabilistic active shape model for organ segmentation [M]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2009. Springer Berlin Heidel-berg,2009:26-33.
    [101]Heimann T, Meinzer H P, Wolf I. A statistical deformable model for the segmentation of liver CT volumes [J].3D Segmentation in the clinic:A grand challenge,2007:161-166.
    [102]Zhang X, Tian J, Deng K, et al. Automatic liver segmentation using a statistical shape model with optimal surface detection [J]. Biomedical Engi-neering, IEEE Transactions on,2010,57(10):2622-2626.
    [103]Okada T, Shimada R, Sato Y, et al. Automated segmentation of the liver from 3D CT images using probabilistic atlas and multi-level statis-tical shape model [M]. Medical Image Computing and Computer-Assisted Intervention-MICCAI 2007. Springer Berlin Heidelberg,2007:86-93.
    [104]Park H, Bland P H, Meyer C R. Construction of an abdominal proba-bilistic atlas and its application in segmentation [J]. Medical Imaging, IEEE Transactions on,2003,22(4):483-492.
    [105]Ojala T, Pietikainen M, Maenpaa T. Multiresolution gray-scale and rota-tion invariant texture classification with local binary patterns [J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,2002,24(7):971-987.
    [106]Dobrushin R L. Prescribing a system of random variables by conditional distributions [J]. Theory of Probability and Its Applications,1970,.15(3): 458-486.
    [107]Evans L C, Gangbo W. Differential equations methods for the Monge-Kantorovich mass transfer problem [M]. American Mathematical Soc.,1999.
    [108]Dall'Aglio, G. Sugli estremi dei momenti delle funzioni di ripartizione doppia, Ann. Scuola Normale Superiore Di Pisa, Cl. Sci,1956,3(1):33-74.
    [109]Weickert J, Romeny B M T H, Viergever M A. Efficient and reliable schemes for nonlinear diffusion filtering [J]. Image Processing, IEEE Transactions on, 1998,7(3):398-410.
    [110]Unger M, Pock T, Bischof H. Continuous globally optimal image segmen-tation with local constraints [C]. Computer Vision Winter Workshop.2008, 2008.
    [111]Strang G. Maximal flow through a domain [J]. Mathematical Programming. 1983,26(2):123-143.
    [112]Milanfar P. Super-resolution imaging [M]. CRC Press Llc,2010.
    [113]王正明,朱炬波等.SAR图像提高分辨率技术[M].科学出版社,2006.
    [114]Takeda H, Milanfar P. Locally Adaptive Kernel Regression for Space-Time Super-Resolution [J]. Super-Resolution Imaging,2010,1:63.
    [115]Zhang H, Yang J, Zhang Y, et al. Non-local kernel regression for image and video restoration [M]. Computer Vision-ECCV 2010. Springer Berlin Heidelberg,2010:566-579.
    [116]Buades A, Coll B, Morel J M. Nonlocal image and movie denoising [J]. International journal of computer vision,2008,76(2):123-139.
    [117]Peyre G, Bougleux S, Cohen L. Non-local regularization of inverse problems [M]. Computer Vision-ECCV 2008. Springer Berlin Heidelberg,2008:57-68.
    [118]Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution [J]. Computer Graphics and Applications, IEEE,2002,22(2):56-65.
    [119]Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor em-bedding [C]. Computer Vision and Pattern Recognition,2004. CVPR 2004. Proceedings of the 2004 IEEE Computer Society Conference on. IEEE,2004, 1:I-275-I-282 Vol.1.
    [120]Roweis S T, Saul L K. Nonlinear dimensionality reduction by locally linear embedding [J]. Science,2000,290(5500):2323-2326.
    [121]Gao X, Zhang K, Tao D, et al. Image super-resolution with sparse neighbor embedding [J]. Image Processing, IEEE Transactions on,2012,21(7):3194-3205.
    [122]Yang J, Wright J, Huang T S, et al. Image super-resolution via sparse representation [J]. Image Processing, IEEE Transactions on,2010,19(11): 2861-2873.
    [123]Yang J, Wang Z, Lin Z, et al. Coupled dictionary training for image super-resolution [J]. Image Processing, IEEE Transactions on,2012,21(8):3467-3478.
    [124]Yang S, Wang M, Chen, Y, Sun Y. Single-Image Super-Resolution Recon-struction via Learned Geometric Dictionaries and Clustered Sparse Coding [J]. Image Processing, IEEE Transactions on,2012,21(9):4016-4028.
    [125]Lu X, Yuan H, Yan P, et al. Geometry constrained sparse coding for sin-gle image super-resolution [C]. Computer Vision and Pattern Recognition (CVPR),2012 IEEE Conference on. IEEE,2012:1648-1655.
    [126]Dong W, Zhang L, Shi G. Centralized sparse representation for image restoration [C]. Computer Vision (ICCV),2011 IEEE International Con-ference on. IEEE,2011:1259-1266.
    [127]Izenman A J. Modern multivariate- statistical techniques:regression, clas-sification, and manifold learning [M]. Springer,2008.
    [128]Fazel M, Candes E, Recht B, et al. Compressed sensing and robust recov-ery of low rank matrices [C]. Signals, Systems and Computers,2008 42nd Asilomar Conference on. IEEE,2008:1043-1047.
    [129]Jolliffe I T. Principal component analysis [M]. New York:Springer-Verlag, 1986.
    [130]Candes E J, Li X, Ma Y, et al. Robust principal component analysis? [J]. arXiv preprint arXiv:0912.3599,2009.
    [131]Recht B, Fazel M, Parrilo P A. Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization [J]. SIAM review, 2010,52(3):471-501.
    [132]Lin Z, Chen M, Ma Y. The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices [J]. arXiv preprint arXiv:1009.5055, 2010.
    [133]Dong W, Zhang L, Shi G, et al. Image deblurring and super-resolution by adaptive sparse domain selection and adaptive rcgularization [J]. Image Processing, IEEE Transactions on,2011,20(7):1838-1857.
    [134]Cai J F, Candes E J, Shen Z. A singular value thresholding algorithm for matrix completion [J]. SIAM Journal on Optimization,2010,20(4):1956-1982.
    [135]Wang Z, Bovik A C, Sheikh H R, et al. Image quality assessment:From error visibility to structural similarity [J]. Image Processing, IEEE Transac-tions on,2004,13(4):600-612.
    [136]Hale E T, Yin W, Zhang Y. Fixed-point continuation for -minimization: Methodology and convergence [J]. SIAM Journal on Optimization,2008, 19(3):1107-1130.
    [137]Irani M, Peleg S. Motion analysis for image enhancement:Resolution, oc-clusion, and transparency [J]. Journal of Visual Communication and Image Representation,1993,4(4):1993-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700