电流融冰过程中导线表面温度特性及其影响因素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
输电线路是电能传输的重要设备,线路覆冰给电力系统的安全稳定运行造成严重威胁。到目前为止,国内外还没有一种理想的针对输电线路的除冰防冰方法,相对而言采用短路融冰方法具有融冰速度快、融冰效果好等优点,是防止电网发生冰灾的可行方法之一。在融冰过程要求输电线路温度高于临界融冰温度,又不超过线路的允许温度范围,是目前没有很好解决的技术难题。因此展开对融冰过程中导线表面温度特性的研究,能保证输电线路有效融冰且确保融冰过程中不损伤导线,是合理设计电流融冰装置、因地制宜实施融冰方法的技术基础,为电网快速有效除冰提供必要的保证。
     本文依托国家重点基础研究发展计划项目(973项目:2009CB724501)和“十一五”国家科技支撑计划重大项目(2006BAA02A19),以我国输电线路所采用的两种典型导线为例,在大型多功能人工气候室中模拟输电线路自然覆冰进行短路电流融冰试验,利用电流发生器、桥式整流器和高精度实时温度监测系统,对交直流短路融冰过程中导线表面温度特性进行试验研究。
     论文分析了短路融冰的临界条件,建立了临界电流融冰的数学物理模型,研究各种因素对临界融冰电流的影响规律,并提出了临界融冰电流的计算公式。结合短路电流融冰的热平衡过程,建立电流融冰的数学物理模型,利用控制体积法对融冰过程中导线表面温度分布进行数值计算,分析了各种因素(空气间隙、风速、环境温度、覆冰均匀程度等)对导线表面温度分布的影响规律。并对融冰过程导线最高温度特性及其影响因素进行分析。
     研究表明:在临界融冰状态导线表面的温度始终保持0℃,若要进行短路电流融冰,融冰电流必须要大于临界融冰电流。临界融冰电流随着风速的增大而增大、随环境温度的降低而增大,而与冰层厚度的大小关系不明显。临界融冰电流的计算结果与试验结果基本一致,其相对误差为1%~9%。
     融冰开始后,随着空气间隙的产生,导线表面温度分布不均匀。导线上表面温度始终为冰层融化的温度,导线下表面温度随着空气间隙的增加而增大,当冰层从导线上脱落的时刻导线温度达到最高。在融冰过程中,冰层的内表面始终为冰水混合物,其温度为0℃。通过本文建立的椭圆形短路电流融冰模型,分析了空气间隙是影响导线温度分布的主要因素;风速和环境温度的变化仅影响冰层的融化速度,对导线表面温度分布没有影响,只是通过影响空气间隙变化快慢间接地影响导线表面温度的温升速度;同时导线覆冰的均匀程度对导线表面温度分布也有一定的影响。经数值计算得到的温度特性曲线与试验数据对比其结果基本吻合。
     通过分析,导线表面温度只取决于融冰电流和空气间隙而与外界条件无关。结合传热学理论,提出了计及融冰电流和冰层厚度影响的导线表面最高温度的计算公式,并可采用本文提出的方法计算最大允许融冰电流。
Transmission lines are important power transmission equipments, transmission line icing poses a serious threat to the security and stability of power system. So far, it has not yet an ideal de-icing method for transmission line at home and abroad. In contrast, ice-melting method using short-circuit have short time and good effect of ice-melting and so on, is one of the methods for preventing the occurrence of ice damage. In the process of ice-melting, only if the temperature of conductor will be higher than the critical temperature and be not more than line allowed temperature range, ice layer melts. The method is not well resolved technical problems. Therefore, research on temperature characteristics of conductor in the process of ice-melting ensure effective ice-melting and not to damage the wire in ice-melting process, and provide the necessary guarantees for safe operation of the power grid.
     Supported by The National Basic Research Program of China (973 Program: 2009CB724501) and Key Project of the National Eleventh-Five Year Research Program of China(2006BAA02A19), this paper uses two kinds of transmission line conductors for the test product, and systematically investigates temperature characteristic of conductor and its influencing factors during ice-melting based on high-current generator and bridge rectifier and high-precision real-time temperature monitoring system by analoging transmission line icing and ice-melting using short-circuit in the artificial climate chamber.
     This paper established mathematical and physical model of the critical current of ice-melting, the influencing rule of a variety of factors on the critical current and ice surface temperature were also analyzed. In addition, the method to calculate the critical current and ice surface temperature was put forward. Combined with the thermal ice-melting with short-circuit current balance of during ice-melting, mathematical and physical model of ice melting was established, and control volume method was used for calculating temperature distribution of the surface of conductors. The various factors (air gap, wind velocity, environmental temperature and so on) were analyzed on temperature distribution of the wire surface. And the maximum conductor temperature characteristics and influencing factors were analyzed.
     Studies have shown that in the critical state of ice-melting surface temperature of conductor has been maintained at 0℃, current can only melt the ice when the current is greater than the critical current of ice-melting. Critical current of ice-melting increases along with the increase of wind speed and the decrease of temperature increase, while the size and thickness of ice is not obvious. Critical current of ice-melting calculations are basically consistent with the experimental results, the absolute value of error is between 1% and 9%.
     After the beginning of ice-melting, there is uneven distribution of surface temperature of conductor with the air gap formation. The upper surface temperature of wire is always melting temperature, the lower surface temperature increases with the increase of air gap. When the ice falls off the wire, the temperature reaches to the maximum value. In the process of ice-melting, the inner surface of ice layer is always the temperature of the ice water mixture and always is 0℃. In this paper, oval-shaped model through ice-melting is established, the impact of the air gap is considered as major factor in the distribution temperature of conductor, wind velocity and environmental temperature affect only the rate of ice-melting, and have no effect on surface temperature distribution of conductor. Only by influencing the speed of the air gap changes indirectly influence the rate of change in surface temperature leads. The uniformity of the ice also has certain influence on surface temperature distribution. Comparison of numerical results with the experimental data is basically consistent.
     The wire surface temperature depends only on the ice melting current and air gap theres with external conditions. A calculation formula for maximum temperature of conductor affected by the thickness of ice and ice-melting current is established according to the heat transfer theory, the method can calculate the maximum allowed ice-melting current.
引文
[1]蒋兴良,易辉.输电线路覆冰及防护[M].北京:中国电力出版社,2002.
    [2]蒋兴良,舒立春,孙才新.电力系统污秽与覆冰绝缘[M].北京:中国电力出版社,2009.
    [3] C.Yangchun,N.Chunjie,and L.Chengrong.The reliability evaluation method of high voltage overhead transmission lines[C].2008 International Conference on Condition Monitoring and Diagnosis,2008:566-569.
    [4]苑吉河,蒋兴良,易辉,孙才新,谢述教.输电线路导线覆冰的国内外研究现状[J]高电压技术,2004,30(01):6-9.
    [5]申屠刚,程极盛.输电线路覆冰阶段性防御策略[J].电网技术,2009,33(15):100-104.
    [6]胡毅.电网大面积冰灾分析及对策探讨[J].高电压技术,2008,34 (02):215-219.
    [7]陆佳政;张红先.湖南电力系统冰灾监测结果及其分析[J].电力系统保护与控制,2009,37(12):99-105.
    [8]吴向东,张国威.冰雪灾害对电网的影响及防范措施[J].中国电力,2008,38(12):27-30.
    [9]李成榕,吕玉珍.冰雪灾害条件下我国电网安全运行面临的问题[J].电网技术,2008,32(04):14-21.
    [10] Jiang Xingliang,Shu Lichun.Chinese transmission lines icing characteristics and analysis of severe ice accidents [J].International Journal of Offshore and Polar Engineering,2004,14(3):196-201.
    [11]许树楷,赵杰.电网冰灾案例及抗冰融冰技术综述[J].南方电网技术,2008,4(11):1-48.
    [12]刘有飞,吴素农,袁彦.浅谈输电线路覆冰导致电力倒塔原因及相关建议[J].华中电力2008(21):71-73.
    [13] J.L.Laforte,M.A.Allaire,and J.Laflamme,State-of-the-art on power line de-icing[C],Atmospheric Research,1998 (46):143-158.
    [14]蒋兴良,马俊,王少华.输电线路冰害事故及原因分析[J].中国电力,2005,38(11):27-30.
    [15] P.Personne and J.F.Gayet.Prevention of wire icing by Joule heating[C].in Proc.3rd IWAIS,Vancouver,BC,Canada,1986:429–433.
    [16]蒋兴良,张丽华.输电线路除冰防冰技术综述[J].高电压技术,1997(23):73-76.
    [17] Canada electrical association,proceedings of the 1st IWAIS,Wankuwa,Canada,1982.
    [18] Hydro quebec,proceedings of the international icing symposium' 95,Montreal,1995.
    [19] Japanese society of snow and ice,proceedings of the 5th IWAIS,Tokyo,Japan,1990.
    [20]蒋兴良,万启发.输电线路除冰新技术—低居里(LC)磁热线在线路除冰中的应用[J].高电压技术,1992(03):55-58.
    [21]蒋兴良,范松海,孙才新,舒立春.低居里点铁磁材料在输电线路防冰中应用前景分析[J].南方电网技术,2008,2(02):19-22.
    [22]山霞,舒乃秋.关于架空输电线除冰措施的研究[J].高电压技术,2006,32(04):25-27.
    [23]杨暘,高虹亮.架空输电线路除冰机器人的结构设计[J].电力建设,2009,30(03):93-96.
    [24]蒋兴良,肖代波,孙才新.憎水性涂料在输电线路防冰中的应用前景[J].南方电网技术,2008,2(02):13-18.
    [25]谷山强,陈家宏.输电线路激光除冰技术试验分析及工程应用设计[J].高电压技术,2009,35(9):2243-2249.
    [26]王红斌,王琦.输电线路高频、高压激励融冰技术研究[J].广东电力,2009,22(08):21-24.
    [27] P.Personne and J.F.Gayet,Prevention of wire icing by Joule heating[C].Proc.3rd IWAIS,Vancouver,BC,Canada,1986:429–433.
    [28] Z.PéTER.Modeling and Simulation of the Ice Melting Process on a Current-Carrying Conductor[C] QUEBEC UNIVERSITE DU QUEBEC,2006,1-343.
    [29] V.T.Morgan,Thermal Behaviour of Electrical Conductors [M].Somerset,U.K:Research Studies Press,1991.
    [30] S.Royand and S.Sengupta,Gravity-assisted melting in a spherical enclosure effects of nature convection[C].Int.J.Heat Mass Transfer,1990(133):1135-1147.
    [31] M . K . Moalemiand and R . Viskanta . Analysis of close-contact melting heat transfer[C].Int.J.Heat Mass Transfer,1989(129):855-867.
    [32] M.K.Moalemiand and R.Viskanta.An analytical solution of the heat transfer process during melting of an unfixed solid phase change material inside a horizontal tube[C].Int.J.Heat Mass Transfer,1984(127):739-746.
    [33] B.W.Webb,M.K.Moallemi,and R.Viskanta.Experiments on melting of unfixed ice in a horizontal cylindrical Capsule[C].Transactions of the ASEM,Journal of Heat Transfer, 1987(109):454-459.
    [34] Charles.Sullivan,Victor F.Petrenko,Joshua D.Mccurdy,Valeri Kozliouk.Breaking the ice[C].IEEE 2003.
    [35] J.V.C.Vargas,A.Bejan,and A.Dobrovicescu.The melting of an ice shell on a heated horizontal cylinder[C].Transactions of the ASME.Journal of Heat Transfer,1994(116):702-708.
    [36]南方电网融冰技术及应用研究[Z].贵阳:中国南方电网有限责任公司,2007.
    [37] Michel Landry,Roger Beauchemin,AndréVenne.De-icing EHV overhead transmission lines using electromagnetic forces generated by moderate short-circuit currents[C].Proceedings of IEEE 9th International Conference on Transmission and Distribution Construction,Operationand Live-line Maintenance.2000:94-100.
    [38]柳黎,彭敏放.电网高效融冰与无功静补双用途系统原理及实现研究[D].长沙:湖南大学,2007.
    [39] P.Gaydecki,G.Miller,M.Zaid,B.Fernandes,and H.Hussin,Detection of magnetic fields highly attenuated by the skin effect through a ferrous steel boundary using a super narrow-band digital filter,IEEE Transactions on Instrumentation and Measurement,2008(57):1171-1176.
    [40] J.D.McCurdy,C.R.Sullivan,and V.F.Petrenko,Using dielectric losses to de-ice power transmission lines with 100 kHz high-voltage excitation,Conference Record of the 2001 IEEE Industry Applications Conference,2001(14):2515-2519.
    [41] K.H.Hesse.Ice melting systems in Manitoba hydro,Canadian Electrical Association,Montreal,QC,Canada,Mar,1998.
    [42]刘和云.架空导线覆冰与脱冰机理研究[D].武汉:华中科技大学,2001.
    [43] S.Y.Sadov,P.N.Shivakumar,D.Firsov,S.H.Lui,and R.Thulasiram,Mathematical Model of Ice Melting on Transmission Lines,J Math Model Algor,2007(6):273-286.
    [44]文闿成.高压长线路短路法融冰可行性探讨[J].电网技术,2009,33(02):46-50.
    [45]汤文斌,刘和云.模拟大气环境下铁路接触网覆冰融冰实验研究[D].长沙:长沙理工大学,2009.
    [46]杨世铭,陶文铨.传热学[M].北京:高等教育出版社,1996.
    [47]张学学,李桂馥.热工基础[M].北京:高等教育出版社,1998.
    [48]陶文铨.数值传热学[M].西安:西安交通出版社,2001.
    [49] Modest M.Thermal Radiation [M].New York:John Wiley & Sons,Inc.2003:573-633.
    [50] Ghajar A J,Tam L M.Heat transfer measurements and correlations in the transition region for a circular tube with three different inlet configurations [J] . Exp Thermal and Fluid Science.1994,8(1):79-90.
    [51] Makkonen.Heat transfer and icing of a rough cylinder[J].Cold Regions Science and Technology,1985(10):105-116.
    [52] Zsolt Péter,Masoud Farzaneh,LászlóI.Kiss.Assessment of the Current Intensity for Preventing Ice Accretion on Overhead Conductors[J].IEEE Transactions on Power Delivery,2007,12(1):565-574.
    [53] M.Huneault,C.Langheit,and J.Caron.Combined models for glaze ice accretion and de-icing of current-carrying electrical conductors[J].IEEE Transactions on Power Delivery,2005(20):1611-1616.
    [54]龚建刚.架空输电线路动态增容研究[C].2005年华东电网线路专业会议资料,南京,2005:254-258.
    [55]陈绍鑫,吴培胜等.输电线路温度和弧垂在线监测装置应用研究[J].华北电力技术,2008(3):14-15.
    [56]徐青松,季洪献,侯炜,王孟龙.监测导线温度实现输电线路增容新技术[J].电网技术,2006,30:171-176,supplement.
    [57]任丽佳,盛戈皞,曾奕,江秀臣,胡玉峰,吴小辰.动态提高输电线路输送容量技术的导线温度模型[J].电力系统自动化,2009,33(05):40-44.
    [58]叶鸿声,龚大卫,黄伟中,等.提高导线允许温度的可行性研究和工程实施[J].电力建设,2004,25(9):1-7.
    [59]杨鹏,房鑫炎.采用DTCR模型提高输电线输送容量[J].华东电力,2005,33(3):11-14.
    [60]刘长青,刘胜春,陈永虎等.提高导线发热允许温度的试验研究[J].电力建设,2003,24(8):24-26.
    [61]叶鸿声.高压输电线路导线载流量计算的探讨[J].电力建设,2000(12):23-26.
    [62]杨虎,刘琼荪,钟波.数理统计[M].北京:高等教育出版社.2004.
    [63]盛骤.概率论与数理统计[M].北京:高等教育出版社.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700