太阳高分辨力成像多层共轭自适应光学技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多层共轭自适应光学(MCAO),利用多导引星探测大气湍流三维波前信息,并控制多个变形镜对大气湍流进行分层校正,最终获得大视场高分辨力校正效果,是自适应光学研究领域的热点之一。针对太阳活动区观测对大视场高分辨力成像的迫切需求,本文主要开展太阳多层共轭自适应光学技术的研究,重点开展大气湍流三维波前探测技术以及MCAO系统设计和仿真的研究工作。
     大气湍流三维波前探测是实现多层共轭自适应光学技术的关键和前提。论文首先对湍流三维波前探测中常用的模式法层析技术进行理论研究与仿真分析,首次提出该算法存在原理性限制,并基于此对模式法层析技术产生误差的原因展开分析,随后针对不同类型的模式层析重构误差给出数值仿真实验结果。结果表明,模式层析重构中使用了Zernike分解基的一部分作为新的分解基进行波面拟合,从而引入模式混淆和模式耦合两个方面的误差;部分Zernike分解基不相关是避免模式混淆误差的必要条件,模式耦合误差则无法避免。论文进一步结合仿真结果提出大视场探测、小区域重构的方法,有效的抑制了模式耦合误差。
     其次,针对地表层自适应光学(GLAO)技术,采用地表层大气湍流波前相位的平均算法对地表层大气湍流波前相位进行预测,对影响地表层自适应光学系统校正效果的主要因素进行了仿真。首次提出平均算法作为大气层析技术的特例,可以对大气湍流进行分两层重构。仿真分析结果表明在相同大气相干长度的情况下,地表层湍流强度在整个大气层中所占的比重对地表层自适应光学的校正效果有较大影响,对于特定的湍流分布,探测视场越大,整个视场内校正效果越差。
     再次,设计并研制了一套37子孔径的大视场相关夏克-哈特曼波前传感器,在云南天文台1米太阳望远镜上以太阳黑子为目标开展了大视场波前探测实验,首次得到实际大气层析和平均算法的波前探测实验结果。在1’探测视场内选取5个不同位置的子区域探测波前像差,进行大气层析波前重建,利用波前重建结果模拟地表层自适应光学和双层共轭自适应光学系统的开环校正。实验验证了平均算法和大气层析技术的有效性。
     最后,基于1米太阳望远镜,在国内首次开展了太阳多层共轭自适应光学实验系统的仿真分析和系统设计。该实验系统中包括一套127单元自适应光学系统和一套37单元自适应光学系统,分别用于校正地面层湍流和高层大气湍流。研究结果表明,该两层共轭自适应光学校正系统可以在1’探测视场内获得明显的高分辨校正效果,湍流层越高,其与变形镜的非共轭对校正效果的影响越大。
     本文针对太阳大视场高分辨力成像观测需求,开展多层共轭自适应光学和地表层自适应光学技术进行系统的研究,在国内尚属开创性的工作,为进一步开展多层共轭自适应光学系统的研制打下了基础,对推动我国自适应光学技术的发展具有重要的研究意义和参考价值。
Nowadays multi-conjugate adaptive optics (MCAO), in whichthree-dimensional (3D) phase distortion induced by atmospheric turbulenceis sensedby making use of several guide stars, and then controls a number of DMs conjugatedinto different altitude to widen the compensated field of view by correcting the phasedistortions in situ, has become one of the most interesting researches on adaptiveoptics. For the demand of high resolution observation of solar active region, this PhD dissertation is aimed to study solar multi-conjugate adaptive optics. More attentionis paid to three-dimensional wavefront sensing of atmospheric turbulence, numericalsimulation and design of solar multi-conjugate adaptive optics system based on1-meter solar telescope.
     Three-dimensional wavefront sensing of atmosphere turbulence is crucial torealize multi-conjugate adaptive optics technology. In this dissertation, modaltomography, which is one of the most important algorithms for3D wavefrontsensing, is analyzed in theory, the principle limitation of modal tomography isproposed. Based on this view the tomographic error is discussed and the simulationresults for different errors are presented. The analysis results show that part Zernikemodal basis is used as a new basis of polynomial decomposition in modaltomography, which leads to modal coupling error and aliasing error. Theun-correlation of part Zernike modal basis is the prerequisite to avoid modal aliasingerror, but modal coupling error cannot be removed and we can only restrain itsinfluence. Combined with simulation result a method with large field of view (FOV)sensing and small FOV reconstruction is proposed and gives a good performance tocontrol modal coupling error.
     In the other field, Ground Layer Adaptive Optics (GLAO) which correctsground layer turbulence and the average algorithm for ground layer turbulenceestimate are analyzed. Power spectrum filter method is present to describe the effectof GLAO. As a special case of atmosphere tomography, average algorithm isproposed for the first time that can reconstruct atmosphere turbulence in two layers.Simulation analyzes is present for the major factors which influenced the systemcorrection effect of GLAO. The simulation result indicates that the compensate effect is related to the proportion of ground layer turbulence intensity and field ofview.
     Furthermore, the experimental demonstration is carried out for the performanceof atmosphere tomography and average algorithm evaluation, using sunspot andsolar granulation as the beacons. A large FOV correlation Shark-Hartmann isdesigned and employed to get turbulence aberration from several light of fieldsimultaneously. The FOV cover by its detector is some60arcsec to the side in eachof the30subapertures. We use the observation of the5off axis regions to calculatethe deformation of the wavefront of ground and high layer turbulence, and thensimulate GLAO and two layers MCAO correction in open loop, the result shows itiseffective to reconstruct the turbulence in different layers.
     At last, a solar multi-conjugate adaptive optics system is designed andsimulated for1meter solar telescope. This system contains two parts, including a127-element adaptive optics for correcting ground layer turbulence and a37-elementfor high layer. It shows that the two-conjugate adaptive optics can obtain obvioushigh resolution in1’ FOV, and the non-conjugated of DM and turbulence layer hasmore influence for higher turbulence layer.
     This dissertation is pioneering work in domestic, which is aimed to study solarMCAO and GLAO for the demand of high resolution observation of solar activeregion. It has laid a foundation for MCAO system and will help to promote thedevelopment of adaptive optics technology.
引文
[1]马科斯波恩,埃米尔沃尔夫.光学原理(上册)[M].北京:科学出版社,2005:Ⅰ-Ⅴ
    [2] H. W. Babcock. The possibility of compensating astronomical seeing [J]. Publ. Astron Soc.Pac.,1953:65,229-236
    [3] J.W.Hardy, J.E.Lefebvre, C.L.Koliopoulos. Real-Time Atmospheric Campensation [J],J.Opt.Soc.Am.1977:60,360
    [4] D.P.Greenwood, C.A.Primmerman.Adaptive optics research at Lincoln Laboratory[J]. TheLincoln Laboratory Journal,1992:5(1),3-24
    [5] G. Rousset, J. C. Fontanella, P. Kern, et al. First diffraction-limited astronomical images withadaptative optics [J].Astron. Astrophys.1989:230, L29-32
    [6] P. J. Lena, Astrophsical results with the Come-on Adaptive Optics System [C], Proc. SPIE,1994:2201,1099-1109
    [7] H. Takami, S. Colley, M. Dinkins. Status of Subaru Laser Guide Star AO System [C], Proc.of SPIE,2006:6272,62720C
    [8] R. Arsenault, J. Alonso, H. Bonnet, et al. MACAO-VLTI. An adaptive optics system for theESO VLT interferometer [C], Proc. of SPIE,2003:4839,174A
    [9] J. W. Hardy. Solar Imaging Experiment: Final Report [R], AFGL-TR-80-0338, Air ForceGeophysics Laboratory, Hanscom AFB, Lexington,1980
    [10] D. S. Acton, R. C. Smithson. Solar imaging with a segmented adaptive mirror [J], Appl.Opt.1992:31,3161-3169
    [11] T. Rimmele, K. Richards, S. Hegwer, et al. Solar Adaptive Optics: A progress report [C],Proc. SPIE,2002:4839,635-646
    [12] L. Oskar, S. Dirk, B. Thomas, et al. KAOS: Adaptive optics systemfor the Vacuum TowerTelescope at Teide Observatory [C], Proc. SPIE,2003:4853,187-193
    [13] C. U. Keller, C. Plymate, S. M. Ammons. Low-cost solar adaptive optics in the infrared [C],in:Innovative Telescopes and Instrumentation for Solar Astrophysics. Edited by Stephen L.Keil, Sergey V. Avakyan.Proc. SPIE,2003:4853,351-359
    [14] G. B. Scharmer, P. M. Dettori, M. G. Lofdahl, et al. Adaptive optics system for thenewSwedish solar telescope [C], Innovative Telescopes and Instrumentation for SolarAstrophysics. Edited by Stephen L.Keil, Sergey V. Avakyan. Proc. SPIE,2003:4853,370-380
    [15] C. Denker, A. Tritschler, T. Rimmele, et al. Adaptive Optics at the Big Bear SolarObservatory: Instrument Descriptionand First Observations [J], Publications of theAstronomical Society of the Pacific,2007:119,170-182
    [16] C. H. Rao, L. Zhu, X. J. Rao, et al. Performance of the37-element solar adaptive opticsforthe26cm solar fine structure telescopeat Yunnan Astronomical Observatory [J], APPLIEDOPTICS,2010:49(31), G129-G135
    [17] T. Rimmele, P. Goode, W. D. Cao. Development of High-Order Adaptive Optics for the1.6Meter Solar Telescope in Big Bear [R], Investigation
    [18] W. Schmidt, O. von der Lühe, R. Volkmer, et al. The1.5meter solar telescope GREGOR [J],Astron. Nachr.,2012:333(9),796-809
    [19] W. H. Jiang, et al. A37element adaptive optics system with H-S wavefront sensor[J].ICO-16Satellite Conf. On Active and Adaptive Optics, Proc. ESO.1993:48,127
    [20] D. L. Fried. Anisoplanatism in adaptive optics [J],J. Opt. Soc. Am.A,1982:72(1),52-61
    [21] J. D. H. Pilkington.Artificial guide star for adaptive imaging [J], Nature,1987:330,116
    [22] S.Esposito, A. Riccardi, R. Ragazzoni. Focus anisoplanatism effects on tip–tilt compensationfor adaptive optics with use of a sodium laser beacon as a tracking reference [J], J. Opt. Soc.Am. A,1996:13(9)1916-1923
    [23] D.L.Fried, J.F.Belsher. Analysis of fundamental limits to artificial-guide-staradaptive-optics-system performance for astronomical imaging [J], J. Opt. Soc. Am. A,1994:11,277-287.
    [24] J. M. Beckers. Increasing the size of the isoplanatic patch within multiconjugate adaptiveoptics [C], in: M.-H. Ulrich (Ed.), Proceedings of European Southern ObservatoryConference andWorkshop on Very Large Telescopes and Their Instrumentation, in: ESOConference and Workshop Proceedings, European Southern Observatory, Garching,Germany,1988:30,693-703.
    [25] D. C. Johnston, B. M. Welsh.Analysis of multiconjugate adaptive optics [J], J. Opt. Soc. Am.A,1994:11(1),394-408
    [26] B. L. Ellerbroek. First order performance evaluation of adaptive optics systems foratmospheric turbulence compensation in extended field of view astronomical telescopes [J], J.Opt. Soc. Am. A,1994:11,783-805
    [27] M. Tallon, R. Foy, Adaptive telescope with laser probe: isoplanatism and cone effect [J],Astron. Astrophys.1990:235,549–557
    [28] R. Ragazzoni, E. Marchetti, F. Rigaut, Modal tomography for adaptive optics, Astron.Astrophys [J].1999:342, L53–L56.
    [29] J.M. Beckers. Detailed Compensation of Atmospheric Seeing with multiconjugate adaptiveoptics [C],Proc. SPIE,1989:1114,215-217
    [30] R. Ragazzoni. Pupil plane wavefront sensing with an oscillating prism [J], J. Modern Opt.1996:43,289-293
    [31] T. Fusco, J. M. Conan, V. Michau, et al. Phase estimation for large field of view: applicationto multiconjugate adaptive optics [C], Conference on Propagation and Imaging through theAtmosphere III, Denver. Colorado, Proc. SPIE,1999:3763125-133
    [32] B.L.Ellerbroek, C.R.Vogel. Simulations of closed-loop wavefront reconstruction formulti-conjugate adaptive optics on giant telescopes [C], Proc. SPIE,2003:5169,206-217
    [33] B. L. Roux, J. M. Conan C. Kulcsár, et al.Optimal control law for classical andmulticonjugate adaptive optics [J], J. Opt. Soc. Am. A,2004:21(7),1261-1276
    [34] D.C.Johnston,B.M. Welsh. Estimating contributions of turbulent layers to total wavefrontphase aberration [C]. Proc. of SPIE,1992:1688,510-521
    [35] O. Lühe, T. Berkefeld, D. Soltau. Multi-conjugate solar adaptive optics at the Vacuum TowerTelescope on Tenerife [J]. C.R. Physique,2005:6,1139-1147
    [36] T. Berkefeld, D. Soltau, O. Lühe. Results of the Multi-conjugate Adaptive Optics System atthe German Solar Telescope, Tenerife [C]. Astronomical Adaptive Optics Systems andApplications II, Proc. SPIE,2005:5903,59030O-1~59030O-8
    [37] T. Berkefeld, D. Soltau, O. Lühe. Second-generation adaptive optics for the1.5m solartelescope GREGOR, Tenerife [C], Proc. SPIE,2004:5490,260-267
    [38] T. Berkefeld, D. Soltau,O. Lühe. Multi-Conjugate Solar Adaptive Optics with the VTT andGREGOR [C]. Advances in Adaptive Optics II, Proc. SPIE,2006:6272,627205-1~627205-9
    [39] M.Langlois, G. Moretto, K. Richards, et al. Solar Multi-Conjugate Adaptive Optics at theDunn Solar Telescope: Preliminary Results [C], Proc. of SPIE,2004:5490,59-66
    [40] R. Thomas, R. Kit, R. Jacqueline, et al. Progress with solar multi-conjugate adaptive optics atNSO [C], Proc. of SPIE,2006:6272,627206-1~627206-5
    [41] T. Rimmele, S. Hegwer, J. Marino, et al. Solar multi-conjugate adaptive optics at the DunnSolar Telescope [C],1st AO4ELT conference,2010:08002-p.1~08002-p.6
    [42] E.Marchetti, R.Brast, B.Delabre,et al.MAD: practical implementation of MCAO concepts [J],C. R. Physique,2005:6,1118-1128
    [43] M. Enrico, B. Roland, D. Bernard, et al. On-sky Testing of the MCAO Demonstrator [J],Telescopes and Instrumentation,2007:129,8-13
    [44] M. Enrico, B. Roland, D. Bernard, et al.MAD on sky results in star oriented mode [C], Proc.of SPIE,2008:7015,70150F-1~70150F-12
    [45] C. Arcidiacono, M. Lombini, R. Ragazzoni,et al. Layer Oriented Wavefront sensor for MADon Sky operations [C], Proc. of SPIE,2008:7015,70155P-1~70155P-12
    [46] A. Moretti, C. Arcidiacono, M. Lombini. MAD@VLT observations in Layer Orientedmode:first results [J], Mem. S.A.It.,2009:80,139-140
    [47] M. G. Petr-Gotzens, M. F. Sterzik, R. K hler, et al. Multi-conjugate adaptive opticsobservations of the Orion Trapezium Cluster [C],The Universe under theMicroscope-Astrophysics at High Angular Resolution,Journal of Physics,2008,131(012026),1-7
    [48] A. Moretti, G. Piotto, C. Arcidiacono, et al. MCAO near-IR photometry of the globularcluster NGC6388:MAD observations in crowded fields [J], Astronomy&Astrophysics,2009:493,539-546
    [49] M. Boccas, F. Rigaut, D. Gratadour et al. GeMS: Gemini Mcao System,current status andcommissioning plans [C], Proc. of SPIE,2008:7015,70150X-1~70150X-15
    [50] F. Rigaut, B. Neichel, M.Boccas, et al. GeMS first on-sky results [C], Proc. of SPIE,2012:8447,84470I-1~84470I-15
    [51]F. Rigaut, B. Neichel. First light for the Gemini Multi-Conjugate Adaptive Optics System [C],Proc. of SPIE, Newsroom,2012
    [52] R.Ragazzoni, E.Diolaiti, E.Vernet, et al. Arbitrarily Small Pupils in Layer-OrientedMulti-Conjugate Adaptive Optics [J]. Publications of the Astronomical Society of thePacific,2005:117,860-869
    [53] B. Ellerbroek, S. Adkins, D. Andersen, et al. First light adaptive optics systems andcomponents for the Thirty Meter Telescope, Proc. of SPIE,2010:7736,773604-1~773604-14
    [54] E. Diolaiti, J.-M. Conan, I. Foppiani, et al. THE MULTI-CONJUGATE ADAPTIVEOPTICS MODULE FOR THE E-ELT, Société Francaise d'Astronomie et d'Astrophysique(SF2A),2010:63-66
    [55] H. Norbert, A. Robin, C. Ralf, et al. Ground Layer Adaptive Optics [J], C. R. Physique6,2005:1099-1109
    [56] R. Racine, B.L.Ellerbroek. Proles of nighttime turbulence above Mauna Kea andisoplanatism extension in adaptive optics [C]. Adaptive Optical Systems and Applications,Proc. of SPIE,1995:2534,248-257
    [57] M.L. Louarn, N.Hubin, M.Sarazin, et al. New challenges for adaptive optics: extremely largetelescopes [J]. Mon. Not. R. Astron. Soc.2000:317,535-544
    [58] J.A.Stoesz. Constraining the GLAO parameter space with turbulence profile models [C].Advances in Adaptive Optics II, Proc. of SPIE,2006:6272,62724M-1~62724M-10
    [59] F. Rigaut. Ground Conjugate Wide Field Adaptive Optics for the ELTs [C]. Conferencedevoted to the development of adaptive optics for extremely large telescopes. Proceedings ofthe Topical Meeting held May7-10,2001, Venice, Italy. Garching, Germany: EuropeanSouthern Observatory,2002ESO Conference and Workshop Proceedings, ISBN3923524617,volume58, pages11,2002
    [60] T. Travouillon, J. S. Lawrence, L. Jolissaint. Ground-layer adaptive optics performance inAntarctica [C]. Advancements in Adaptive Optics, Proc. of SPIE,2004:934-942
    [61] J.A.Stoesz, L.Jolissaint, J.-P.Veran, et al. An analytic model for natural guide star wide fieldadaptive optics [C], Advancements in Adaptive Optics, Proc. of SPIE,2004:5490,713-720
    [62] A. Tokovinin. Seeing improvement with ground-layer adaptive optics [J]. Astron. Astrophys.,2004:116,941-951
    [63] D.R.Andersen, D.Crampton, K. Szeto, et al, Modeling a GLAO system for the GeminiObservatory [C]. Advances in Adaptive Optics II, Proc.of SPIE,2006:6272,62725B
    [64] D.R.Andersen, J.Stoesz, S.Morris, et al. Performance Modeling of a Wide-FieldGround-LayerAdaptive Optics System [J]. Publ. Astron. Soc. Pac.,2006:118,1574-1590
    [65] L. Jolissaint, J. P. Veían, R. Conan. Analytical modeling of adaptive optics: foundations ofthe phase spatial power spectrum approach [J], J. Opt. Soc. Am. A,2006:23(2),382-394
    [66] B. L. Ellerbroek. Linear systems modeling of adaptive optics in the spatial-frequency domain[J], J. Opt. Soc. Am. A,2005,:22(2),310-322
    [67] M. L.-Hart, N. M. Milton. Multi-conjugate adaptive optics for a new generation of gianttelescopes [C]. Future Giant Telescopes, Proc. of SPIE,2003:4840,18-26
    [68] A. Basden, T. Butterley, R. Myers, et al. Durham extremely large telescope adaptiveopticssimulation platform [J], APPLIED OPTICS,2007:46(7),1089-1098
    [69] C. Baranec, M. L.-Hart, N. M. Milton. Ground-Layer Wave Front Reconstruction fromMultiple Natural Guide Stars [J]. The Astrophysical Journal,2007:661,1332-1338
    [70] E. Marchetti, R. Brast, B. Delabre, et al. MAD star oriented: laboratory results for groundlayer and multi-conjugate adaptive optics [C]. Advances in Adaptive Optics II, Proc. of SPIE,2006:6272,62720O
    [71] M. Hart, N. M. Milton, C. Baranec, et al. A ground-layer adaptive optics system withmultiple laser guide stars [J], nature,2010:466,727-729
    [72] A. Tokovinin, S. Thomas, B. Gregory, et al. Design of ground-layer turbulence compensationwith a Rayleigh beacon [C]. Advancements in Adaptive Optics, Proc. of SPIE,2004:5490,870-878
    [73] S. Str bele, R. Arsenault, R. Bacon, et al. The ESO Adaptive Optics Facility [C]. Advancesin Adaptive Optics II, Proc. of SPIE,2006:6272,62720B
    [74] H. Michael, B. Lorenzo, D. Oli, et al. Diffraction-limited upgrade to ARGOS, the LBT’sground-layer adaptive optics system [C], Proc. of SPIE,2010:7736,773634
    [75] J. X. Yan, R. Z. Zhou, X. Yu. Problems with multiconjugate correction [J], OpticalEngineering,1994:33(9),2942-2944
    [76] X. K. Ding, J. Rong, H. Bai, et al. Theoretical analysis and simulation of conjugate heightsfor dual-conjugate AO system in lidar [J]. CHINESE OPTICS LETTERS,2008:6(1),1-4
    [77]张现瑜. LINC-NIRVANA层向多层共轭自适应光学系统[D],成都:中国科学院光电技术研究所博士学位论文,2012
    [78]颜召军.自适应光学系统预测控制及多层共轭技术研究[D],成都:中国科学院光电技术研究所博士学位论文,2013
    [79] R. Ragazzoni,E. Marchetti, G. Valente. Adaptive-optics correction available for the wholesky [J], Nature,2000:403,54-56
    [80] T. Fusco, J. M. Conan, V. Michau, et al. Multi-Conjugate Adaptive Optics: Comparison ofphase reconstruction approaches for large Field of View [C], Proc. of SPIE,2001:4167,168-179
    [81] A. Tokovinin, M. L. Louarn, E. Viard, et al.Optimized modal tomography in adaptive optics[J], Astron.Astrophys.2001:378,710-721
    [82] A. Tokovinin, E. Viard. Limiting precision of tomographic phase estimation[J], J. Opt. Soc.Am. A,2001:18(4),873-882
    [83] D. L. Fried. Statistics of a Geometric Representation of Wavefront Distortion [J], J. Opt. Soc.Am. A,1965:55,1427-1435
    [84] F. Roddier. The effects of atmospheric turbulence in optical astronomy [M], in Progress inOptics, E.Wolf, ed.(North-Holland, Amsterdam,1981), Vol.19,281-376
    [85] V. I. Tatarskii. Wave propagation in a turbulent medium [M]. New York: Dover Publications,1967
    [86]张逸新,迟泽英.光波在大气中的传输与成像[M],北京,国防工业出版社,1997
    [87] A.N.Kolmogorov. The local structure of turbulence in incompressible viscous fluids for verylarge reynold’s numbers [M], in Turbulence, Classic Papers on Statistical Theory(S.K.Friedlander and L.Topper, eds.), New York: Wiley Interscience,1961:151-155
    [88] D. L. Fried. Optical resolution through a randomly inhomogeneous medium for very long andvery short exposures [J], J.Opt.Soc.Am.1966:56,1372-1379
    [89] D. L. Fried. Limiting resolution looking down through the atmosphere [J], J.Opt.Soc.Am.,1966:56,1380-1384
    [90] D. L. Fried. Differential angle of arrival: theory, evaluation, and measurement feasibility [J],Radio Sci.1975:,10,71-76
    [91] C. R. Neyman. Focus anisoplanatism: a limit to the determination of tip-tilt with laser guidestars [J], Optics Letters,1996:21,1806-1808
    [92] R.J.Noll. Zernike polynomials and atmospheric turbulence [J], J.Opt.Soc.Am.,1976:66,207-211
    [93] F. Roddier. Imaging through the atmosphere [M]. In F. Roddier, editor, Adaptive Optics inAstronomy, pages9-22. Cambridge university press,1999
    [94]周仁忠.自适应光学[M],国防工业出版社,北京,1996:270-273
    [95] D.Malacara, Optical shop testing[M], John Wiley&Sons,Inc., New York,1978,105
    [96]张昂.不同子孔径像素数时的夏克-哈特曼波前传感器探测性能研究[D],成都:中国科学院光电技术研究所博士学位论文,2006
    [97]李华强.夏克-哈特曼波前传感器的若干问题分析[D],成都:中国科学院光电技术研究所博士学位论文,2008
    [98]姜文汉,鲜浩,杨泽平等.哈特曼波前传感器的应用[J].量子电子学报, Vol.15, No2,1998:228-235
    [99] F. Roddier. Curvature sensing and compensation: a new concept in adaptiveoptics [J].Applied Optics,1988:27,1223-1225
    [100] R. Ragazzoni. Pupil plane wavefront sensing with an oscillating prism[J]. Journal ofModernOptics.1996,43,289-293
    [101]R. M. Clare, R. G. Lane. Wave-front sensing from subdivision of the focal plane with alenslet array [J], J. Opt. Soc. Am. A,2005:22(1),117-125
    [102] I.Montilla, M.Reyes,B.Femení, et al. Multiconjugate adaptive optics with plenoptic camerasand the Fourier Transform Reconstructor [C], Proc. of SPIE,2010:7736,773641
    [103]饶长辉,姜文汉,凌宁.低对比度扩展目标跟踪算法[J],天文学报,2001:42(3),329-338
    [104] J.W.Hardy. AdaptiveOptics for Astronomical Telescopes [M], published by OxfordUniversity Press, Inc.198Madison Avenue, New York, New York10016,1998:84-86
    [105] J. Feinleib, proposal82-P4[M], Adaptive Optics Associates, Cambridge, Mass.,1982
    [106] R. Foy, A.Labeyrie. Feasibility of adaptive telescope with laser probe [J], Astron. Astrophys.1985:152,129-131
    [107] B. L. Ellerbroek. Efficient computation of minimum-variance wave-front reconstructorswith sparse matrix techniques [J],J. Opt. Soc. Am. A,2002:19(9),1083-1096
    [108] P. Piatrou, M. C. Roggemann. Performance analysis of Kalman filter and minimum variancecontrollers for multiconjugate adaptive optics [C], Proc. of SPIE,2005:5894,288-299
    [109] P.Piatrou, M.C.Roggemann. Performance study of Kalman filter controller formulticonjugate adaptive optics [J], APPLIED OPTICS,2007:46(9),1446-1455
    [110] T. Fusco, J. M. Conan, G. Rousset, et al. Optimal wave-front reconstruction strategies formulticonjugate adaptive optics [J], J. Opt. Soc. Am. A,2001:18(10),2527-2538
    [111] N. Roddier.Atmospheric wavefront simulation using Zernike polynomials,[J] OPTICALENGINEERING,1990:29(10),1174-1180
    [112]杨华峰,姜宗福.对Zernike模式法重构19单元哈特曼测量波前的研究[J],激光技术,2005:29(5),484-487
    [113]段海峰,李恩得,王海英,等.模式正交性对哈特曼夏克传感器波前测量等的影响[J],光学学报,2003:23(9),1143-1148
    [114] B. L. Ellerbroek, F.J. Rigaut.Scaling Multi-Conjugate Adaptive Optics PerformanceEstimates to Extremely Large Telescopes [C],Proc. of SPIE,2000:4007,498-509
    [115] J. Mu, W. J. Zheng, M. Li, et al. Real-time measurement of atmospheric parameters for the127-element adaptive optics system of1.8-m telescope [J], Chin. Opt. Lett.,2012:10(12),120101
    [116] F. Roddier. adaptive optics in astronomy [M], Cambridge University Press1999:19-22
    [117] Z. Liu,J. Xu.1-meter near-infrared solar telescope [C], First Asia-Pacific SolarPhysics Meeting ASI Conference Series,2011:2,9-17
    [118] A. Tokovinin, T. Travouillon. Model of optical turbulence profile at Cerro Pachón, Mon.Not. R. Astron. Soc.2006:365,1235-1242
    [119] A. Tokovinin, J. Vernin, A. Ziad, et al. Optical Turbulence Profiles at Mauna Kea Measuredby MASS and SCIDAR [J], Publications of the Astronomical Society of the Pacific,2005:117,395-400
    [120] B.L. Ellerbroek, G.M. Cochran. A Wave Optics Propagation Code for Multi-ConjugateAdaptive Optics [C], Proc. of SPIE,2002:4494,104-120

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700